• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair

    2014-01-22 16:46:01JinhuiChen,RiyiShi
    關(guān)鍵詞:應(yīng)用服務(wù)網(wǎng)絡(luò)層應(yīng)用層

    Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair

    Traumatic brain injury (TBI) and spinal cord injury (SCI) causes signi fi cant cell death (Raghupathi et al., 1995; DeKosky et al., 1998; Hall et al., 2005; Farkas and Povlishock, 2007) and tissue lesion in the neocortex (Lighthall et al., 1989; Lyeth et al., 1990), leaving many patients with substantial motor disability and cognitive impairment (Hamm et al., 1992; Scheff et al., 1997). Unfortunately, at present, there are no clinically demonstrated FDA approved drug therapies for treatment of TBI and SCI patients that reduce the neurological injuries. Thus, TBI and SCI are serious health problems. The development of therapeutic approaches to prevent neuronal death and enhance neuroregeneration for promoting post-traumatic functional recovery would be of enormous clinical, social, and economic bene fi ts. The reviews in this speci fi c issue focus largely on the current progress on diagnosis, neuroprotection, and potential neurorepair with stem cells.

    Introduction

    TBI, a form of acquired brain injury, occurs when a sudden trauma causes damage to the brain. TBI can result when the head suddenly and violently hits an object, or when an object pierces the skull and enters brain tissue. It is estimated that approximately 2.4 million patients were hospitalized with TBI in the United states alone in 2009 (Coronado et al., 2012). TBI is a major cause of death and disability in the United States, contributing to about 30% of all injury deaths and the growing 1.8% of the population that live with longterm physical disabilities (Zaloshnja et al., 2008). Effects of TBI can also lead to cognitive impairment, including memory problems and decreased concentration skills, and psychological symptoms, including irritability, depression, and anxiety. SCI is also one of the major causes of irreversible nerve injury, resulting in both motor and sensory dysfunctions. An estimated 12,000 new cases of spinal cord injury occur every year in the United States.

    Over the past 15-20 years, we have gained a great deal of knowledge about the healthy brain and its response to trauma (Buki and Povlishock, 2006; Hall et al., 2008; Greer et al., 2013; Johnson et al., 2013). Based on the results from animal models, controlling brain swelling and intracranial pressure (ICP) have been widely used and have signi fi cantly reduced death following TBI (Lundberg et al., 1965). Although during 2001-2010 rates of TBI-related emergency department (ED) visits increased by 70%, death rates decreased by 7% (Coronado et al., 2012).

    However, there are still so many questions unanswered, and still so many challenges to diagnose, treat, and repair the damaged brain. To address these challenges, it is very important to advance the knowledge on mechanisms of injury and recovery, and to develop better diagnostic tools and more effective treatments. Thus in this special issue, four laboratories come together to summarize the current progress on neuroimaging, neuroprotection, and potential neurorepair with stem cells following TBI.

    Neuroimaging

    Different imaging strategies are widely used in the clinic to assess TBI (McAllister et al., 2001; Belanger et al., 2007; Le and Gean, 2009; Kirov et al., 2013). In general, the structural imaging techniques play a role in acute diagnosis and management, while the functional imaging techniques show promise for clari fi cation of pathophysiology, symptom genesis, and mechanisms of recovery (McAllister et al., 2001). Dr. Kuo and Dr. Iraji summarize the most recent evidence of brain plasticity after TBI in human patients from the perspective of advanced magnetic resonance imaging.

    Evidence also demonstrates that, even if patients have damaged certain functional structures or networks, e.g., motor control and somatosensory networks, many of them still could pick up these functionalities during their recovery, indicating the existence of an internal neuroplasticity. Dr. Kuo and his colleagues review the most recent imaging evidence of brain plasticity in TBI patients, from synaptic, microstructural levels, to functional network levels of the brain, particularly focusing on advanced MRI.

    Neuroprotection

    TBI not only results in immediate brain tissue disruption (primary injury), but also causes secondary damage among the surviving cells via complex mechanisms triggered by the primary event occurring in the hours, days, and weeks after initial physical impact. Secondary injury includes ischemia/ reperfusion injury, in fl ammation, oxidative stress, and glutamate excitotoxicity, all of which contribute to the eventual tissue degeneration and functional loss.

    A prevalent hypothesis is that TBI increases extracellular levels of the excitatory neurotransmitters such as glutamate (Choi, 1985, 1987, 1988; Braughler and Hall, 1989; Miller et al., 1990; Choi, 1992; Juurlink and Paterson, 1998; Hall and Springer, 2004; Yi and Hazell, 2006). Glutamate, in turn, causes excessive stimulation of N-methyl-D-aspartic acid receptors (NMDA), thus mediating calcium over in fl ux and triggering rapid excitotoxic necrosis that results in traumatic damage to the central nervous system (CNS). For patients who have experienced TBI, no specific pharmacological therapy is available that would improve their outcomes. Therefore, recent research on TBI has been focused on developing a therapeutic approach to inhibit glutamate-mediated excitotoxicity with pharmacological glutamate antagonists or calcium blocking agents. However, glutamate is the major excitatory transmitter in the mammalian CNS. Its stimulation of NMDA receptors plays an essential role in excitatory synaptic transmission. Completely blocking NMDA receptors will cause signi fi cant side effects. For this reason, clinical trials have had limited success.

    Another hallmark of secondary injury is oxidative stress (Hall et al., 1999; Bains and Hall, 2012), which plays an important role in mediating functional loss after both TBI and SCI. Although there is strong evidence that oxidative stress plays a critical role in the pathogenesis after SCI, clinical trials of free radical scavenging have not produced any effective treatments to promote functional recovery after traumatic SCI. Dr. Shi and his colleagues found that Acrolein is the most reactive electrophile produced by lipid peroxidation, suggesting that Acrolein is a novel therapeutic target to reduce oxidative stress (Shi et al., 2011a, 2011b; Park et al., 2014). Dr Shi and his colleagues summarize the recent devel-opments in the understanding of the mechanisms of Acrolein in motor and sensory dysfunction in animal models of SCI.

    Neurorepair

    Recent research has identified neural stem/progenitor cells (NSCs) in the adult mammalian hippocampus that can support neurogenesis throughout life, as demonstrated in rodents and primates, including humans (Kuhn et al., 1996; Eriksson et al., 1998b; Eriksson et al., 1998a; Kornack and Rakic, 1999; Cameron and McKay, 2001; Leuner et al., 2007). Currently the consensus among researchers in the fi eld is that throughout adulthood, NSCs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (HDG) continuously generate new neurons (Kempermann and Gage, 2000; Ming and Song, 2005) and develop into mature granular neurons (Ming and Song, 2005; Shapiro and Ribak, 2005; Zhao et al., 2006). The pool of NSCs is a potential resource for repairing the damaged hippocampus following TBI.

    Current studies further show that TBI promotes NSC proliferation in the adult hippocampus (Dash et al., 2001; Kernie et al., 2001; Braun et al., 2002; Chirumamilla et al., 2002; Rice et al., 2003; Yoshimura et al., 2003; Ramaswamy et al., 2005; Sun et al., 2005; Rola et al., 2006; Sun et al., 2007). This finding suggests that innate repair and/or plasticity mechanisms exist in the adult brain. There are distinct classes of NSCs in the adult HDG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs) (Seri and Garcia-Verdugo, 2001; Seaberg and van der Kooy, 2002; Filippov et al., 2003; Mignone et al., 2004; Bull and Bartlett, 2005; Encinas et al., 2006; Encinas and Enikolopov, 2008; Encinas et al., 2008). Dr. Chen and his colleagues found that moderate TBI promotes proliferation of QNPs in the adult hippocampus (Gao et al., 2009).

    Although TBI promotes NSC proliferation, the effect of TBI on neurogenesis is still controversial. There are con fl icting reports about neurogenesis in the HDG. According to some studies neurogenesis decreases after TBI (Braun et al., 2002; Rola et al., 2006), whereas others have reported that it remains unchanged (Chirumamilla et al., 2002; Rice et al., 2003), or that it increases (Sun et al., 2005; Sun et al., 2007). Here, Dr. Sun summarizes the potential of endogenous neurogenesis for brain repair and regeneration in the hippocampus following traumatic brain injury.

    TBI causes signi fi cant cell death (Raghupathi et al., 1995; DeKosky et al., 1998; Hall et al., 2005; Farkas and Povlishock, 2007) and tissue lesion in the neocortex (Lighthall et al., 1989; Lyeth et al., 1990). However, it is generally agreed that no endogenous NSCs exist or neurogenesis proceeds in the adult neocortex of the mammalian brain, i.e., the neocortex is a non-neurogenic region (Rakic, 2006). Thus, Dr. Chen and his colleagues brie fl y review the current progress of stem cells, which may potentially be used to generate new neurons in the cortex for brain repair following TBI.

    Summary and future research

    Little can be done to reverse the initial brain damage and spinal cord injury caused by trauma. Thus, it is important to study the pathological basis of neurological disorders, understand neurodegeneration and plasticity of the CNS, and develop novel neuroprotection and repair strategies to improve anatomical reorganization and functional recovery following TBI and SCI.

    Jinhui Chen1, Riyi Shi2,3

    1 Department of Neurological Surgery, Stark Neuroscience

    Research Institute, Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN, USA

    2 Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA

    3 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

    Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822:675-684.

    Belanger HG, Vanderploeg RD, Curtiss G, Warden DL (2007) Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci 19:5-20.

    Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289-301.

    Braun H, Schafer K, Hollt V (2002) BetaIII tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J Neurotrauma 19:975-983.

    Buki A, Povlishock JT (2006) All roads lead to disconnection?--Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181-193; discussion 193-184.

    Bull ND, Bartlett PF (2005) The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci 25:10815-10821.

    Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406-417.

    Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693-703.

    Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293-297.

    Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369-379.

    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. [Review]. Neuron 1:623-634.

    Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261-1276.

    Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, Geller AI, Khoury N, Xu L (2012) Trends in traumatic brain injury in the U.S. and the public health response: 1995-2009. J Safety Res 43:299-307.

    Dash PK, Mach SA, Moore AN (2001) Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res 63:313-319.

    DeKosky ST, Kochanek PM, Clark RS, Ciallella JR, Dixon CE (1998) Secondary injury after head trauma: subacute and long-term mechanisms. Semin Clin Neuropsychiatry 3:176-185.

    Encinas JM, Enikolopov G (2008) Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol 85: 243-272.

    Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: 8233-8238.

    Encinas JM, Vazquez ME, Switzer RC, Chamberland DW, Nick H, Levine HG, Scarpa PJ, Enikolopov G, Steindler DA (2008) Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Exp Neurol 210:274-279.

    Eriksson PS, Per fi lieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998a) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.

    Eriksson PS, Per fi lieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998b) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.

    Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43-59.

    Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373-382.

    Gao X, Enikolopov G, Chen J (2009) Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol 219:516-523.

    Greer JE, Hanell A, McGinn MJ, Povlishock JT (2013) Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 126:59-74.

    Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1:80-100.

    Hall ED, Kupina NC, Althaus JS (1999) Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci 890: 462-468.

    Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fl uorojade staining methods. J Neurotrauma 25:235-247.

    Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW (2005) Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J Neurotrauma 22:252-265.

    Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL (1992) Cognitive de fi cits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma 9:11-20.

    物聯(lián)網(wǎng)的技術(shù)架構(gòu)分為3層:感知層、網(wǎng)絡(luò)層和應(yīng)用層,如圖1所示。其中,感知層實現(xiàn)物聯(lián)網(wǎng)全面智能化感知,網(wǎng)絡(luò)層將實現(xiàn)接入信息管理和由計算機(jī)網(wǎng)絡(luò)及通信網(wǎng)絡(luò)構(gòu)成的承載網(wǎng)絡(luò),應(yīng)用層實現(xiàn)應(yīng)用支撐服務(wù)和用戶應(yīng)用服務(wù)。

    Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35-43.

    Juurlink BH, Paterson PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21:309-334.

    Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. Novartis Found Symp 231:220-235; discussion 235-241, 302-226.

    Kernie SG, Erwin TM, Parada LF (2001) Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 66:317-326.

    Kirov, II, Tal A, Babb JS, Reaume J, Bushnik T, Ashman TA, Flanagan S, Grossman RI, Gonen O (2013) Proton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury. J Neurotrauma 30:1200-1204.

    Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768-5773.

    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027-2033.

    Le TH, Gean AD (2009) Neuroimaging of traumatic brain injury. Mt Sinai J Med 76:145-162.

    Lighthall JW, Dixon CE, Anderson TE (1989) Experimental models of brain injury. J Neurotrauma 6:83-97.

    Lundberg N, Troupp H, Lorin H (1965) Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg 22:581-590.

    Lyeth BG, Jenkins LW, Hamm RJ, Dixon CE, Phillips LL, Clifton GL, Young HF, Hayes RL (1990) Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res 526:249-258.

    McAllister TW, Sparling MB, Flashman LA, Saykin AJ (2001) Neuroimaging fi ndings in mild traumatic brain injury. J Clin Exp Neuropsychol 23:775-791.

    Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311-324.

    Miller LP, Lyeth BG, Jenkins LW, Oleniak L, Panchision D, Hamm RJ, Phillips LL, Dixon CE, Clifton GL, Hayes RL (1990) Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res 526:103-107.

    Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223-250.

    Park J, Zheng L, Marquis A, Walls M, Duerstock B, Pond A, Vega-Alvarez S, Wang H, Ouyang Z, Shi R (2014) Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage. J Neurochem 129:339-349.

    Raghupathi R, McIntosh TK, Smith DH (1995) Cellular responses to experimental brain injury. Brain Pathol 5:437-442.

    Rakic P (2006) Neuroscience. No more cortical neurons for you. Science 313:928-929.

    Ramaswamy S, Goings GE, Soderstrom KE, Szele FG, Kozlowski DA (2005) Cellular proliferation and migration following a controlled cortical impact in the mouse. Brain Res 1053:38-53.

    Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183:406-417. Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, Fishman K, Potts MB, Fike JR (2006) Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Exp Neurol 202:189-199.

    Scheff SW, Baldwin SA, Brown RW, Kraemer PJ (1997) Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. J Neurotrauma 14:615-627.

    Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784-1793.

    Seri B, Garcia-Verdugo JM (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153-7160.

    Shapiro LA, Ribak CE (2005) Integration of newly born dentate granule cells into adult brains: hypotheses based on normal and epileptic rodents. Brain Res Brain Res Rev 48:43-56.

    Shi R, Rickett T, Sun W (2011a) Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res 55:1320-1331.

    Shi Y, Sun W, McBride JJ, Cheng JX, Shi R (2011b) Acrolein induces myelin damage in mammalian spinal cord. J Neurochem 117:554-564.

    Sun D, McGinn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204:264-272.

    Sun D, Colello RJ, Daugherty WP, Kwon TH, McGinn MJ, Harvey HB, Bullock MR (2005) Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 22:95-105.

    Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394-403.

    Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, Harada J, Waeber C, Breake fi eld XO, Moskowitz MA (2003) FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest 112:1202-1210.

    Zaloshnja E, Miller T, Langlois JA, Selassie AW (2008) Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil 23:394-400.

    Zhao C, Teng EM, Summers RG, Jr., Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3-11.

    Jinhui Chen, M.D., Ph.D., Department of Neurological Surgery, Stark Neuroscience Research Institute,

    10.4103/1673-5374.135306 http://www.nrronline.org/

    Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN 46202, USA, chen204@iupui.edu. Riyi Shi, M.D., Ph.D., Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA, riyi@purdue.edu.

    Accepted: 2014-06-05

    Chen J, Shi R. Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair. Neural Regen Res. 2014;9(11):1093-1095.

    猜你喜歡
    應(yīng)用服務(wù)網(wǎng)絡(luò)層應(yīng)用層
    Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
    全球衛(wèi)星互聯(lián)網(wǎng)應(yīng)用服務(wù)及我國的發(fā)展策略
    國家不動產(chǎn)統(tǒng)一登記信息平臺構(gòu)建與應(yīng)用服務(wù)
    基于分級保護(hù)的OA系統(tǒng)應(yīng)用層訪問控制研究
    良好的信息系統(tǒng)體系結(jié)構(gòu)模式對網(wǎng)絡(luò)安全監(jiān)察與維護(hù)技術(shù)的方法的探討
    基于WPA的物聯(lián)網(wǎng)網(wǎng)絡(luò)層安全的研究
    新一代雙向互動電力線通信技術(shù)的應(yīng)用層協(xié)議研究
    物聯(lián)網(wǎng)技術(shù)在信息機(jī)房制冷系統(tǒng)中的應(yīng)用
    全國征集衛(wèi)星應(yīng)用服務(wù)解決方案
    太空探索(2015年5期)2015-07-12 12:52:36
    應(yīng)用服務(wù)型人才培養(yǎng)體系下的嵌入式操作系統(tǒng)教學(xué)改革探索
    午夜福利成人在线免费观看| 欧美最新免费一区二区三区| 亚洲不卡免费看| 国产精品人妻久久久久久| 成人亚洲欧美一区二区av| 国产黄频视频在线观看| 亚洲最大成人av| 在线免费十八禁| 真实男女啪啪啪动态图| 精品不卡国产一区二区三区| 美女黄网站色视频| 国产成人a∨麻豆精品| 亚洲精品中文字幕在线视频 | 嫩草影院精品99| 亚洲精品国产成人久久av| 国产综合精华液| 91久久精品国产一区二区成人| 一个人免费在线观看电影| 男女国产视频网站| 嫩草影院新地址| 亚洲国产最新在线播放| 99热全是精品| 成年av动漫网址| 午夜精品一区二区三区免费看| 欧美日本视频| 黄色日韩在线| 国产精品综合久久久久久久免费| 亚洲精品,欧美精品| 美女国产视频在线观看| 噜噜噜噜噜久久久久久91| 一个人观看的视频www高清免费观看| 久久久久精品性色| 特大巨黑吊av在线直播| 国产欧美日韩精品一区二区| 波野结衣二区三区在线| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 97热精品久久久久久| 熟妇人妻不卡中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 国产精品不卡视频一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇中文字幕五十中出| 国产中年淑女户外野战色| 久久久精品免费免费高清| 男的添女的下面高潮视频| 天堂√8在线中文| 老司机影院成人| 亚洲在线观看片| 亚洲国产高清在线一区二区三| 久久久久久伊人网av| 欧美日韩国产mv在线观看视频 | 成人二区视频| 亚洲av二区三区四区| 少妇丰满av| 免费观看无遮挡的男女| 又爽又黄a免费视频| 国产老妇女一区| 久久久久久久久大av| 国模一区二区三区四区视频| 日韩电影二区| 亚洲精品aⅴ在线观看| av免费在线看不卡| 五月天丁香电影| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 草草在线视频免费看| 成人午夜高清在线视频| 老女人水多毛片| 亚洲成人av在线免费| 99久久精品热视频| 中文乱码字字幕精品一区二区三区 | 麻豆成人av视频| av天堂中文字幕网| 日韩av不卡免费在线播放| 2022亚洲国产成人精品| 国内揄拍国产精品人妻在线| 亚州av有码| 一个人免费在线观看电影| 男人爽女人下面视频在线观看| 国产69精品久久久久777片| 久久久a久久爽久久v久久| 亚洲,欧美,日韩| 寂寞人妻少妇视频99o| 亚洲精品日韩av片在线观看| 2018国产大陆天天弄谢| 在线观看免费高清a一片| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区| 亚洲人成网站在线播| 成人午夜精彩视频在线观看| 夫妻性生交免费视频一级片| 国产精品久久久久久久电影| 永久免费av网站大全| 久久精品国产自在天天线| 国国产精品蜜臀av免费| 国产av国产精品国产| 国产美女午夜福利| 高清在线视频一区二区三区| 97超碰精品成人国产| 国产精品久久久久久久电影| 精品久久久久久久久亚洲| 少妇的逼好多水| 好男人视频免费观看在线| 99视频精品全部免费 在线| 国产一区二区三区av在线| 亚洲内射少妇av| 久99久视频精品免费| 亚洲欧美成人精品一区二区| 日韩制服骚丝袜av| 国产精品久久久久久精品电影小说 | 一本久久精品| 欧美97在线视频| 国产女主播在线喷水免费视频网站 | 内地一区二区视频在线| 成人毛片60女人毛片免费| av一本久久久久| 天堂俺去俺来也www色官网 | 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 国产亚洲精品久久久com| 美女被艹到高潮喷水动态| 蜜臀久久99精品久久宅男| 日本av手机在线免费观看| 中文字幕免费在线视频6| av在线亚洲专区| 亚洲精品乱码久久久久久按摩| 黄色欧美视频在线观看| 久久精品国产亚洲网站| 又爽又黄a免费视频| 国产精品99久久久久久久久| 亚洲欧美一区二区三区黑人 | 久久精品人妻少妇| 最近最新中文字幕免费大全7| 国产高清有码在线观看视频| 97精品久久久久久久久久精品| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 亚洲欧美精品专区久久| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| 老师上课跳d突然被开到最大视频| 国内精品一区二区在线观看| 美女大奶头视频| 久久综合国产亚洲精品| 免费黄色在线免费观看| 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 亚洲欧洲国产日韩| 日日干狠狠操夜夜爽| 国产亚洲一区二区精品| 99视频精品全部免费 在线| 色哟哟·www| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 亚洲18禁久久av| 在线免费观看不下载黄p国产| 欧美人与善性xxx| 色综合亚洲欧美另类图片| 午夜爱爱视频在线播放| 久久久久久久久久久免费av| 欧美精品国产亚洲| 欧美极品一区二区三区四区| 亚洲欧美一区二区三区黑人 | 免费观看av网站的网址| 国产一区二区 视频在线| 久久久久久人妻| 高清黄色对白视频在线免费看| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 精品一区二区免费观看| 免费高清在线观看视频在线观看| 99久久中文字幕三级久久日本| 男女国产视频网站| 美国免费a级毛片| 女的被弄到高潮叫床怎么办| 亚洲国产看品久久| 成年人免费黄色播放视频| 中文天堂在线官网| 国产精品亚洲av一区麻豆 | 日本av手机在线免费观看| 麻豆精品久久久久久蜜桃| 少妇被粗大的猛进出69影院| 男女免费视频国产| 国产成人免费观看mmmm| 免费观看性生交大片5| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 最近最新中文字幕大全免费视频 | 亚洲国产日韩一区二区| 精品国产乱码久久久久久小说| 免费观看无遮挡的男女| 国产深夜福利视频在线观看| a级片在线免费高清观看视频| 国产精品秋霞免费鲁丝片| 亚洲国产色片| 波野结衣二区三区在线| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 男人操女人黄网站| 一二三四在线观看免费中文在| 美女高潮到喷水免费观看| 欧美精品国产亚洲| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 大片免费播放器 马上看| 十八禁高潮呻吟视频| 午夜福利在线免费观看网站| 美女主播在线视频| 天天操日日干夜夜撸| 各种免费的搞黄视频| av电影中文网址| 成年动漫av网址| 叶爱在线成人免费视频播放| 一区在线观看完整版| 亚洲美女视频黄频| 国产免费一区二区三区四区乱码| 久久国产精品男人的天堂亚洲| 日产精品乱码卡一卡2卡三| 免费观看性生交大片5| 久久精品国产a三级三级三级| 色94色欧美一区二区| 亚洲精品一二三| 免费高清在线观看视频在线观看| 啦啦啦中文免费视频观看日本| 乱人伦中国视频| 最近最新中文字幕大全免费视频 | 夫妻午夜视频| 国产精品99久久99久久久不卡 | 成人午夜精彩视频在线观看| 成人毛片a级毛片在线播放| 日本av免费视频播放| 久久综合国产亚洲精品| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 伦精品一区二区三区| 一级片免费观看大全| 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 国产精品二区激情视频| 最新的欧美精品一区二区| 男女边吃奶边做爰视频| 飞空精品影院首页| 岛国毛片在线播放| 日本av免费视频播放| 久久久久久伊人网av| 777久久人妻少妇嫩草av网站| 成年动漫av网址| 久久久久久久久久久久大奶| 亚洲一码二码三码区别大吗| 各种免费的搞黄视频| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| xxx大片免费视频| 色婷婷久久久亚洲欧美| 男人舔女人的私密视频| 欧美激情高清一区二区三区 | 人人妻人人澡人人看| 亚洲欧美中文字幕日韩二区| 秋霞伦理黄片| 欧美精品人与动牲交sv欧美| 久久久国产一区二区| 啦啦啦啦在线视频资源| 99国产综合亚洲精品| 欧美精品国产亚洲| 在现免费观看毛片| 热99久久久久精品小说推荐| 国产精品一国产av| 国精品久久久久久国模美| 欧美成人午夜免费资源| 日本-黄色视频高清免费观看| 十八禁高潮呻吟视频| 亚洲av电影在线进入| av免费在线看不卡| 人妻人人澡人人爽人人| 国产午夜精品一二区理论片| 日本av免费视频播放| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 美女中出高潮动态图| 免费观看av网站的网址| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲日产国产| 欧美国产精品va在线观看不卡| 看免费av毛片| 亚洲av综合色区一区| 中文字幕亚洲精品专区| 一级毛片我不卡| 晚上一个人看的免费电影| 老司机影院毛片| 国产精品秋霞免费鲁丝片| 亚洲成人手机| 国产爽快片一区二区三区| 久久精品国产亚洲av高清一级| 国产亚洲午夜精品一区二区久久| 亚洲五月色婷婷综合| 欧美黄色片欧美黄色片| 伊人亚洲综合成人网| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 成年人免费黄色播放视频| 国产精品人妻久久久影院| 99热全是精品| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| 伊人久久大香线蕉亚洲五| 交换朋友夫妻互换小说| 久久97久久精品| 巨乳人妻的诱惑在线观看| 久久精品亚洲av国产电影网| 99九九在线精品视频| 精品一区二区三卡| 久久久亚洲精品成人影院| 久久 成人 亚洲| 国产又爽黄色视频| 免费观看av网站的网址| 丝袜人妻中文字幕| 爱豆传媒免费全集在线观看| 婷婷成人精品国产| 在线天堂中文资源库| 中文字幕人妻熟女乱码| 在现免费观看毛片| 亚洲人成网站在线观看播放| 波多野结衣一区麻豆| 国产在视频线精品| 欧美+日韩+精品| 国产成人免费观看mmmm| 一二三四在线观看免费中文在| 欧美激情 高清一区二区三区| 日韩伦理黄色片| 久久久久网色| 国产在线视频一区二区| 一级片'在线观看视频| 久久久久久久大尺度免费视频| 午夜福利网站1000一区二区三区| 亚洲精品av麻豆狂野| 久久婷婷青草| 成人国产麻豆网| 久久精品夜色国产| 欧美最新免费一区二区三区| 一级毛片电影观看| 乱人伦中国视频| 哪个播放器可以免费观看大片| 热99国产精品久久久久久7| 蜜桃在线观看..| 欧美日韩精品成人综合77777| 黄色毛片三级朝国网站| 久久久久久久亚洲中文字幕| 一区在线观看完整版| 亚洲国产色片| 另类亚洲欧美激情| 亚洲美女视频黄频| 美女福利国产在线| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 免费日韩欧美在线观看| 人妻 亚洲 视频| 最黄视频免费看| 欧美 亚洲 国产 日韩一| 成年动漫av网址| 精品一区二区免费观看| 欧美成人午夜精品| 免费高清在线观看日韩| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 嫩草影院入口| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 日韩中文字幕欧美一区二区 | 亚洲av电影在线观看一区二区三区| 999精品在线视频| 久久精品国产亚洲av高清一级| 国产亚洲午夜精品一区二区久久| 天天躁日日躁夜夜躁夜夜| 久久这里有精品视频免费| 制服诱惑二区| 欧美日韩国产mv在线观看视频| 精品一区二区三卡| 一区二区av电影网| 国产精品嫩草影院av在线观看| 高清视频免费观看一区二区| 亚洲内射少妇av| 久久国产精品男人的天堂亚洲| 69精品国产乱码久久久| 欧美日韩国产mv在线观看视频| 另类亚洲欧美激情| 亚洲av男天堂| 日韩 亚洲 欧美在线| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 亚洲,欧美,日韩| 日韩av免费高清视频| 热re99久久精品国产66热6| 亚洲欧美精品自产自拍| 国产成人av激情在线播放| 日日啪夜夜爽| 国产 一区精品| 欧美日韩av久久| 18禁观看日本| 亚洲激情五月婷婷啪啪| 精品少妇内射三级| 亚洲精品一二三| 免费不卡的大黄色大毛片视频在线观看| 麻豆乱淫一区二区| 最近中文字幕2019免费版| 成人影院久久| 丝袜在线中文字幕| 久久精品国产亚洲av天美| 色网站视频免费| 一级,二级,三级黄色视频| 在线 av 中文字幕| 男女下面插进去视频免费观看| 最近手机中文字幕大全| 美女高潮到喷水免费观看| 日韩av免费高清视频| 国产亚洲精品第一综合不卡| 国产麻豆69| 久久久久久久大尺度免费视频| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 最近中文字幕2019免费版| 丰满少妇做爰视频| 国产精品.久久久| 日日摸夜夜添夜夜爱| 国产av一区二区精品久久| 日韩av免费高清视频| 久久久久久久亚洲中文字幕| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 日韩制服骚丝袜av| 乱人伦中国视频| 久久久久久伊人网av| 国产亚洲精品第一综合不卡| 久久久久久伊人网av| 新久久久久国产一级毛片| 国产麻豆69| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 麻豆精品久久久久久蜜桃| 国产精品偷伦视频观看了| 天美传媒精品一区二区| 国产极品天堂在线| 九色亚洲精品在线播放| 老鸭窝网址在线观看| a级毛片黄视频| 精品国产露脸久久av麻豆| 天天躁日日躁夜夜躁夜夜| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| 99精国产麻豆久久婷婷| 午夜福利视频精品| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| 国产亚洲最大av| 欧美变态另类bdsm刘玥| 有码 亚洲区| 丝袜喷水一区| 日本vs欧美在线观看视频| 精品99又大又爽又粗少妇毛片| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 国产成人精品在线电影| 久久精品久久精品一区二区三区| 精品人妻在线不人妻| 亚洲成国产人片在线观看| 天天影视国产精品| 美女国产视频在线观看| av线在线观看网站| 中文字幕人妻熟女乱码| 中文乱码字字幕精品一区二区三区| 亚洲av日韩在线播放| 国产在视频线精品| 香蕉丝袜av| av电影中文网址| 五月开心婷婷网| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三| 久久热在线av| kizo精华| 国产精品女同一区二区软件| 精品人妻熟女毛片av久久网站| 黄色 视频免费看| 欧美黄色片欧美黄色片| 男女国产视频网站| 少妇被粗大的猛进出69影院| 色哟哟·www| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 丁香六月天网| 国产97色在线日韩免费| 性色av一级| 国产精品成人在线| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 亚洲欧美精品综合一区二区三区 | 日本午夜av视频| 欧美成人精品欧美一级黄| 日本色播在线视频| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 国产深夜福利视频在线观看| 亚洲美女视频黄频| 婷婷色av中文字幕| 久久精品亚洲av国产电影网| 国产日韩欧美视频二区| 最新的欧美精品一区二区| 国产精品国产三级国产专区5o| 国产高清不卡午夜福利| 嫩草影院入口| 老司机影院毛片| 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 男女免费视频国产| 亚洲国产精品成人久久小说| 国产成人精品无人区| a 毛片基地| 电影成人av| 日韩一区二区三区影片| 香蕉国产在线看| 999久久久国产精品视频| 国产一区二区在线观看av| 国产一区有黄有色的免费视频| 久久久国产一区二区| 成人午夜精彩视频在线观看| 亚洲av电影在线观看一区二区三区| 99久国产av精品国产电影| 国产精品久久久久久久久免| 亚洲国产av影院在线观看| 丁香六月天网| 最近最新中文字幕免费大全7| www.自偷自拍.com| 国产一区二区在线观看av| 国产精品蜜桃在线观看| 亚洲国产av影院在线观看| tube8黄色片| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 欧美精品av麻豆av| 久久鲁丝午夜福利片| 亚洲 欧美一区二区三区| 精品国产一区二区三区久久久樱花| 热99国产精品久久久久久7| 男女啪啪激烈高潮av片| 久久久精品区二区三区| 欧美bdsm另类| 精品亚洲成国产av| 日韩av免费高清视频| 亚洲第一青青草原| 欧美精品av麻豆av| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜制服| 9热在线视频观看99| 欧美亚洲 丝袜 人妻 在线| 久久久久久免费高清国产稀缺| 成人手机av| 99久久人妻综合| 各种免费的搞黄视频| 久久毛片免费看一区二区三区| 色视频在线一区二区三区| 国产成人精品在线电影| www日本在线高清视频| 亚洲一区二区三区欧美精品| 美女视频免费永久观看网站| 精品一区二区三区四区五区乱码 | 日韩av不卡免费在线播放| 婷婷色av中文字幕| 国产麻豆69| 久久婷婷青草| 国产精品女同一区二区软件| videosex国产| 国产片特级美女逼逼视频| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄| 女人精品久久久久毛片| 日韩一区二区视频免费看| 日韩成人av中文字幕在线观看| 90打野战视频偷拍视频| 男人爽女人下面视频在线观看| 街头女战士在线观看网站| 久久精品国产a三级三级三级| 亚洲精品国产一区二区精华液| 深夜精品福利| videossex国产| 亚洲精品自拍成人| 在线亚洲精品国产二区图片欧美| 各种免费的搞黄视频| 久久人人97超碰香蕉20202| 欧美精品国产亚洲| 午夜福利在线免费观看网站| 亚洲精品在线美女| 男女边吃奶边做爰视频| 欧美激情高清一区二区三区 | 成人亚洲精品一区在线观看| 少妇熟女欧美另类| 午夜激情久久久久久久| 国产成人精品在线电影| 热re99久久精品国产66热6| 国产亚洲午夜精品一区二区久久| 丝袜美腿诱惑在线| 久久久久久久国产电影| 精品第一国产精品| av网站免费在线观看视频|