• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strategies to limit dysmyelination during secondary degeneration following neurotrauma

    2014-01-22 16:46:01MelindaFitzgerald

    Strategies to limit dysmyelination during secondary degeneration following neurotrauma

    Following trauma to the central nervous system (CNS), cells in the lesion site die rapidly. In addition, neurons and glia beyond the initial lesion are vulnerable. These cells can undergo delayed death due to metabolic events that follow the initial trauma, via mechanisms thought to be triggered by glutamate-induced excitotoxicity and Ca2+overload, leading to mitochondrial dysfunction, associated with increased oxidative stress (Camello-Almaraz et al., 2006; Peng and Jou, 2010). The resultant death of areas of grey and white matter adjacent to the lesion site is termed secondary degeneration, and is a feature of brain and spinal cord injury (Park et al., 2004; Giaume et al., 2007). Secondary degeneration contributes substantially to functional loss following neurotrauma (Profyris et al., 2004; Farkas and Povlishock, 2007) and rescuing this intact, but vulnerable, tissue is considered critical to minimising adverse sequelae and improving long term functional outcomes after CNS trauma (Fehlings et al., 2012). However, our understanding of many of the metabolic events thought to contribute to secondary degeneration is based largely on in vitro studies (Khodorov, 2004; Tretter et al., 2007; Peng and Jou, 2010) and there is a need to con fi rm the relevance of these mechanisms in vivo, as well as their structural and functional consequences.

    To study and develop treatments for secondary degeneration, it is essential to have a reproducible in vivo model system that simulates the complex events that occur in humans and allows statistical verification of tissue rescue and functional improvements. Levkovitch-Verbin and colleagues developed an elegant partial optic nerve transection model in which only the dorsal optic nerve is injured, allowing spatial separation of the dorsal primary injury from ventral optic nerve white matter vulnerable to secondary degeneration (Levkovitch-Verbin et al., 2001; Levkovitch-Verbin et al., 2003; Blair et al., 2005). We and others have built upon these studies and this brief review describes some of this work further characterising metabolic and structural features of secondary degeneration following partial optic nerve transection, with particular reference to dysmyelination, and assessment of ef fi cacy of treatment strategies to limit these changes.

    Ca2+changes and oxidative stress during secondary degeneration in vivo

    Altered distribution of Ca2+ions is thought to be a key early event in secondary degeneration, but these fi ne-scale changes are difficult to track in vivo. Using nanoscale secondary ion mass spectrometry (NanoSIMS) we have quanti fi ed changes in calcium (Ca) microdomains, which are localised areas of increased Ca2+concentration (Rizzuto and Pozzan, 2006). We showed that the density of speci fi c subsets of Ca microdomains selectively and significantly decreased after injury, in ventral optic nerve vulnerable to secondary degeneration (Wells et al., 2012; Lozic et al., 2014). Decreased density of Ca microdomains may be accompanied by an ef fl ux of Ca2+from these microdomains and future NanoSIMS assessments designed to quantify Ca2+release are planned. We have also demonstrated increased immunoreactivity of the GluR1 subunit of the AMPA receptor in ventral optic nerve astrocytes in the fi rst 24 hours after injury (Wells et al., 2012), perhaps contributing to changes in Ca2+fl ux.

    Increased Ca2+fl ux has been associated with increased reactive oxygen and nitrogen species and oxidative stress in vitro (Camello-Almaraz et al., 2006; Peng and Jou, 2010). Excess in fl ux of Ca2+leads to perturbations in mitochondrial membrane potential, opening of the mitochondrial permeability transition and release of cytochrome c, which increases production of reactive oxygen species, overwhelms endogenous antioxidant responses and leads to oxidative stress (Kowaltowski et al., 2009; Peng and Jou, 2010). Oxidative stress has been demonstrated as a feature of traumatic brain and spinal cord injury (Park et al., 2004; Carrico et al., 2009). However, it is not yet clear if oxidative stress contributes to secondary degeneration in vivo. We have demonstrated increased immunoreactivity of the antioxidant enzyme manganese superoxide dismutase (MnSOD) in hypertrophic astrocytes, in the first minutes and days after injury (Fitzgerald et al., 2009a; Fitzgerald et al., 2010a), associated with increased reactive species (unpublished). However, antioxidant activity appears inadequate to limit these reactive species and prevent oxidative stress, as we observed structural changes in mitochondria of axons and glia (Cummins et al., 2013) and oxidative damage in optic nerve vulnerable to secondary degeneration, particularly in oligodendrocytes (Fitzgerald et al., 2010a; Szymanski et al., 2013). Protein carbonylation, indicated by increased carboxymethyl lysine (CML), was demonstrated from 1 day after injury (Wells et al., 2012; Szymanski et al., 2013), and we observed oxidative damage to DNA and lipids as well as protein nitration in the fi rst week after injury (unpublished). Oxidative stress is likely exacerbated by in fl ammatory cell in fi ltration, which occurs in the fi rst day after injury in the dorsal injury site and becomes apparent in ventral optic nerve vulnerable to secondary degeneration by day 3 (Fitzgerald et al., 2009a, 2010a). Taken together, our data indicate that spread of reactive species such as H2O2via extracellular release and/ or the astrocytic syncytium likely contributes to the spreading damage of secondary degeneration in neurons and glia.

    Dysmyelination during secondary degeneration

    When we looked more closely at the cell types exhibiting signs of oxidative stress, we observed that increased CML immunoreactivity was particularly prominent in oligodendrocytes vulnerable to secondary degeneration ((Szymanski et al., 2013) and unpublished), despite reports of resistance of mature oligodendrocytes to oxidative damage (Back et al., 2005). Concurrently, paranodes signi fi cantly lengthened, as did Nodes of Ranvier, and there was greater incidence of abnormal node/ paranode structures (Szymanski et al., 2013). Similar changes have been reported in models of in fl ammatory demyelinating disease, including multiple sclerosis (Lonigro and Devaux, 2009; Oluich et al., 2012). Later after injury myelin became increasingly decompacted, with increased thickness of myelin, due to loosening of myelin lamaellae, and increased numbers of intraperiodic lines (Payne et al., 2011, 2012). These kinds of abnormalities and perturbations in myelin, referred to as dysmyelination, have been reported following spinal cord injury and in demyelinating diseases including multiple sclerosis (Krsulovic et al., 1999; Rosenbluth and Schiff, 2009; Nomura et al., 2013). Visuomotor function, which is signi fi-cantly compromised from one day after injury (unpublished), progressively worsened in the 6 months following partial transection (Payne et al., 2012). Oligodendrocyte precursor cells (OPCs) proliferated and appeared to differentiate and possibly remyelinate axons, at least to some extent. However, there was signi fi cant death of OPCs and their total numbers remained chronically lower in ventral optic nerve vulnerable to secondary degeneration (Payne et al., 2013). Depletion of OPCs may have compromised normal adult myelinogenesis (Young et al., 2013), neuromodulation (Polito and Reynolds, 2005) and myelin repair. We consider it likely that oxidative stress in oligodendrocytes and their precursors contributes to the dysmyelination we observe, as well as associated chronic functional loss. It is interesting to note that following partial optic nerve transection, multifocal electroretinogram responses are reduced in inferior retina vulnerable to secondary degeneration (Chu et al., 2013), perhaps further contributing to loss of visual function.

    Strategies to limit dysmyelination during secondary degeneration

    A key goal of increasing understanding of the metabolic and structural features of secondary degeneration is to enable rational design of treatment strategies to limit these changes. We have used the relatively CNS speci fi c voltage gated calcium channel inhibitor lomerizine (Hara et al., 1999) as a strategy to limit excess Ca2+fl ux, and potentially oxidative stress, during secondary degeneration. While lomerizine reduced necrotic and to a lesser extent apoptotic death of retinal ganglion cells vulnerable to secondary degeneration (Fitzgerald et al., 2009a; Fitzgerald et al., 2009b), it did not fully restore visual function (Fitzgerald et al., 2009a; Selt et al., 2010). More recently we have combined lomerizine with additional Ca2+channel inhibitors: the highly soluble AMPA receptor antagonist YM872 (also known as zonampanel or INQ) (Atsumi et al., 2003; Furukawa et al., 2003); and the P2X7receptor antagonist oxATP (Wang et al., 2004; Matute et al., 2007). Only treatment with all three of the Ca2+channel inhibitors in combination reduced myelin decompaction, lengthening of Nodes of Ranvier and CML immunoreactivity (indicative of reduced oxidative stress) in oligodendroglia of ventral optic nerve (Savigni et al., 2013). The combination of three Ca2+channel inhibitors also preserved visual function following partial optic nerve transection (Savigni et al., 2013). From this work we can conclude that inhibiting multiple Ca2+permeable receptors is bene fi cial for preventing dysmyelination and preserving function in white matter vulnerable to secondary degeneration. However, bene fi cial effects may not be due solely to reduced Ca2+in fl ux from the extracellular space per se. Inhibition of downstream signalling pathways of individual receptors, such as those leading to calpain mediated axonal degeneration (Thompson et al., 2010), and/or resultant reductions in release from intracellular Ca2+stores (Stirling et al., 2014) may also contribute to beneficial effects. Furthermore, we have not yet ascertained whether it is inhibition of Ca2+permeable receptors in oligodendrocytes, OPCs and/or other cell types, such as astrocytes, neuronal somata and/ or axons, or even photoreceptors, which is bene fi cial.

    We are also pursuing anti-oxidant strategies in an effort to reduce dysmyelination due to secondary degeneration. Irradiation with red/near-infrared light (R/NIR-IT, 630-1,000 nm) was developed as a therapeutic strategy for the treatment of a range of injuries and diseases, following observations of bene fi cial effects on minor wound healing in space (Whelan et al., 2001). Speci fi c to the nervous system, bene fi cial effects have been reported following retinal degeneration (Natoli et al., 2010; Albarracin et al., 2011), CNS injury (Byrnes et al., 2005), stroke (Lapchak et al., 2007) and peripheral nerve damage (Rochkind et al., 2009; Ishiguro et al., 2010), as summarized in our recent review (Fitzgerald et al., 2013). While there is controversy regarding the mechanism of action of R/ NIR-IT, one hypothesis is that it acts by improving oxidative metabolism and reducing oxidative stress. The enzyme cytochrome c oxidase, complex IV of the electron transport chain, is proposed to act as a photoacceptor for irradiation at these wavelengths, with absorption spectra matching efficacious wavelengths (Moody, 2005; Wong-Riley et al., 2005). Specifically, irradiation is thought to lead to activation via changes in the oxidation-reduction state of this enzyme (Karu et al., 2008).

    We have demonstrated that 670 nm R/NIR-IT delivered by light emitting diode (LED) array increased cytochrome c oxidase activity in optic nerve vulnerable to secondary degeneration (Szymanski et al., 2013). This was accompanied by reduced MnSOD immunoreactivity in astrocytes (Fitzgerald et al., 2010b), reduced incidence of mitochondrial autophagic pro fi les (Cummins et al., 2013), rescue of node/paranode abnormalities and preservation of visual function (Fitzgerald et al., 2010b; Szymanski et al., 2013). Nevertheless scepticism regarding ef fi cacy of R/NIR-IT as a treatment for CNS injury remains, largely due to uncertainty regarding penetrance of the irradiation and lack of consensus on optimal treatment parameters, even within a single type of CNS injury (Fitzgerald et al., 2013). Our current efforts are focussed on developing an optimal R/NIR-IT treatment protocol for prevention of dysmyelination during secondary degeneration following partial optic nerve transection in vivo and conducting multi-centre comparative assessments of ef fi cacy of a single R/NIR-IT treatment paradigm across multiple CNS injury types.

    Additional strategies we are pursuing to limit dysmyelination and functional loss due to secondary degeneration following neurotrauma include use of nanotechnologies to deliver rationally designed inhibitors and anti-oxidants to areas of nerve speci fi cally vulnerable to secondary degeneration. We have demonstrated anti-oxidant capacity of phospholipid calix[4]arene formulations in vitro (James et al., 2013) and developed multimodal polymeric nanoparticles, functionalised with magnetite nanoparticles and fl uorescent dyes for tracking by magnetic resonance imaging and fluorescence microscopy respectively, for delivery of therapeutics (Evans et al., 2011). We have shown effective release of lomerizine from these multimodal nanoparticles (Evans et al., 2012) and demonstrated lack of toxicity following injection of our nanoparticles into a partial optic nerve injury site (Harrison et al., 2012). Polymeric nanoparticles have the potential to safely deliver effective anti-oxidant treatment strategies to specific cell types vulnerable to secondary degeneration, overcoming solubility and delivery limitations, and we are currently undertaking studies to assess their efficacy in this regard.

    Summary and conclusions

    The progression of secondary degeneration following partial optic nerve transection is characterised by initial, rapid onsetalterations to Ca2+distributions and increases in indicators of oxidative stress, particularly in astrocytes. Reactive species and altered Ca2+fl ux may spread to ventral optic nerve vulnerable to secondary degeneration via the astrocytic syncytium. Oxidative stress in oligodendrocytes and alterations to node/paranode structure are evident by 24 hours after injury in ventral optic nerve vulnerable to secondary degeneration, before detection of inflammatory cell infiltration at 3 days. OPC numbers are also reduced from 3 days, despite proliferation of these cells. While retinal ganglion cell axonal loss is evident in ventral optic nerve by 7 days, secondary death of retinal ganglion cell somata is not detected until 2 weeks after injury and is followed by continued axonal swelling and decompaction of myelin surrounding remaining vulnerable axons. Chronic functional loss persists until at least 6 months following injury. Treatment strategies including combinations of Ca2+channel inhibitors and R/NIR-IT have been shown to limit oxidative stress, dysmyelination and functional losses of secondary degeneration. However, it is likely that multi-faceted combinatorial treatment strategies will be required to limit the many aspects of damage during secondary degeneration, especially in more complex models and in patients suffering from neurotrauma.

    Melinda Fitzgerald

    Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Hackett Drive, Crawley, WA 6009, Australia

    Albarracin R, Eells J, Valter K (2011) Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 52:3582-3592.

    Atsumi T, Hoshino S, Furukawa T, Kobayashi S, Asakura T, Takahashi M, Yamamoto Y, Teramoto A (2003) The glutamate AMPA receptor antagonist, YM872, attenuates regional cerebral edema and IgG immunoreactivity following experimental brain injury in rats. Acta Neurochir Suppl 86:305-307.

    Back SA, Luo NL, Mallinson RA, O’Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT, Jr., Murdoch GH, Montine TJ (2005) Selective vulnerability of preterm white matter to oxidative damage de fi ned by F2-isoprostanes. Ann Neurol 58:108-120.

    Blair M, Pease ME, Hammond J, Valenta D, Kielczewski J, Levkovitch-Verbin H, Quigley H (2005) Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 46:884-890.

    Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171-185.

    Camello-Almaraz MC, Pozo MJ, Murphy MP, Camello PJ (2006) Mitochondrial production of oxidants is necessary for physiological calcium oscillations. J Cell Physiol 206:487-494.

    Carrico KM, Vaishnav R, Hall ED (2009) Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 26:1369-1378.

    Chu PH, Li HY, Chin MP, So KF, Chan HH (2013) Effect of lycium barbarum (wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection. PLoS One 8:e81339.

    Cummins N, Bartlett CA, Archer M, Bartlett E, Hemmi JM, Harvey AR, Dunlop SA, Fitzgerald M (2013) Changes to mitochondrial ultrastructure in optic nerve vulnerable to secondary degeneration in vivo are limited by irradiation at 670 nm. BMC Neurosci 14:98.

    Evans CW, Fitzgerald M, Clemons TD, House MJ, Padman BS, Shaw JA, Saunders M, Harvey AR, Zdyrko B, Luzinov I, Silva GA, Dunlop SA, Iyer KS (2011) Multimodal Analysis of PEI-Mediated Endocytosis of Nanoparticles in Neural Cells. Acs Nano 5:8640-8648.

    Evans CW, Latter MJ, Ho D, Peerzade SAMA, Clemons TD, Fitzgerald M, Dunlop SA, Iyer KS (2012) Multimodal and multifunctional stealth polymer nanospheres for sustained drug delivery. New J Chem 36: 1457-1462.

    Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43-59.

    Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7:e32037.

    Fitzgerald M, Bartlett CA, Evill L, Rodger J, Harvey AR, Dunlop SA (2009a) Secondary degeneration of the optic nerve following partial transection: the bene fi ts of lomerizine. Exp Neurol 216:219-230.

    Fitzgerald M, Bartlett CA, Harvey AR, Dunlop SA (2010a) Early events of secondary degeneration after partial optic nerve transection: an immunohistochemical study. J Neurotrauma 27:439-452.

    Fitzgerald M, Bartlett CA, Payne SC, Hart NS, Rodger J, Harvey AR, Dunlop SA (2010b) Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve. J Neurotrauma 27:2107-2119.

    Fitzgerald M, Hodgetts S, Van Den Heuvel C, Natoli R, Hart NS, Valter K, Harvey AR, Vink R, Provis J, Dunlop SA (2013) Red/near-infrared irradiation therapy for treatment of central nervous system injuries and disorders. Rev Neurosci 24:205-226.

    Fitzgerald M, Payne SC, Bartlett CA, Evill L, Harvey AR, Dunlop SA (2009b) Secondary retinal ganglion cell death and the neuroprotective effects of the calcium channel blocker lomerizine. Invest Ophthalmol Vis Sci 50:5456-5462.

    Furukawa T, Hoshino S, Kobayashi S, Asakura T, Takahashi M, Atsumi T, Teramoto A (2003) The glutamate AMPA receptor antagonist, YM872, attenuates cortical tissue loss, regional cerebral edema, and neurological motor de fi cits after experimental brain injury in rats. J Neurotrauma 20:269-278.

    Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324-1335.

    Hara H, Shimazawa M, Sasaoka M, Yamada C, Iwakura Y, Sakai T, Maeda Y, Yamaguchi T, Sukamoto T, Hashimoto M (1999) Selective effects of lomerizine, a novel diphenylmethylpiperazine Ca2+ channel blocker, on cerebral blood fl ow in rats and dogs. Clin Exp Pharmacol Physiol 26:870-876.

    Harrison J, Bartlett CA, Cowin G, Nicholls PK, Evans CW, Clemons TD, Zdyrko B, Luzinov IA, Harvey AR, Iyer KS, Dunlop SA, Fitzgerald M (2012) In vivo imaging and biodistribution of multimodal polymeric nanoparticles delivered to the optic nerve. Small 8:1579-1589.

    Ishiguro M, Ikeda K, Tomita K (2010) Effect of near-infrared light-emitting diodes on nerve regeneration. J Orthop Sci 15:233-239.

    James E, Eggers PK, Harvey AR, Dunlop SA, Fitzgerald M, Stubbs KA, Raston CL (2013) Antioxidant phospholipid calix[4]arene mimics as micellular delivery systems. Org Biomol Chem 11:6108-6112.

    Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2008) Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg 26:593-599.

    Khodorov B (2004) Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog Biophys Mol Biol 86:279-351.

    Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333-343.

    Krsulovic J, Couve E, Roncagliolo M (1999) Dysmyelination, demyelination and reactive astrogliosis in the optic nerve of the taiep rat. Biol Res 32:253-262.

    Lapchak PA, Salgado KF, Chao CH, Zivin JA (2007) Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148:907-914.

    Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D’Anna SA, Kerrigan D, Pease ME (2001) Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci 42:975-982.

    Levkovitch-Verbin H, Quigley HA, Martin KR, Zack DJ, Pease ME, Valenta DF (2003) A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci 44:3388-3393.

    Lonigro A, Devaux JJ (2009) Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 132:260-273.

    Lozic I, Bartlett CA, Shaw JA, Iyer KS, Dunlop SA, Kilburn MR, Fitzgerald M (2014) Changes in subtypes of Ca microdomains following partial injury to the central nervous system. Metallomics 6:455-464.

    Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez M, Domercq M (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525-9533.

    Moody DJ (2005) Speci fi c extinction spectrum of oxidised cytochrome c oxidase (520 nm - 999 nm) h [Online]. Biomedical Optics Research Laboratory UCL Department of Medical Physics and Bioengineering.Available: http://www.ucl.ac.uk/medphys/research/borl/intro/ spectra [Accessed 11/04/2014].

    Natoli R, Zhu Y, Valter K, Bisti S, Eells J, Stone J (2010) Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol Vis 16:1801-1822.

    Nomura T, Bando Y, Bochimoto H, Koga D, Watanabe T, Yoshida S (2013) Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models. Neurosci Res 75:190-197.

    Oluich LJ, Stratton JA, Xing YL, Ng SW, Cate HS, Sah P, Windels F, Kilpatrick TJ, Merson TD (2012) Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J Neurosci 32:8317-8330.

    Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754-774.

    Payne SC, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M (2011) Chronic swelling and abnormal myelination during secondary degeneration after partial injury to a central nervous system tract. J Neurotrauma 28:1077-1088.

    Payne SC, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M (2012) Myelin sheath decompaction, axon swelling, and functional loss during chronic secondary degeneration in rat optic nerve. Invest Ophthalmol Vis Sci 53:6093-6101.

    Payne SC, Bartlett CA, Savigni DL, Harvey AR, Dunlop SA, Fitzgerald M (2013) Early proliferation does not prevent the loss of oligodendrocyte progenitor cells during the chronic phase of secondary degeneration in a CNS white matter tract. PLoS One 8:e65710.

    Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201:183-188.

    Polito A, Reynolds R (2005) NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat 207:707-716.

    Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415-436.

    Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86: 369-408.

    Rochkind S, Geuna S, Shainberg A (2009) Chapter 25: Phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol 87:445-464.

    Rosenbluth J, Schiff R (2009) Spinal cord dysmyelination caused by an antiproteolipid protein IgM antibody: implications for the mechanism of central nervous system myelin formation. J Neurosci Res 87: 956-963.

    Savigni DL, O’Hare Doig RL, Szymanski CR, Bartlett CA, Lozic I, Smith NM, Fitzgerald M (2013) Three Ca channel inhibitors in combination limit chronic secondary degeneration following neurotrauma. Neuropharmacology 75C:380-390.

    Selt M, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M (2010) Limited restoration of visual function after partial optic nerve injury; a time course study using the calcium channel blocker lomerizine. Brain Res Bull 81:467-471.

    Stirling DP, Cummins K, Wayne Chen SR, Stys P (2014) Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons. Ann Neurol 75:220-229.

    Szymanski CR, Chiha W, Morellini N, Cummins N, Bartlett CA, O’Hare Doig RL, Savigni DL, Payne SC, Harvey AR, Dunlop SA, Fitzgerald M (2013) Paranode abnormalities and oxidative stress in optic nerve vulnerable to secondary degeneration: modulation by 670 nm light treatment. PLoS One 8(6):e66448.

    Thompson SN, Carrico KM, Mustafa AG, Bains M, Hall ED (2010) A pharmacological analysis of the neuroprotective ef fi cacy of the brainand cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J Neurotrauma 27:2233-2243.

    Tretter L, Takacs K, Kover K, Adam-Vizi V (2007) Stimulation of H(2) O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate. J Neurosci Res 85:3471-3479.

    Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821-827.

    Wells J, Kilburn MR, Shaw JA, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M (2012) Early in vivo changes in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial injury to the optic nerve. J Neurosci Res 90:606-618.

    Whelan HT, Smits RL, Jr., Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19:305-314.

    Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly bene fi ts primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280:4761-4771.

    Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77: 873-885.

    Melinda Fitzgerald, Ph.D., Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Hackett Drive, Crawley, WA 6009, Australia,

    10.4103/1673-5374.135307 http://www.nrronline.org/

    lindy.fitzgerald@uwa.edu.au.

    Acknowledgments: Fitzgerald M acknowledges financial support from the Neurotrauma Research Program of Western Australia, an initiative of the Road Safety Council of Western Australia. Part of this work has been funded through the Road Trauma Trust Account, Western Australia, but does not reflect views or recommendations of the Road Safety Council. MF is also currently supported by National Health & Medical Research Council of Australia (NHMRC) Project Grant APP1061791.

    Accepted: 2014-04-30

    Fitzgerald M. Strategies to limit dysmyelination during secondary degeneration following neurotrauma. Neural Regen Res. 2014;9(11):1096-1099.

    亚洲精品456在线播放app | 日本a在线网址| 久久久久久久精品吃奶| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| 在线a可以看的网站| 91字幕亚洲| 亚洲,欧美精品.| 欧美zozozo另类| 日本撒尿小便嘘嘘汇集6| 窝窝影院91人妻| 国产乱人伦免费视频| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 国产亚洲精品久久久com| 成熟少妇高潮喷水视频| 亚洲成av人片在线播放无| 在线天堂最新版资源| 久久精品国产自在天天线| or卡值多少钱| 国产精品美女特级片免费视频播放器| 久久精品国产亚洲av香蕉五月| 麻豆国产97在线/欧美| 午夜免费激情av| 亚洲国产精品久久男人天堂| 99久久九九国产精品国产免费| 国产精品久久久久久亚洲av鲁大| 久久久久久大精品| 久久久久性生活片| 中文字幕av在线有码专区| 亚洲电影在线观看av| 久久这里只有精品中国| 日日干狠狠操夜夜爽| 很黄的视频免费| 脱女人内裤的视频| 12—13女人毛片做爰片一| 亚洲,欧美精品.| 最后的刺客免费高清国语| 亚洲avbb在线观看| 国产午夜精品论理片| 99国产精品一区二区三区| 精品久久久久久久久久久久久| 精品午夜福利视频在线观看一区| 久久久久性生活片| 国产69精品久久久久777片| 热99re8久久精品国产| 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 精品熟女少妇八av免费久了| 国产真实伦视频高清在线观看 | 99国产精品一区二区蜜桃av| 两个人视频免费观看高清| 91在线精品国自产拍蜜月 | 国产精品1区2区在线观看.| 国产高潮美女av| av视频在线观看入口| 母亲3免费完整高清在线观看| 午夜精品在线福利| 18禁黄网站禁片免费观看直播| 国产精品久久久久久久电影 | 国产精品久久视频播放| 免费观看的影片在线观看| 91久久精品国产一区二区成人 | 国产精品 欧美亚洲| 亚洲avbb在线观看| 久久久久久久亚洲中文字幕 | 在线a可以看的网站| 男人舔女人下体高潮全视频| 日韩欧美精品免费久久 | 黄色成人免费大全| 久久中文看片网| 母亲3免费完整高清在线观看| 精品99又大又爽又粗少妇毛片 | 国产精品野战在线观看| 国产男靠女视频免费网站| 琪琪午夜伦伦电影理论片6080| 国产亚洲av嫩草精品影院| 午夜久久久久精精品| h日本视频在线播放| 中文字幕人成人乱码亚洲影| 日日干狠狠操夜夜爽| 欧美一级毛片孕妇| 国产精品98久久久久久宅男小说| 香蕉av资源在线| 中国美女看黄片| 欧美国产日韩亚洲一区| 欧美三级亚洲精品| 国产欧美日韩精品亚洲av| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 亚洲成av人片免费观看| 中文字幕久久专区| 淫妇啪啪啪对白视频| 久久久久免费精品人妻一区二区| 2021天堂中文幕一二区在线观| av在线天堂中文字幕| 久99久视频精品免费| 脱女人内裤的视频| 国产精品影院久久| 欧美性感艳星| 首页视频小说图片口味搜索| 国产精品野战在线观看| 村上凉子中文字幕在线| 51午夜福利影视在线观看| 精品日产1卡2卡| 国产免费男女视频| 久久人人精品亚洲av| 婷婷六月久久综合丁香| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| h日本视频在线播放| 最新中文字幕久久久久| www.www免费av| 日韩欧美在线二视频| 白带黄色成豆腐渣| 高清日韩中文字幕在线| 一进一出抽搐动态| netflix在线观看网站| 此物有八面人人有两片| 天美传媒精品一区二区| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 美女黄网站色视频| 国产淫片久久久久久久久 | 午夜日韩欧美国产| 少妇丰满av| 一夜夜www| 午夜福利成人在线免费观看| 成人高潮视频无遮挡免费网站| 3wmmmm亚洲av在线观看| 99精品欧美一区二区三区四区| 十八禁网站免费在线| 亚洲av中文字字幕乱码综合| 国产探花在线观看一区二区| 国产综合懂色| 手机成人av网站| av天堂在线播放| www日本黄色视频网| 免费av毛片视频| 香蕉av资源在线| 香蕉丝袜av| 精品久久久久久久末码| 午夜精品久久久久久毛片777| 成人永久免费在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 黄色女人牲交| 99热只有精品国产| 丰满的人妻完整版| 少妇的逼好多水| 最近最新中文字幕大全免费视频| 国产精品嫩草影院av在线观看 | 夜夜夜夜夜久久久久| 日韩欧美在线二视频| 国内久久婷婷六月综合欲色啪| 婷婷丁香在线五月| 国产精品永久免费网站| 日日摸夜夜添夜夜添小说| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久久毛片| 一区二区三区高清视频在线| 亚洲av成人不卡在线观看播放网| 制服丝袜大香蕉在线| 一进一出抽搐动态| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 国产色婷婷99| 精华霜和精华液先用哪个| 欧美激情在线99| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av| 岛国视频午夜一区免费看| 在线免费观看不下载黄p国产 | 脱女人内裤的视频| 精品国产三级普通话版| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| 国产真实伦视频高清在线观看 | 美女免费视频网站| 欧美乱妇无乱码| 国产亚洲精品综合一区在线观看| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 久久久精品大字幕| eeuss影院久久| 最近最新免费中文字幕在线| 国内精品久久久久精免费| 日韩人妻高清精品专区| 久久久久久久午夜电影| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 长腿黑丝高跟| 久99久视频精品免费| 欧美+日韩+精品| 黄色女人牲交| 国产淫片久久久久久久久 | 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 久99久视频精品免费| 757午夜福利合集在线观看| 欧美午夜高清在线| 两人在一起打扑克的视频| 成年版毛片免费区| 成人特级av手机在线观看| 亚洲精品456在线播放app | 一本综合久久免费| 亚洲18禁久久av| 99热6这里只有精品| 国产精品一区二区三区四区免费观看 | 精品乱码久久久久久99久播| 一进一出抽搐动态| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 熟女少妇亚洲综合色aaa.| 我的老师免费观看完整版| 我要搜黄色片| 中文字幕久久专区| 91av网一区二区| 国产成人影院久久av| 午夜免费男女啪啪视频观看 | 日本免费a在线| 在线观看午夜福利视频| 一边摸一边抽搐一进一小说| 给我免费播放毛片高清在线观看| x7x7x7水蜜桃| 淫妇啪啪啪对白视频| 国产亚洲精品一区二区www| 日本成人三级电影网站| 91av网一区二区| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 国产色爽女视频免费观看| 成年版毛片免费区| 97碰自拍视频| 亚洲内射少妇av| 欧美乱妇无乱码| 欧美国产日韩亚洲一区| 好看av亚洲va欧美ⅴa在| 一个人看的www免费观看视频| 欧美高清成人免费视频www| 欧美日韩一级在线毛片| 制服人妻中文乱码| 日本五十路高清| 亚洲美女视频黄频| 母亲3免费完整高清在线观看| a级一级毛片免费在线观看| 99久久精品热视频| 可以在线观看的亚洲视频| 在线十欧美十亚洲十日本专区| 午夜免费观看网址| 国产欧美日韩一区二区精品| netflix在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 少妇的逼好多水| 亚洲男人的天堂狠狠| 我的老师免费观看完整版| 国产精品日韩av在线免费观看| 亚洲av美国av| 久久久色成人| 亚洲中文字幕日韩| 久久久成人免费电影| 搡老岳熟女国产| 国产成人aa在线观看| 深夜精品福利| 亚洲精品456在线播放app | 亚洲精品久久国产高清桃花| 尤物成人国产欧美一区二区三区| 午夜福利欧美成人| 亚洲人成电影免费在线| 亚洲专区国产一区二区| 国产真人三级小视频在线观看| 亚洲人与动物交配视频| 色哟哟哟哟哟哟| 一个人观看的视频www高清免费观看| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 国产视频内射| 欧美又色又爽又黄视频| 午夜福利在线观看吧| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 亚洲性夜色夜夜综合| 757午夜福利合集在线观看| 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区精品| 90打野战视频偷拍视频| 国产精品久久久人人做人人爽| 制服丝袜大香蕉在线| 欧美av亚洲av综合av国产av| 国产一区二区在线av高清观看| 日韩av在线大香蕉| а√天堂www在线а√下载| 日本三级黄在线观看| 成人高潮视频无遮挡免费网站| 亚洲av免费在线观看| a在线观看视频网站| 国产欧美日韩精品一区二区| 日韩 欧美 亚洲 中文字幕| 午夜a级毛片| 听说在线观看完整版免费高清| 狂野欧美激情性xxxx| 少妇的逼水好多| 91久久精品电影网| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 日韩欧美在线二视频| 日韩欧美 国产精品| 3wmmmm亚洲av在线观看| 女人十人毛片免费观看3o分钟| 国内精品久久久久久久电影| 韩国av一区二区三区四区| 亚洲片人在线观看| 丝袜美腿在线中文| 非洲黑人性xxxx精品又粗又长| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 欧美成人免费av一区二区三区| 蜜桃亚洲精品一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清专用| 久久久色成人| 韩国av一区二区三区四区| 国产精品98久久久久久宅男小说| 欧美区成人在线视频| 亚洲成人精品中文字幕电影| 白带黄色成豆腐渣| 观看免费一级毛片| 99久久精品一区二区三区| 欧美成狂野欧美在线观看| 久久香蕉国产精品| 18禁黄网站禁片午夜丰满| 国产色爽女视频免费观看| 国产黄片美女视频| 一级作爱视频免费观看| 亚洲不卡免费看| 欧美色欧美亚洲另类二区| 国产精品国产高清国产av| 国产成人啪精品午夜网站| 一区二区三区国产精品乱码| 窝窝影院91人妻| 亚洲专区中文字幕在线| 一区二区三区高清视频在线| 国产欧美日韩精品亚洲av| 国产精品三级大全| 久久久久九九精品影院| 欧美黄色淫秽网站| 最近最新中文字幕大全电影3| 两个人的视频大全免费| 亚洲av二区三区四区| 男女那种视频在线观看| 小说图片视频综合网站| av专区在线播放| 成人永久免费在线观看视频| 午夜精品一区二区三区免费看| 无限看片的www在线观看| 成人国产一区最新在线观看| 久久久成人免费电影| 69人妻影院| 女警被强在线播放| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 亚洲aⅴ乱码一区二区在线播放| 国产真实乱freesex| 在线十欧美十亚洲十日本专区| 麻豆久久精品国产亚洲av| 又黄又爽又免费观看的视频| 免费在线观看日本一区| av福利片在线观看| av欧美777| 免费看a级黄色片| 两个人的视频大全免费| 99热只有精品国产| 欧美绝顶高潮抽搐喷水| 欧美av亚洲av综合av国产av| 色在线成人网| 一个人观看的视频www高清免费观看| 色av中文字幕| 亚洲av二区三区四区| 12—13女人毛片做爰片一| 国产精品久久久久久久电影 | 国产精品乱码一区二三区的特点| 午夜两性在线视频| 嫩草影视91久久| 九色成人免费人妻av| aaaaa片日本免费| 波野结衣二区三区在线 | 亚洲欧美日韩无卡精品| 桃红色精品国产亚洲av| 成人av在线播放网站| 日韩欧美 国产精品| 我要搜黄色片| 亚洲欧美日韩东京热| 我要搜黄色片| 亚洲久久久久久中文字幕| 一进一出抽搐gif免费好疼| 欧美zozozo另类| 波多野结衣巨乳人妻| a级毛片a级免费在线| or卡值多少钱| xxx96com| 美女被艹到高潮喷水动态| 午夜福利欧美成人| 国产精品嫩草影院av在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品成人综合色| 99热这里只有精品一区| www.色视频.com| 国产中年淑女户外野战色| 国产视频一区二区在线看| 久久性视频一级片| 成人国产综合亚洲| 中国美女看黄片| 真人做人爱边吃奶动态| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 韩国av一区二区三区四区| or卡值多少钱| 午夜免费成人在线视频| 99精品欧美一区二区三区四区| e午夜精品久久久久久久| 色老头精品视频在线观看| 亚洲欧美日韩无卡精品| 亚洲不卡免费看| 国产高潮美女av| 免费搜索国产男女视频| 九九在线视频观看精品| 好男人在线观看高清免费视频| 欧美激情久久久久久爽电影| 精品电影一区二区在线| 中亚洲国语对白在线视频| 给我免费播放毛片高清在线观看| 亚洲国产精品合色在线| 最近最新中文字幕大全电影3| 国产乱人视频| 欧美日韩一级在线毛片| 午夜福利高清视频| 99久久无色码亚洲精品果冻| 日韩有码中文字幕| 嫁个100分男人电影在线观看| 两个人视频免费观看高清| 精品一区二区三区人妻视频| 热99在线观看视频| 亚洲最大成人手机在线| 757午夜福利合集在线观看| 久久久久国产精品人妻aⅴ院| 亚洲成人中文字幕在线播放| 无人区码免费观看不卡| 九色国产91popny在线| avwww免费| 日本免费一区二区三区高清不卡| 国产爱豆传媒在线观看| 国产综合懂色| 欧美日本视频| 国产主播在线观看一区二区| 一级毛片女人18水好多| 真人做人爱边吃奶动态| 麻豆久久精品国产亚洲av| 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| av在线蜜桃| 国产日本99.免费观看| 亚洲精品日韩av片在线观看 | 香蕉av资源在线| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 桃色一区二区三区在线观看| 日韩欧美国产一区二区入口| 一区二区三区免费毛片| 成人永久免费在线观看视频| 久久精品91无色码中文字幕| 午夜老司机福利剧场| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品色激情综合| 精品久久久久久久久久免费视频| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 国产主播在线观看一区二区| 在线免费观看不下载黄p国产 | 夜夜躁狠狠躁天天躁| 老汉色av国产亚洲站长工具| 国产精品久久久久久人妻精品电影| 久久久久免费精品人妻一区二区| 国产精品 国内视频| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片| 高潮久久久久久久久久久不卡| 美女大奶头视频| 中文字幕人妻熟人妻熟丝袜美 | 免费观看精品视频网站| 精品国产亚洲在线| 中国美女看黄片| 网址你懂的国产日韩在线| 国产成人福利小说| 亚洲在线自拍视频| 亚洲精品成人久久久久久| 嫁个100分男人电影在线观看| 亚洲欧美日韩卡通动漫| 非洲黑人性xxxx精品又粗又长| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| xxxwww97欧美| 啦啦啦观看免费观看视频高清| 俄罗斯特黄特色一大片| 日韩欧美在线乱码| 天美传媒精品一区二区| 精品国产超薄肉色丝袜足j| 国产精品爽爽va在线观看网站| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 国产一区二区三区在线臀色熟女| 夜夜夜夜夜久久久久| 国产高清激情床上av| 3wmmmm亚洲av在线观看| 18美女黄网站色大片免费观看| 可以在线观看毛片的网站| 精品国产亚洲在线| 十八禁人妻一区二区| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 国产一级毛片七仙女欲春2| 床上黄色一级片| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| 午夜老司机福利剧场| 亚洲国产高清在线一区二区三| 日韩av在线大香蕉| 国产乱人伦免费视频| 深爱激情五月婷婷| 亚洲欧美日韩东京热| 综合色av麻豆| 亚洲18禁久久av| 日韩欧美国产在线观看| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 国产精品一区二区三区四区免费观看 | 亚洲成人久久爱视频| 国产三级中文精品| 麻豆国产av国片精品| 日本成人三级电影网站| 亚洲欧美日韩高清专用| 久久精品亚洲精品国产色婷小说| 国产亚洲av嫩草精品影院| 在线视频色国产色| 老司机午夜福利在线观看视频| 精品人妻1区二区| 99久国产av精品| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 亚洲精品亚洲一区二区| 午夜福利在线在线| 午夜福利视频1000在线观看| 国产精品久久久久久久久免 | 给我免费播放毛片高清在线观看| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 午夜免费激情av| 国产久久久一区二区三区| 亚洲中文日韩欧美视频| 色哟哟哟哟哟哟| 国产精品一区二区三区四区久久| 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 久久久久久久精品吃奶| 午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看 | 日本熟妇午夜| 日韩av在线大香蕉| 给我免费播放毛片高清在线观看| 欧美一区二区精品小视频在线| 丝袜美腿在线中文| 中文字幕人妻熟人妻熟丝袜美 | 午夜两性在线视频| 香蕉av资源在线| 欧美三级亚洲精品| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 美女cb高潮喷水在线观看| 国产成人啪精品午夜网站| 国产老妇女一区| 日本黄色片子视频| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 男女下面进入的视频免费午夜| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| 男插女下体视频免费在线播放| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在 | 99热这里只有精品一区| 亚洲av日韩精品久久久久久密| 综合色av麻豆| 成人高潮视频无遮挡免费网站| 久久精品91蜜桃| 午夜精品在线福利| 国产综合懂色| 国产一区在线观看成人免费| 99热这里只有精品一区| 女人被狂操c到高潮| 精品久久久久久,| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽|