王 珺 歐 龍
血糖高是糖尿病患者最基本的生化特性,且在糖尿病疾病的發(fā)生發(fā)展起著重要的作用。它可以增加破骨細(xì)胞的活性,骨吸收加速,使得骨代謝失衡,并出現(xiàn)骨質(zhì)疏松的癥狀[1]。人牙周膜成纖維細(xì)胞(hPDLFs)作為牙周組織修復(fù)、重建的前體細(xì)胞,對(duì)于牙周病的病理變化和轉(zhuǎn)歸意義重大[2-3]。牙周組織的破壞,往往以骨質(zhì)喪失為最終結(jié)果。研究表明,葡萄糖水平與牙周病的發(fā)生發(fā)展、組織破壞的程度相關(guān)。但糖尿病患者葡萄糖水平的變化對(duì)牙周膜成纖維細(xì)胞凋亡的相關(guān)性研究不多且無(wú)統(tǒng)一定論。本文通過(guò)對(duì)糖尿病、牙周膜成纖維細(xì)胞凋亡之間的相互關(guān)系作一綜述,旨在為臨床治療提供新的理論依據(jù)。
糖尿病作為一種代謝性疾病,對(duì)于骨代謝和骨改建的影響較為明顯,導(dǎo)致骨喪失。該病是由胰島素的異常分泌而導(dǎo)致的內(nèi)分泌代謝性疾病,高血糖是其最主要的特征。糖尿病作為我國(guó)較為多發(fā)的一種病,近年來(lái)發(fā)病率升高較為明顯,且隨著年齡的增長(zhǎng),病情往往會(huì)成加重趨勢(shì)[4-5]。文獻(xiàn)報(bào)道[6],牙周病、糖尿病存在著一定的共同危險(xiǎn)因素。WHO 把牙周病列為糖尿病的第六并發(fā)癥,其與糖尿病的關(guān)系備受關(guān)注。
Seo 等[7]稱(chēng),在1 型糖尿病初期,胰島β 細(xì)胞死亡的主要表現(xiàn)形式為細(xì)胞的凋亡。學(xué)者Jang 等[8]指出,2 型糖尿病患者β 細(xì)胞功能的降低及胰島素抵抗表現(xiàn)較為明顯,而對(duì)于2 型糖尿病β 細(xì)胞的數(shù)量是否降低及β 細(xì)胞是否存在凋亡增加,意見(jiàn)不一。研究顯示,β 細(xì)胞的凋亡增加及非β 細(xì)胞增生的降低,引發(fā)患者胰島抵抗同時(shí)釋放可溶性細(xì)胞因子,包括氧自由基、NO 等,此類(lèi)細(xì)胞因子可引發(fā)β 細(xì)胞的功能喪失,嚴(yán)重者可導(dǎo)致細(xì)胞死亡。細(xì)胞凋亡對(duì)于糖尿病的發(fā)病機(jī)制較為重要,且可引發(fā)糖尿病的相關(guān)并發(fā)癥的發(fā)生[9]。
牙周致病菌主要為革蘭氏陰性厭氧菌,其胞壁外膜中的脂多糖對(duì)牙周組織有較為明顯的毒性,其代謝產(chǎn)物能夠?qū)е掳准?xì)胞及基質(zhì)生成細(xì)胞的凋亡。據(jù)測(cè)定,牙周致病菌及其毒性產(chǎn)物會(huì)通過(guò)凋亡的淋巴細(xì)胞,使得宿主免疫細(xì)胞的功能受損,進(jìn)而導(dǎo)致牙周病的發(fā)生發(fā)展[10]。國(guó)外研究報(bào)道顯示,細(xì)菌脂多糖能夠在腫瘤壞死因子的作用下促進(jìn)相應(yīng)基因的表達(dá),Caspase 活性也得到提高,加速了成纖維細(xì)胞的凋亡速率,該過(guò)程可能的機(jī)制為T(mén)NFR1 起到了一定的作用,而非TNFR2[11-14]。報(bào)道顯示[6],骨代謝性疾病的骨組織病理變化可影響破骨細(xì)胞和成骨細(xì)胞的數(shù)目,且與凋亡所調(diào)控的特定細(xì)胞的生命周期關(guān)系密切。
資料顯示,伴糖尿病的牙周病患者牙周病變較單純牙周病患者更為嚴(yán)重,牙槽骨吸收速度快,預(yù)后效果明顯差。有學(xué)者通過(guò)實(shí)驗(yàn)表明,糖尿病患者的血糖成分可促使牙槽骨局部OPG mRNA 的表達(dá)能力下降、RANKL mRNA 的表達(dá)能力升高,RANKL/ OPG 的比值上調(diào),胰島素在縮小牙槽骨中RANKL/ OPG 比值的同時(shí), 牙周組織炎癥反應(yīng)的損傷也漸弱,牙槽骨吸收速率有所上升,推測(cè)血糖水平的上升課作為糖尿病患者牙槽骨吸收的影響因素[15-20]。
有學(xué)者還報(bào)道,伴放線桿菌菌體表面蛋白在體外能夠抑制人骨肉瘤MG63 細(xì)胞的有絲分裂,誘導(dǎo)其凋亡。伴放線桿菌菌體中的毒素可誘導(dǎo)牙周組織中B 淋巴細(xì)胞的凋亡??梢?jiàn),牙周致病菌及其毒性產(chǎn)物利用淋巴細(xì)胞,加速了PDFLs 凋亡,宿主細(xì)胞的免疫力相應(yīng)地降低,加速牙周病的發(fā)生及進(jìn)展[21]。
糖尿病患者機(jī)體多種組織的細(xì)胞凋亡明顯增加,糖尿病細(xì)胞的凋亡增加機(jī)制總結(jié)為:(1)糖尿病患者高血糖下的AGE 間接可使IL-1、6、TNF等細(xì)胞因子增加生成,同時(shí)TNF 水平升高能夠增加由caspase-3 途徑導(dǎo)致的細(xì)胞凋亡。(2)長(zhǎng)期炎癥及高血糖狀態(tài)聚集了細(xì)胞內(nèi)的活性氧(ROS),而氧化應(yīng)激反應(yīng)可導(dǎo)致多種細(xì)胞的凋亡,同時(shí)激活線粒體細(xì)胞色素C 活性,釋放增加,存進(jìn)細(xì)胞凋亡的發(fā)生。
近年來(lái)對(duì)骨吸收機(jī)制的研究發(fā)現(xiàn)骨保護(hù)素(osteoprote gerin,OPG)是調(diào)節(jié)破骨細(xì)胞分化、成熟和骨吸收功能的重要因子,在生理及病理性骨吸收中意義重大[22-26]。糖尿病患者的牙周組織中OPG成分可調(diào)節(jié)破骨細(xì)胞的分化,打破骨代謝的平衡,骨形成速率小于骨吸收速率,同時(shí)破壞了牙周組織局部的牙槽骨[27-33]。通過(guò)對(duì)伴有不同程度牙周炎的糖尿病患者的血糖進(jìn)行控制,結(jié)果輕度牙周炎的糖尿病患者血糖水平控制結(jié)局較為有效[34-35]。另外,伴有輕度牙周炎的糖尿病者機(jī)體的糖化血紅蛋白及糖耐量值較重度牙周炎的糖尿病者相比,降低較為明顯,且伴有糖尿病大、小血管病變的發(fā)生情況也較為不常見(jiàn)[36-39]。推測(cè),牙周炎疾病的存在及其控制效果與糖尿病患者病程的發(fā)生發(fā)展關(guān)系密切[40]。
目前為止,細(xì)胞凋亡的機(jī)制是多因素相互作用,促進(jìn)或抑制細(xì)胞凋亡的發(fā)生。細(xì)胞凋亡調(diào)控機(jī)制的探討是國(guó)內(nèi)外一個(gè)研究熱點(diǎn),目前很多研究已經(jīng)表明:除了線粒體,Caspase 家族,Bcl-2 家族等基因和蛋白在細(xì)胞凋亡過(guò)程中起到重要作用以外,還有許多是人類(lèi)還沒(méi)有認(rèn)識(shí)到的基因和蛋白也起著很重要的作用。通過(guò)以上的這些研究,人們清楚地了解到多細(xì)胞生物中參與細(xì)胞凋亡調(diào)節(jié)的蛋白質(zhì)分子發(fā)揮功能的方式,使人們能更完整地了解細(xì)胞凋亡的機(jī)制,并找到有效的手段對(duì)細(xì)胞凋亡過(guò)程進(jìn)行調(diào)控。進(jìn)而可以幫助人們進(jìn)一步深入研究細(xì)胞凋亡的其他調(diào)控機(jī)制,并可基于結(jié)構(gòu)開(kāi)展以特異性蛋白分子為靶標(biāo)的藥物設(shè)計(jì),為臨床上應(yīng)用及治療糖尿病伴牙周病的方法提供新的思路。
牙周組織工程近年來(lái)發(fā)展非常迅速。牙周膜干細(xì)胞(periodontal ligament stem cell,PDLSC)具有成體干細(xì)胞的特征,具有增殖能力、自我更新能力、多向分化潛能。PDLSC 在損傷因子的刺激下定向遷移、增殖和分化來(lái)完成牙周組織的修復(fù)過(guò)程,實(shí)現(xiàn)牙周組織的再生。牙周膜細(xì)胞(periodontal ligament cells, PDLCs)是牙周組織再生的關(guān)鍵,但牙周膜細(xì)胞的來(lái)源比較困難,使牙周膜細(xì)胞移植修復(fù)牙周缺損的方法無(wú)法廣泛應(yīng)用。脂肪基質(zhì)細(xì)胞(adipose tissue-derived stem cells,ADSCs)來(lái)源于脂肪組織的間充質(zhì)細(xì)胞,具有多向分化的能力并且易于獲得,有望成為牙周缺損修復(fù)的種子細(xì)胞。骨髓基質(zhì)細(xì)胞(bone mesenchymal stem cells,BMSCs)來(lái)源豐富、較好的增殖分化及成骨能力,是骨缺損修復(fù)的重要細(xì)胞。動(dòng)物實(shí)驗(yàn)證明,進(jìn)行自體骨髓干細(xì)胞移植6 周后,缺損部位可見(jiàn)成排的新生成骨細(xì)胞和成牙骨質(zhì)細(xì)胞位于表面,新生牙槽骨內(nèi)有較多的毛細(xì)血管形成并有許多的骨細(xì)胞,有新生牙周膜組織生成,形成了完整的牙周組織結(jié)構(gòu)。牙周組織工程和GTR 的最終目標(biāo)是獲得牙周軟硬組織的完全再生。
干細(xì)胞和微環(huán)境共同介導(dǎo)了種子細(xì)胞的遷移、定植、分化和增殖過(guò)程。選擇合適的種子細(xì)胞類(lèi)型影響著種子細(xì)胞本身的生物學(xué)活性,而改善宿主微環(huán)境則更利于移植干細(xì)胞的存活、分化和活性的發(fā)揮。糖尿病患者的代謝紊亂、蛋白質(zhì)缺乏,機(jī)體抗體產(chǎn)生減少及白細(xì)胞吞噬作用下降,導(dǎo)致感染發(fā)生。因此控制血糖、控制感染是糖尿病患者也是牙周手術(shù)治療成功的關(guān)鍵之一。
綜上所述,糖尿病和牙周膜成纖維細(xì)胞之間有一定的關(guān)系存在,且相互影響,相互制約,同時(shí)糖尿病患者牙周膜成纖維細(xì)胞的凋亡更為明顯,炎癥因子是兩種病中的發(fā)展及疾病細(xì)胞的凋亡進(jìn)展的關(guān)鍵因子。因此不僅對(duì)于伴糖尿病的牙周炎患者或伴牙周炎的糖尿病患者,如何有效控制患者機(jī)體的炎癥,預(yù)防或抑制細(xì)胞凋亡,提高糖尿病患者的生活質(zhì)量,成為治療該疾病的新方向。
[1] Sokos D,Scheres N,Schoenmaker T,et al. A challenge with Porphyromonas gingivalis differentially affects the osteoclastogenesis potential of periodontal ligament fibroblasts from periodontitis patients and non-periodontitis donors[J]. J Clin Periodontol,2014,41(2):95-103
[2] Mizutani N,Kageyama S,Yamada M,et al. The behavior of ligament cells cultured on elastin and collagen scaffolds[J].J Artif Organs,2014,17(1):50-59
[3] Nizam N,Discioglu F,Saygun I,et al. The Effect of α-tocopherol and selenium on human gingival fibroblasts and periodontal ligament fibroblasts in vitro[J]. J Periodontol,2014,85(4):636-644
[4] El-Awady AR,Lapp CA,Gamal AY,et al. Human periodontal ligament fibroblast responses to compression in chronic periodontitis[J]. J Clin Periodontol,2013,40(7):661-671
[5] Cheng L,Lin ZK,Shu R,et al. Analogous effects of recombinant human full-length amelogenin expressed by Pichia pastoris yeast and enamel matrix derivative in vitro[J].Cell Prolif,2012,45(5):456-465
[6] Strydom H,Maltha JC,Kuijpers-Jagtman AM,et al. The oxytalan fibre network in the periodontium and its possible mechanical function[J]. Arch Oral Biol,2012,57(8):1003-1011
[7] Seo T, Cha S, Kim TI, et al. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts[J]. J Microbiol,2012,50(2):311-319
[8] Jang YJ,Kim ME,Ko SY. n-Butanol extracts of Panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells[J].Arch Oral Biol,2011,56(11):1319-1327
[9] F Lakschevitz,G Aboodi,H Tenenbaum,et al. Diabetes and periodontal diseases: interplay and links[J]. Current diabetes reviews,2011,7(6):433-439
[10] YS Khader,AS Dauod,SS El-Qaderi,et al. Periodontal status of diabetics compared with nondiabetics: a metaanalysis [J]. Journal of diabetes and its complications,2006,20(1):59-68
[11] DC Rodrigues,MJ Taba,AB Novaes,et al. Effect of non-surgical periodontal therapy on glycemic control in patients with type 2 diabetes mellitus[J]. Journal of periodontology,2003,74(9):1361-1367
[12] JE Stewart,KA Wager,AH Friedlander,et al. The effect of periodontal treatment on glycemic control in patients with type 2 diabetes mellitus[J]. Journal of clinical periodontology,2001,28(4):306-310
[13] Seo T,Cha S,Woo KM,et al. Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist[J]. J Periodontal Implant Sci,2011,41(1):17-22
[14] Choi EJ,Yim JY,Koo KT ,et al. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts[J]. J Periodontal Implant Sci,2010,40(3):105-110
[15] Y Nakahara,T Sano,Y Kodama,et al. Glycemic control with insulin prevents progression of dental caries and caries-related periodontitis in diabetic WBN/ KobSlc Rats[J].Toxicologic pathology,2012
[16] Birgit R,James D,Susanne R,et al. Regulatory effects of biome-chanical strain on the insulin-like growth factor system in human periodontal cells[J]. J Biomechanics,2009,42(15): 2584-2589
[17] Correa F,Gonc D,F(xiàn)igueredo C,et al. Effect of periodontal treatment on metabolic control,systemic inflammation and cytokines in patients with type 2 diabetes[J]. J Clin Periodontol,2010,37(1): 53-58
[18] Claudino M,Garlet TP,Cardoso CR,et al. Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice[J]. Eur J Oral Sci,2010,118(1): 19-28
[19] George J,Headen KV,Ogunleye AO,et al. Lysophosphatidic Acid signals through specific lysophosphatidic Acid receptor subtypes to control key regenerative responses of human gingival and periodontal ligament fibroblasts[J]. J Periodontol,2009,80(8):1338-1347
[20] 李小娜. 茶多酚對(duì)脂多糖介導(dǎo)下人牙周膜成纖維細(xì)胞ICAM-1、COX-2、MMP-1、MMP-2 和TLR4 表達(dá)影響的實(shí)驗(yàn)研究[D].遵義醫(yī)學(xué)院,2013
[21] 門(mén)佳寶,潘雅琪,張克等.茶多酚對(duì)內(nèi)毒素抑制人牙周膜成纖維細(xì)胞增殖的影響[J].中國(guó)醫(yī)藥,2013,8(9):1317-1319
[22] Jang YJ,Kim ME,Ko SY. n-Butanol extracts of Panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells[J]. Arch Oral Biol,2011,56(11):1319-1327
[23] Chang YC,Zhao JH. Effects of platelet-rich fibrin on human periodontal ligament fibroblasts and application for periodontal infrabony defects[J]. Aust Dent J,2011,56(4):365-371
[24] Botero JE,Contreras A,Parra B.Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection[J]. Oral Microbiol Immunol,2008,23(4):291-298
[25] Ali S,Huber M,Kollewe C,et al. IL-1receptor accessory protein is essential for IL-33-induced activation of tlymphocytes and mast cells[J]. Proc Natl Acad Sci USA,2007,104(47):18660-18665
[26] Koide M,Suda S,Saitoh S,et al. In vivo administration of IL-1 beta accelerates silk ligature-induced alveolar bone resorption in rats[J]. J Oral Pathol Med,1995,24(9):420-434
[27] Lee YM,F(xiàn)ujikado N,Manaka H,et al. IL-1 plays an important role in the bone metabolism under physiological conditions[J]. Int Immunol,2010,22(10):805-816
[28] Goutoudi P,Diza E,Arvanitidou M. Effect of periodontal therapy on crevicular fluid interleukin-6 and interleukin-8 levels in chronic periodontitis[J]. Int J Dent,2012,2012:362905
[29] Yu JH,Lee SP,Kim TI,et al. Identification of N-methyldaspartate receptor subunit in human periodontal ligament fibroblasts:potential role in regulating differentiation[J]. J Periodontol,2009,80(2):338-346
[30] Chae HS,Park HJ,Hwang HR,et al. The effect of antioxidants on the production of pro-inflammatory cytokines and orthodontic tooth movement[J]. Mol Cells,2011,32(2):189-196
[31] Mrozik KM,Gronthos S,Menicanin D,et al. Effect of coating straumann bone ceramic with emdogain on mesenchymal stromal cell hard tissue formation[J]. Clin Oral Investig,2012,16(3):867-878
[32] Park HJ,Baek KH,Lee HL,et al. Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts[J]. Mol Cells,2011,31(6):573-578
[33] El-Awady AR,Messer RL,Gamal AY,et al. Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis [J]. J Periodontol, 2010, 81 (9):1324-1335
[34] El-Awady AR,Lapp CA,Gamal AY,et al. Human periodontal ligament fibroblast responses to compression in chronic periodontitis[J]. J Clin Periodontol,2013,40(7):661-671
[35] Cheng L,Lin ZK,Shu R,et al. Analogous effects of recombinant human full-length amelogenin expressed by Pichia pastoris yeast and enamel matrix derivative in vitro[J].Cell Prolif,2012,45(5):456-465
[36] Grillo MA,Colombatto S. Advanced glyocation end-products(AGEs):involvement in aging and in neurodegener ative diseases[J]. Amino Acids,2008,35(1):29-36
[37] Seo T, Cha S, Kim TI, et al. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts[J]. J Microbiol,2012,50(2):311-319
[38] Kumiko Kaifu1,Hideyasu Kiyomoto1,Hirofumi Hitomi1,et al. Insulin attenuates apoptosis induced by high glucose via the PI3-kinase/ Akt pathway in rat peritoneal mesothelial cells[J]. Nephrol Dial Transplant,2009,24:809-815
[39] Inan? B,El?in AE,El?in YM. In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surfaces[J]. Tissue Eng Part A,2009,15(11):3427-3435
[40] Chen FM,Chen R,Wang XJ,et al. In vitro cellular responses to scaffolds containing two microencapulated growth factors[J]. Biomaterials,2009,30(28):5215-5224