• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Set-valued mappings and spaces havingsemi-stratifiable structure

    2014-01-06 09:03:48-,-
    關(guān)鍵詞:集值江門鵬飛

    -, -

    (School of Mathematics and Computational Science,Wuyi University,Jiangmen 529020,China)

    Set-valuedmappingsandspaceshavingsemi-stratifiablestructure

    XIELi-hong,YANPeng-fei

    (School of Mathematics and Computational Science,Wuyi University,Jiangmen 529020,China)

    In this paper,we give some characterizations of stratifiable and semistratifiable spaces by the insertion of semi-continuous set-valued mappings.Also,we introduce the K-lower and K-upper set-valued mappings and,using them,give some characterizations ofk-semi-stratifiable spaces andk-MCM(kβ)spaces.

    K-upper(K-lower)set-valued mappings;stratifiable space;semi-stratifiable space;MCM;MCP;k-MCM(kβ);k-semi-stratifiable space 2010 MSC;54C05;54C08;54C30;54E20;47H04

    1 Introduction

    All spaces are assumed to be regular spaces.

    For a given pair of real-valued functions(g,h)on a spaceX,under what conditions does there exist a continuous functionfsuch thatg≤f≤h(g(x)≤f(x)≤h(x) for eachx∈X)?The resolution of the problem forms one part of the classical theory of general topology and presents some characterizations of certain spaces,such as extremely disconnected spaces,stratifiable spaces,etc.

    A real-valued functiongis lower semi-continuous (upper semi-continuous)if the setsg-1((r,∞))(g-1((∞,r)))are open inXfor eachr∈.For two functionsf,f′:X→,we express byf≤f′ andf

    In 1917,Hahn[5] proved that the necessity in Theorem 1.1 holds for metrizable spaces.Dieudonné[2]later proved that Hahn’s result,and the necessity part of Theorem 1.2 hold in paracompact spaces.In fact,these so called insertion results turn out to provide characterizations of natural and important topological properties as the following three theorems show.

    Theorem1.1(Katětov[6],Tong[11])A spaceXis normal if and only if for each upper semi-continuous functiong:X→and lower semi-continuous functionh:X→such thatg≤h,there is a continuous functionf:X→such thatg≤f≤h.

    Theorem1.2(Dowker[3])A spaceXis normal and countably paracompact if and only if for each upper semi-continuous functiong:X→and lower semi-continuous functionh:X→such thatg

    Theorem1.3(Michael[9])A spaceXis perfectly normal if and only if for each upper semi-continuous functiong:X→and lower semi-continuous functionh:X→such thatg≤h,there is a continuous functionf:X→such thatg≤f≤handg(x)

    The above results are the insertion of continuous functions for a given pair of realvalued functions(g,h) on a spaceX.In 2007,Yan and Yang[14] investigated the relations between the stratifiable structure of spaces and the insertion of semi-continuous functions as the following three theorems show.

    Theorem1.4(Yan,Yang[14])A spaceXis perfect if and only if for each lower semi-continuous functionh:X→such that 0≤h,there is an upper semi-continuous functionΦ(h):X→such that 0≤Φ(h)≤h,and 0<Φ(h)(x)

    Theorem1.5(Yan,Yang[14])A spaceXis semi-stratifiable if and only if for each lower semi-continuous functionh:X→such that 0≤h,there is an upper semi-continuous functionΦ(h):X→such that(i)0≤Φ(h)≤h,and 0<Φ(h)(x)

    In order to characterize thek-semi-stratifiable spaces,Yan and Yang[14]introduced the following:

    Theorem1.6(Yan,Yang[14])A real-valued functionfis a K-lower(K-upper)semi-continuous function if for every compact setK,fhas a minimum(maximum)value onK.

    Theorem1.7(Yan,Yang[14])A spaceXisk-semi-stratifiable if and only if for each lower semi-continuous functionh:X→such that 0≤h,there is an upper and K-lower semi-continuous functionΦ(h):X→such that (i)0≤Φ(h)≤h,and 0<Φ(h)(x)

    Definition1.8(Good,Knight,Stares[4]).A spaceXis said to be monotonically countably metacompact(MCM),if there is an operatorUassigning to each decreasing sequence(Dj)j∈wof closed sets with empty intersection,a sequence of open setsU((Dj))=(U(n,(Dj)))n∈wsuch that

    (1)Dn?U(n,Dj))for eachn∈w

    (2)ifDn?En,thenU(n,(Dj))?U(n,(Ej)) for eachn∈w

    (3)∩n∈wU(n,(Dj))=?.

    In 1965,Mack[8]proved that a spaceXis countably paracomparct if and only if for each locally bounded functionh:X→there exists a locally bounded l.s.c.functiong:X→such that |h|≤g.In 2007,Yamazaki[15] replaced the real-valued functionshandgabove by set-valued mappings(see Theorem 1.10).In order to characterize MCP and MCM with set-valued mappings,Yamazaki[15]introduced the following:

    Definition1.9For a spaceYhaving a countable strictly increasing closed cover{Bn},a mappingφ:X→B(Y;{Bn}) is called locally bounded if for everyx∈Xthere existn∈wand a neighborhoodOofxsuch thatO?φ#[Bn].

    Also,Yamazaki obtained the following theorem in [15].

    Theorem1.10(Yamazaki[15])For a spaceX,the following statements are equivalent:

    (1)Xis countably paracomparct(resp.countably metocompact);

    (2)for every spaceYhaving a strictly increasing closed cover{Bn},there exists an operatorΦassigning to each locally bounded mappingφ:X→B(Y;{Bn}),a locally bounded l.s.c.(resp.a l.s.c)mappingΦ(φ):X→B(Y;{Bn}) withφ?Φ(φ);

    (3)for every metric spaceYthere exists an operatorΦassigning to each locally bounded mappingφ:X→B(Y),a locally bounded l.s.c(resp.a l.s.c)mappingΦ(φ):X→B(Y) withφ?Φ(φ).

    Yamazaki[15]also proved that the statements(2′) and (3′) obtained from(2) and (3),respectively,by requiringΦa further condition “Φ(φ)?Φ(φ′) wheneverφ?φ′” are naturally equivalent to (1′)Xis MCP(resp.MCM).

    Along this way,in this paper,we replace the real-valued functions in Theorems 1.4,1.5 and 1.7 by set-valued mappings.And we give some characterizations of classical spaces with the insertion of set-valued mappings as well.

    Definition1.11(Creede[1])A spaceXis said to be semi-stratifiable,if there is an operatorUassigning to each closed setF,a sequence of open setsU(F)=(U(n,F))n∈wsuch that

    (1)F?U(n,F) for eachn∈w

    (2)ifD?F,thenU(n,D)?U(n,F) for eachn∈w

    (3)∩n∈wU(F)=F.

    Xis said to bek-semi-stratifiable(Lutzer[7]),if,in addition,(3′) obtained from(3)by requiring(3) a further condition ‘if compact setKsuch thatK∩F=?,there is somen0∈wsuch thatK∩U(n0,F)=?’.

    2 Set-valued and real-valued semi-continuous functions

    In this section,we discuss the relations between set-valued and real-valued semi-continuous functions.Some results will be used in the third section.In 2007,Yan and Yang[14] introduced real-valuedk-semi-continuous function to describek-semi-stratifiable spaces.We now give the definition of set-valuedk-semi-continuous function,which will be used to describek-semi-stratifiable space,as following:

    Definition2.1A mappingφ:X→2Ycalled K lower semi-continuous functions (K-l.s.c)andKupper semi-continuous functions(K-u.s.c),if for any compact setKinX, there isx0∈Ksuch thatφ(x0)?φ(x) andφ(x)?φ(x0),respectively,for eachx∈K.

    In[14],Yan and Yang obtained that every real-valued lower(upper)semi-continuous function is aKlower(upper)semi-continuous function.But for set-valued mapping,the result need not true as the following example shows.

    Example2.2Letφ:X→2xbe defined by φ(x)={x} for eachx∈X.It is obvious thatφis l.s.c and u.s.c,but not K-l.s.c or K-u.s.c.

    The following Lemma 2.3 is easy to prove,so we omit the proof.

    Lemma2.3For any spacesXandY,letφ:X→2Y,then

    (1)φis u.s.c if and only if for any closed setDinY,theφ-1[D] is closed inX;

    (2)φis l.s.c if and only if for any closed setDinY,theφ#[D] is closed inX;

    Set Ⅱ=[0,1].

    Proposition2.4For any spaceXandφ:X→2Ⅱ,leth1,φ,h2,φ:X→Ⅱ defined byh1,φ(x)=supφ(x) andh2,φ(x)=infφ(x),respectively,for eachx∈X,then

    (1)ifφis K-u.s.c(resp.K-l.s.c),h1,φis K-u.s.c(resp.K-l.s.c);

    (2)ifφis K-u.s.c(resp.K-l.s.c),h2,φis K-l.s.c(resp.K-u.s.c);

    (3)ifφis u.s.c(resp.l.s.c),h1,φis u.s.c(resp.l.s.c);

    (4)ifφis u.s.c(resp.l.s.c),h2,φis l.s.c(resp.u.s.c).

    Proof.(1)Supposeφis K-u.s.c(resp.K-l.s.c).LetKis a compact set inX.By Definition 2.1,there isx0∈Ksuch thatφ(x)?φ(x0) (resp.φ(x)?φ(x0))for eachx∈K,soh1,φ(x)=supφ(x)≤supφ(x0)=h1,φ(x0)(resp.h1,φ(x)=supφ(x)≥supφ(x0)=h1,φ(x0)) for eachx∈K. That is,h1,φis K-u.s.c(resp.K-l.s.c)by Definition 1.6.

    (2)Similar to (1).

    (3)Supposeφis u.s.c.For everyr∈Ⅱ,{x∈X|supφ(x)

    Suppeoseφis l.s.c.For everyr∈Ⅱ,{x∈X|supφ(x)≤r}={x∈X|φ(x)?[0,r]}=φ#[[0,r]].One can easily obtain that the setφ#[[0,r]] is closed by (2) of Lemma 2.3.that is,{x∈X|h1,φ(x)≤r} is closed for eachr∈Ⅱ,soh1,φis l.s.c.

    (4)Supposeφis l.s.c.For everyr∈Ⅱ,{x∈X| infφ(x)≥r}={x∈X|φ(x)?[r,1]}=φ#[[r,1]].One can easily obtain that the setφ#[[r,1]] is closed by (2) of Lemma 2.3,that is,{x∈X|h2,φ(x)≥r} is closed for eachr∈Ⅱ,soh2,φis u.s.c.

    Supposeφis u.s.c.For everyr∈Ⅱ,{x∈X|infφ(x)>r}=∪n∈{x∈X|φ(x)?(r+,1]}=∪n∈φ#(r+,1]].One can easily obtain that the set ∪n∈φ#[(r+,1]]is open by the definition of u.s.c,that is,{x∈X|h2,φ(x)>ris open for eachr∈Ⅱ,soh2,φis l.s.c.

    Remark.In particular,if the mappingφ′:X→2Ⅱsuch thatφ?φ′,h1,φ≤h1,φ′andh2,φ′≤h2,φ.

    Proposition2.5.For any spaceXandh:X→Ⅱ,letφ1,h,φ2,h:X→2Ⅱby definedφ1,h(x)=[0,h(x)] andφ2,h(x)=[h(x),1],respectively,for eachx∈X,then

    (1)ifhis K-u.s.c(resp.K-l.s.c),φ1,his K-u.s.c(resp.K-1.s.c);

    (2)ifhis K-u.s.c(resp.K-l.s.c),φ2,his K-l.s.c(resp.K-u.s.c);

    (3)ifhis u.s.c(resp.l.s.c),φ1,his u.s.c(resp.l.s.c);

    (4)ifhis u.s.c(resp.l.s.c),φ2,his l.s.c(resp.u.s.c).

    Proof.(1)Suppose thathis K-u.s.c(resp.K-l.s.c),Kis a compact set inX.By Definition 1.6,there isx0∈Ksuch thath(x)≤h(x0)(resp.h(x)≥h(x0)) for eachx∈K,soφ1,h(x)=[0,h(x)]?[0,h(x0)]=φ1,h(x0)(resp.φ1,h(x)=[0,h(x)]?[0,h(x0)]=φ1,h(x0))for eachx∈K.That is,φ1,his K-u.s.c(resp.K-l.s.c)by Definition 2.1.

    (2)Similar to (1).

    (3)We only prove the case ofhbeing u.s.c,since the case ofhbeing l.s.c is similar tohbeing u.s.c.

    (4)Similar to (3).

    Remark.In particular,ifh′:X→Ⅱ such thath≤h′,φ1,h?φ1,h′andφ2,h?φ2,h′.

    3 Set-valued l.s.c mappings and semi-stratifiable spaces

    In this section,we characterize semi-stratifiable spaces and so on by the insertion of set-valued mappings.The results are similar to Theorem 1.10.

    For a metric space (Y,ρ),a not empty closed setDinYhas the property (G) ifBρ(D,ε)-D≠? for anyε>0 and there existsε0>0 such thatBρ(D,ε0)?Vfor any open setVwith containingDinY;

    For a spaceY,a strictly decreasing closed sequence {En}n∈wwith not empty intersection has the property (G) if there existsn0∈wsuch thatEn0?Vfor any open setVcontaining ∩n∈wEninY.

    A(metric)spaceYis calledε-suitable(D-suitable)if there exists a strictly decreasing closed sequence {En}n∈whaving not empty intersection and the property (G) (a not empty closed setDhaving the property(G)).

    In order to be convenient,we introduce the following:

    Definition3.2.For aε-suitable spaceY,we call a mappingφ:X→LB(Y,{En})being(strictly)lower-bounded (with respect to {En}),if,for eachn∈w,there existn0∈wsuch thatEn0?φ(x) for eachx∈X-φ#[En](for eachn∈w,En?φ(x)for eachx∈X-φ#[En]).

    Theorem3.3.For a spaceX,the following statements are equivalent:

    (1)Xis a perfectly normal(resp.perfect);

    (5)there exist operatorsΦandψ(resp.there exists an operatorΦ)assigning to each l.s.c mappingg:X→Ⅱ,an u.s.c mappingΦ(g):X→Ⅱ and a l.s.c mappingψ(g):X→Ⅱ(resp.an u.s.c mappingΦ(g):X→Ⅱ)such that 0≤ψ(g)≤φ(g)≤g(resp.0≤φ(g)≤g) and 0<φ(g)(x)≤Φ(g)(x)

    Note:(1)?(5) sees Theorem 1.4 and [13].

    Before we prove Theorem 3.3,let us note the following:

    Theorem3.4.(Xie and Yan[13])For any topological spaceX,the following statements are equivalent:

    (1)the spaceXis perfect;

    (2)there is an operatorUassigning to each decreasing sequence of closed sets(Fj)j∈w,a decreasing sequence of open sets(U(n,(Fj)))n∈wsuch that

    (i)Fn?U(n,(Fj)) for eachn∈w;

    (ii)∩n∈wU(n,(Fj))=∩n∈wFn;

    The statement(2)′ obtained from(2)by requiringUa further condition

    ProofofTheorem3.3.We only prove the statments for perfectly normal space.(1)?(5) had been proved in[13],so we only need prove(1)?(2)?(3)?(4)?(5)

    SetU(-1,{φ#[En]})=X,whereji=min{j∈w|j≥iandEj?φ(x) for eachx∈X-{φ#[Ei]}}.According toφbeing lower-bounded (with respect to {En}),the definitions ofΦ(φ) andψ(φ)are reasonable.We assert that the operatorsφandψsatisfy the conditions of (2).

    Finally,we will showΦ(φ) andψ(φ) to be an u.s.c mapping and a l.s.c mapping,respectively,for each lower-bounded (with respect to{En})l.s.c mappingφ:X→LB(Y,{En}).

    Firstly,we will showΦ(φ) to be an u.s.c mapping.Take any open setVinY.If ∩n∈wEnV,Φ(φ)#[V]=?,because ofΦ(φ)(x)?∩n∈wEnfor eachx∈X.Also,Φ(φ)#[V] is open inX.If ∩n∈wEn?V,there existsn0∈wsuch thatEn0?VandEn0-1V(setE-1=Y)according to {En}n∈whaving the property(G).Then we assert thatΦ(φ)#[V]=U(jn0,{φ#[En]}),wherejn0=min{j∈w|Φ(φ)(x)?En0,?x∈U(j,{φ#[En]})}.Firstly,we will show {j∈w|Φ(φ)(x)?En0,?x∈U(j,{φ#[En]})}≠?,that isn0∈{j∈w|Φ(φ)(x)?En0,?x∈U(j,{φ#[En]})}.Take anyx∈U(n0,{φ#[En]}}),thenΦ(φ)(x)?Ein0+1+1?En0+1?En0?V,wherein0+1=min{i∈w|i≥n0+1 andEi?φ(x) for eachx∈X-φ#[En0+1]} according to the definition ofΦ(φ).Hence,U(jn0,{φ#[En]})?Φ(φ)#[V] is clear.Take anyx?U(jn0,{φ#[En]}).We haveΦ(φ)(x)?Ein0+1+1according to the definition ofΦ(φ),whereijn0=min{j∈w|j≥jn0andEj?φ(x) for eachx∈X-φ#[Ejn0]},andEijn0+1En0.If not,we assumeEijn0+1?En0,then we can getΦ(φ)(x)?Eijn0+1?Ejn0for eachx∈U(jn0-1,{φ#[En]}),sojn0-1∈{j∈w|Φ(φ)(x)?En0,?x∈U(j,{φ#[En]})},which is a contradiction withjn0=min{j∈w|Φ(φ)(x)?En0,?x∈U(j,{φ#[En]})}.Hence for anyx?U(jn0,{φ#[En]}),Φ(φ)(x)?Eijn0+1En0,that isΦ(φ)(x)?Eijn0+1?En0.Furthermore,we haveΦ(φ)(x)V,because ofEn0-1V.So we complete the proof of our assertionΦ(φ)#[V]=U(jn0,{φ#[En]}),wherejn0=min{j∈w|Φ(φ)(x)?En0,?x∈U(j,{φ#[En]})}.In all,Φ(φ)#[V] is an open set inXfor any open setVinY,soΦ(φ) is u.s.c.

    Now we will showψ(φ) to be a l.s.c mapping. Take any closed setDinY.If ∩n∈wEnD,ψ(φ)#[D]=?,because ofψ(φ)(x)?∩n∈wEnfor eachx∈X. Also,ψ(φ)#[D] is closed inX.If ∩n∈wEn?D,(a)if there is non0∈wsuch thatEn?D,ψ(φ)#[D]=∩n∈wφ#[En]=according to the definition ofψ(φ), soψ(φ)#[D] is closed inX.(b)if there isi0∈wsuch thatEi0?D,there existsn0∈wsuch thatEn0?DandEn0-1D(setE-1=X).Then using the same way above we can getψ(φ)#[D]=,wherejn0=min{j∈w|ψ(φ)(x)?En0,?x∈,soψ(φ)#[D] is closed inX.Because of closed setDbeing any taken,ψ(φ)is a l.s.c mapping according to (2) of the Lemma 2.3.

    (3)?(4).We only note that the closed set {0} having the property (G) and Ⅱ is metric,and apply(3).

    Theorem3.5.For a spaceX,the following statements are equivalent:

    (1)Xis stratifiable (resp.semi-stratifiable);

    (5)there exist operatorsΦandψ(resp.there exissts an operatorΦ)assigning to each l.s.c mappingg:X→Ⅱ,an u.s.c mappingΦ(g):X→Ⅱ and a l.s.c mappingψ(g):X→Ⅱ(resp.an u.s.c mappingΦ(g):X→Ⅱ)such that (i) 0≤ψ(g)≤Φ(g)≤g(resp.0≤Φ(g)≤g) and 0<ψ(g)(x)≤Φ(g)(x)

    Note(1)?(5) sees Theorem 1.5 and [13,Theorem 3.5].

    Before we prove Theorem 3.5,let us note the following:

    Theorem3.6.(Xie and Yan[13]For any topological spaceX,the following statements are equivalent:

    (1)spaceXis semi-stratifiable;

    (2)there is an operatorUassigning to a decreasing sequence of closed sets (Fj)j∈w,a decreasing sequence of open sets (U(n,(Fj)))n∈wsuch that

    (a)Fn?U(n,(Fj)) for eachn∈w;

    (b)∩n∈wU(n,(Fj))=∩n∈wFn;

    ProofofTheorem3.5.We only prove the statements forXbeing stratifiable.

    (1)?(5)had been proved in[13],so we only need prove (1)?(2)?(3)?(4)?(5).

    (1)?(2).Assume thatXis stratifiable and thatUis an operator satisfying (a)-(d) of (2′) in Theorem 3.6.Let spaceYhave a strictly decreasing closed sequence {En} with ∩n∈wEn≠? and having the property (G).For each l.s.c mappingφ:X→LB(Y,{En}) such that if,?x∈X,φ(x)En,thenEn?φ(x)for anyn∈w,according to (2) of Lemma 2.3,we have {φ#[En]}n∈wbeing decreasing closed subsets inX.Set {U(i,{φ#[En]})}i∈w=U({φ#[En]}).Since spaceXis stratifiable,according to (2) of Theorem 3.6,{U(i,{φ#[En]})}i∈wis a decreasing open subsets such that=∩i∈wU(i,{φ#[En]})=∩n∈wφ#[En].We define mappingsΦ(φ)X:→LB(Y,{En}) andψ(φ)X:→LB(Y,{En}) as following:

    SetU(-1,{φ#[En]})=X.We assert that the operatorsΦandψsatisfy(2).

    Now we will show (ii)Φ(φ′)?Φ(φ) andψ(φ)?ψ(φ′) wheneverφ?φ′ for any pair of l.s.c mappingsφ,φ′:X→LB(Y,{En}) such that if,?x∈X,φ(x)Ei(resp.φ′(x)Ei),Ei?φ(x)(resp.φ′(x)Ei) for anyi∈w.Set {U(i,{φ#{En]})}i∈w=U({φ#[En]}) and {U(i,{φ′#[En]})}i∈w=U({φ#[En]}).Sinceφ?φ′,φ#[En]?φ#[En] for eachn∈w.Furthermore,U(i,{φ′#[En]})?U(i,{φ#[En]}),according to the operatorUholding for (c) of (2) in Theorem 3.6,for eachi∈w.

    (2)?(3).Similar to (2)?(3) in the proof of Theorem 3.3.

    (3)?(4).Similar to (3)?(4) in the proof of Theorem 3.3.

    The proof of Theorem 3.7 is similar to the proofs of Theorems 3.3 and 3.5,so we omit it.

    Theorem3.7.For a spaceX,the following statements are equivalent:

    (1)Xis MCP(resp.MCM);

    (5)there exist operatorsΦandψ(resp.there exists an operatorΦ) assigning to each l.s.c mappingg:X→Ⅱ such that 0

    Note.The (1)?(5) was proved in [15].

    Lemma3.8.For any topological spaceX,the following statements are equivalent:

    (1)spaceXisk-semi-stratifiable;

    (2)there is an operatorUassigning to a decreasing sequence of closed sets (Fj)j∈w,a decreasing sequence of open sets(U(n,(Fj)))n∈wsuch that

    (b)for any compact subsetKinX,if ∩n∈wFn∩K=?,there isn0∈wsuch thatU(n0,(Fj))∩K=?;

    Proof.(1)?(2)LetU0be an operator having the properties:(1),(2) and (3′) in Definition 1.11.Given any decreasing sequences of closed sets(Fj)j∈w,we can define an operatorUby

    U((Fj))=(U(n,(Fj)))n∈wwhereU(n,Fj))=U0(n,F0) for eachn∈w

    We shall prove that the operatorUhas the properties (a)-(c) in (2).Because ofU0having properties (1) and (2) in Definition 1.11,one can easily verify thatUhas the properties(a) and (c) in (2).We show that the property(b) in (2)holds forU.Take any decreasing sequences of closed sets (Fn)n∈wand any compact subsetKinXsuch that ∩n∈wFn∩K=?.Then,there existsn0∈wsuch thatFn0∩K=?.SinceXisK-semi-stratifiable,there isi∈wsuch thatU0(i,Fn0)∩K=?.Ifi

    (2)?(1)LetU0be an operator having the properties (a)-(c) in (2).Given any closed setFinXby lettingFn=Ffor eachn∈w,we can define an operatorUby

    U(j,F)=U0(j,(Fn)) where (U0(j,(Fn)))j∈w=U0((Fn))

    One can easily verify that the operatorUhas the properties in Definition 1.11.

    Theorem3.9.For a spaceX,the following statements are equivalent:

    (1)Xisk-semi-stratifiable;

    (5)there exists and operatorΦassigning to each l.s.c mappingg:X→Ⅱ,an u.s.c and K-l.s.c mappingΦ(g):X→Ⅱ such that (i)0≤Φ(g)≤gand 0<Φ(g)(x)

    Proof.(1)?(5)was proved in Theorem 1.7,so we only show(1)?(2)?(3)?(4)?(5).

    (1)?(2)Suppose thatXis K-semi-stratifiable.Define an operatorΦas theΦof (1)?(2) in the proof of Theorem 3.5 with the operatorUsatisfying(2)in Lemma 3.8.Then we need only to show that for each l.s.c mappingφ:X→LB(Y,{En})such that if,?x∈X,φ(x)Ei,Ei?φ(x)for anyi∈w,Φ(φ) is K-l.s.c.Assume thatKis a not empty compact set inX.If ∩n∈wφ#[En]∩K=?,byXbeingk-semi-stratifiable and Lemma 3.8,there isi0∈wsuch thatU(i0,{φ#[En]})∩K=? for alln≥i0whileU(n-1,{φ#[En]})∩K≠? for alln≤i0(setU(i0-1,{φ#[En]}=X).Takex0∈K∩U(i0-1,{φ#[En]}).Then for eachx∈Kthere existsj0such thatx∈U(j0-1,{φ#[En]})-U(j0,{φ#[En]}) andj0≤i0.Hence,according to the definition ofΦ(φ),we can getΦ(φ)(x)=Ej0+1?Ei0+1=Φ(φ)(x0);If∩n∈wφ#[En]∩K≠?,takingx0∈∩n∈wφ#[En]∩K,we have,for anyx∈K,Φ(φ)(x0)=∩n∈wEn?Φ(φ)(x)accordingx0∈∩n∈wφ#[En]=∩i∈wU(i,{φ#[En]}) and the definition ofΦ(φ).So we complete the proof ofΦ(φ)being K-l.s.c.

    (2)?(3) Similar to (2)?(3) in the proof of Theorem 3.3.

    (3)?(4) Similar to (3)?(4) in the proof of Theorem 3.3.

    (4)?(5) Assume that (4).Define an operatorΦas theΦof (4)?(5) in the proof of Theorem 3.5.Then we need only to show that for each l.s.c mappingg:X→Ⅱ,Φ(g) is real-valued K-l.s.c.One can easily obtain thatΦ(g) is real-valued K-l.s.c.according to (1)in Proposition 2.4.In 2003,Peng and Lin[10] gave thekβ(see[12])characterization as following.They renamed thekβask-MCM in[10].

    Theorem3.10.(Peng,Lin[10])For a spaceX,the following statements are equivalent:

    (1)Xisk-MCM

    (2)there is an operatorUassigning to a decreasing sequence of closed sets (Fj)j∈wwith ∩j∈wFj=?,a decreasing sequence of open sets (U(n(Fj)))n∈wsuch that

    (a)Fn?U(n,(Fj))for eachn∈w;

    (b)for any compact subsetKinX,there isn0∈wsuch thatU(n0,(Fj)))∩K=?;

    (c)given two decreasing sequences of closed sets (Fj)j∈wand (Ej)j∈wsuch thatFn?Enfor eachn∈wand that ∩j∈wFj=∩j∈wEj=?,thenU(n,(Fj))?U(n,(Ej)),for eachn∈w.

    Theorem3.11.For a spaceX,the following statements are equivalent:

    (1)Xisk-MCM;

    (5)there exists an operatorΦassigning to each l.s.c mappingg:X→Ⅱ such that 0

    Proof.(1)?(2).Suppose thatXisk-MCM and thatUis an operator satisfying (a)-(c)of (2)in Theorem 3.10.Let spaceYhave a strictly decreasing closed sequence {En} with ∩n∈wEn≠? and having the property(G).For each l.s.c mappingφ:X→LB(Y,{En}) such that if,?x∈X,φ(x)En,En?φ(x) for anyn∈wand that ∩n∈wEnφ,according to (2) of Lemma 2.3, we have {φ#[En]}n∈wbeing decreasing closed subsets such that ∩n∈wφ#[En]=? inX.Set {U(i{φ#[En]})}i∈w=U({φ#[En]}).Since spaceXisk-MCM,according to (2) of Theorem 3.10,{U(i,{φ#[En]})}i∈wis a decreasing open subsets satisfying (a)-(c) of (2) in Theorem 3.10.We defineΦ(φ):X→LB(Y,{En}) as following:Φ(φ)(x)=Ei+1,x∈U(i-1,{φ#[En]})-U(i,{φ#[En]}).(SetU(-1,{φ#[En]})=X)

    The proofs ofΦ(φ)being u.s.c and satisfying (i) and (ii) in (2) are similar to the proof of ‘(1)?(2)’ in Theorem 3.5.So we need to show thatΦ(φ) is K-l.s.c for each l.s.c mappingφ:X→LB(Y,{En}) such that if,?x∈X,φ(x)Ei,Ei?φ(x) for anyi∈wand that ∩n∈wEnφ.

    Assume thatKis a not empty compact set inX.ByXbeingk-MCM and (b) of (2) in Theorem 3.10,there isi0∈wsuch thatU(i0,{φ#[En]})∩K=? for alln≥i0whileU(n-1,{φ#[En]})∩K≠? for alln≤i0(setU(i0-1,{φ#[En]}=X).Takex0∈K∩U(i0-1,{φ#[En]}).Then for eachx∈Kexistsj0such thatx∈U(j0-1,{φ#[En]})-U(j0,{φ#[En]}) andj0≤i0.Hence,according to the definition ofΦ(φ),we can getΦ(φ)(x)=Ej0+1?Ei0+1=Φ(φ)(x0),that implies thatΦ(φ) is K-l.s.c.

    (2)?(3)Similar to (2)?(3) in the proof of Theorem 3.3.

    (3)?(4)Similar to (3)?(4) in the proof of Theorem 3.3.

    (4)?(5)Similar to (4)?(5) in the proofs of Theorem 3.9 and Theorem 3.5.

    (5)?(1)According to Theorem 3.10,we only need show that there exists an operatorUsatisfying (2) in Theorem 3.10 for each decreasing closed subsets{En}n∈wwith empty intersection inX.

    The {U(i,{En})} being a decreasing open subsetsEi?U(i,{En}) is obvious,which implies that theUholds for (a).

    [1]G.D.Creede.Semi-stratifiable[J].IN:Proc Arizona State Univ Topological Conf,1967,1969:318~323.

    [2]J.Dieudonné.Une généralisation des espaces compacts[J].J.Math.Pures Appl.,1944,23:76.

    [3]C.H.Dowker.On countably paracompact spaces[J].Canad.J.Math.,1951,3:219~224.

    [4]C.Good,R.Knight,I.Stares.Monotone countable paracompactness[J].Topology Appl.,2000,101:281~298.

    [5]H.Hahn.Uber halbstetige und unstetige funktionen[J].Sitzungsberichte Akad Wiss.WienAbt.Ha 126.

    [6]M.Katěetov.On real-valued function in topological spaces[J].Fund.Math.,1951,38:85~91.

    [7]D.L.Lutzer.Semistratifiable and stratifiable[J].Topology Appl.,1971,1:43~48.

    [8]J.Mack.On a class of countably paracompact spaces[J].Proc.Amer.Math.Soc.,1965,16:467~472.

    [9]E.Michael.Continuous selectionsI[J].Ann.of Math.,1956,63:361~382.

    [10]L.X.Peng,S.Lin.On monotone spaces and matrization theorems[J].Acta.Math.Sinica,2003,46:1225~1232(in Chinese).

    [11]H.Tong.Some characterizations of normal and perfectly normal spaces[J].Duke Math.J.,1952,19:289~292.

    [12]L.S.Wu.Aboutk-semistratifiable spaces[J].J.Socow Univ.,1986,4:47~57.

    [13]L.H.Xie,P.F.Yan.Insertion of semi-continuous functions and sequences of sets[J].Acta Math.Hungar.,2010,126:164~180.

    [14]P.F.Yan,E.G.Yang.Semi-strtifiable spaces and the insertion of semi-continuous functions[J].J.Math.Anal.Appl.,2007,328:429~437.

    [15]K.Yamazaki.Locally bounded set-valued mappings and monotone countable paracompactness[J].Topology Appl.,2007,154:2817~2825.

    集值映射與層型結(jié)構(gòu)空間

    謝利紅,燕鵬飛

    (五邑大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,廣東 江門 529020)

    本論文利用半連續(xù)集值映射的插入給出具有層型結(jié)構(gòu)空間的一些等價(jià)刻畫.也引入了K-lower和K-upper集值映射,利用此概念給出了k-半層空間以及k-MCM的刻畫.

    K-upper(K-lower)集值映射;層型空間;半層空間;MCM;MCP;k-MCM(kβ);k-半層空間

    梁懷學(xué))

    date:2014-06-10FoundationitemSupported by the Natural Science Foundation of China(No.10971125);the Project of Department of Education of Guangdong Province(No.2012KJCX0101);the Science Foumdation for Young Teachers of Wuyi University(No.2013zk03)

    Biographies:Xie Lihong(1982-),male,doctor.Main research:general topology.

    O189.2DocumentcodeAArticleID1674-3873-(2014)03-0048-12

    猜你喜歡
    集值江門鵬飛
    具有初邊值條件的集值脈沖微分方程的平均法
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    精彩觀影,歡樂K歌 江門開平優(yōu)之名商務(wù)多功能影音室
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    “江門之心”——東甲立交方案設(shè)計(jì)
    廣東江門“多證合一”再開全國先河
    上半連續(xù)集值函數(shù)的區(qū)間迭代
    福彩公益金 傳遞溫暖情 走近江門福彩公益
    大社會(huì)(2016年5期)2016-05-04 03:41:51
    成人美女网站在线观看视频| 成人高潮视频无遮挡免费网站| 成年女人看的毛片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人av| 欧美日韩国产mv在线观看视频 | 久久久色成人| 联通29元200g的流量卡| 男的添女的下面高潮视频| 日韩制服骚丝袜av| 亚洲aⅴ乱码一区二区在线播放| 最近的中文字幕免费完整| 午夜精品一区二区三区免费看| 成年版毛片免费区| 国产 一区精品| 淫秽高清视频在线观看| 少妇熟女欧美另类| av在线亚洲专区| 久久精品人妻少妇| 搡老乐熟女国产| 国产精品一区www在线观看| 男女那种视频在线观看| 1000部很黄的大片| 有码 亚洲区| 日本欧美国产在线视频| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 日韩伦理黄色片| 日日干狠狠操夜夜爽| 建设人人有责人人尽责人人享有的 | 精品一区在线观看国产| 国产精品美女特级片免费视频播放器| 日韩欧美一区视频在线观看 | 秋霞在线观看毛片| 亚洲无线观看免费| 免费观看a级毛片全部| 深爱激情五月婷婷| 欧美极品一区二区三区四区| 国产精品1区2区在线观看.| 黄片wwwwww| 校园人妻丝袜中文字幕| 如何舔出高潮| 欧美最新免费一区二区三区| 亚洲精品乱久久久久久| 午夜精品在线福利| 日韩一区二区视频免费看| 身体一侧抽搐| 国产精品人妻久久久影院| 春色校园在线视频观看| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站 | 99久国产av精品| 99re6热这里在线精品视频| 蜜臀久久99精品久久宅男| 色综合站精品国产| 久久精品久久久久久久性| 中文资源天堂在线| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 国产亚洲av片在线观看秒播厂 | 欧美激情在线99| 国产一级毛片在线| 国产男女超爽视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 日本-黄色视频高清免费观看| 色吧在线观看| 亚洲成人久久爱视频| 日韩电影二区| 男人舔奶头视频| 日韩强制内射视频| 99久国产av精品| 精品酒店卫生间| 精品国产三级普通话版| 毛片女人毛片| 欧美高清成人免费视频www| 亚洲精品乱码久久久久久按摩| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 亚洲自拍偷在线| 观看美女的网站| 色视频www国产| 欧美激情国产日韩精品一区| 亚洲国产精品专区欧美| 亚洲国产精品成人久久小说| 久久久久久久久久成人| 男人舔女人下体高潮全视频| 成人无遮挡网站| 欧美成人午夜免费资源| 亚洲欧美精品自产自拍| 国产亚洲最大av| 秋霞在线观看毛片| 大香蕉久久网| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 欧美97在线视频| 欧美精品一区二区大全| 日本免费a在线| 欧美 日韩 精品 国产| 岛国毛片在线播放| 久久久久久久久久黄片| 久久精品国产亚洲网站| 免费看a级黄色片| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 亚洲最大成人中文| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年人午夜在线观看视频 | 九九久久精品国产亚洲av麻豆| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 日韩中字成人| 亚洲av免费高清在线观看| 日韩电影二区| 街头女战士在线观看网站| 国产黄片视频在线免费观看| 在线观看人妻少妇| 亚洲真实伦在线观看| 校园人妻丝袜中文字幕| 亚洲在线自拍视频| 中文天堂在线官网| 久久97久久精品| 国产久久久一区二区三区| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 蜜桃亚洲精品一区二区三区| 日本-黄色视频高清免费观看| 国产一区二区亚洲精品在线观看| 国产单亲对白刺激| av.在线天堂| 国产一区二区亚洲精品在线观看| 欧美高清性xxxxhd video| 欧美不卡视频在线免费观看| 精品午夜福利在线看| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 精品国产三级普通话版| 少妇人妻精品综合一区二区| 亚洲色图av天堂| 亚洲自偷自拍三级| 极品教师在线视频| 麻豆久久精品国产亚洲av| 久久人人爽人人爽人人片va| 少妇熟女欧美另类| 高清午夜精品一区二区三区| 欧美性猛交╳xxx乱大交人| 久热久热在线精品观看| 91久久精品电影网| 男女视频在线观看网站免费| 国产午夜精品一二区理论片| 国产精品一及| 日本黄色片子视频| 肉色欧美久久久久久久蜜桃 | 亚洲成人久久爱视频| 久久精品国产亚洲av涩爱| 精品一区二区免费观看| 亚洲美女搞黄在线观看| 欧美成人午夜免费资源| 欧美三级亚洲精品| 一夜夜www| 在线观看人妻少妇| 免费观看a级毛片全部| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| 欧美高清成人免费视频www| 最新中文字幕久久久久| 狂野欧美白嫩少妇大欣赏| 黄色配什么色好看| 97在线视频观看| 国产一级毛片在线| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 亚州av有码| 韩国高清视频一区二区三区| 国产免费一级a男人的天堂| 欧美性猛交╳xxx乱大交人| 别揉我奶头 嗯啊视频| 午夜福利高清视频| 插阴视频在线观看视频| 久久久久久久久久成人| 国产亚洲午夜精品一区二区久久 | 久久精品国产亚洲av涩爱| av免费在线看不卡| 韩国高清视频一区二区三区| 精品不卡国产一区二区三区| 国产黄片视频在线免费观看| 小蜜桃在线观看免费完整版高清| 男女下面进入的视频免费午夜| 99久国产av精品国产电影| 91狼人影院| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 久久久亚洲精品成人影院| 免费观看性生交大片5| 免费少妇av软件| 亚洲欧美日韩无卡精品| 国产人妻一区二区三区在| 日本熟妇午夜| 欧美另类一区| 丝袜喷水一区| 成人国产麻豆网| 国产精品久久久久久精品电影小说 | 欧美3d第一页| 欧美三级亚洲精品| 卡戴珊不雅视频在线播放| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 国产淫片久久久久久久久| 成人高潮视频无遮挡免费网站| 一级片'在线观看视频| 久久草成人影院| av在线蜜桃| 搡老妇女老女人老熟妇| 成人午夜精彩视频在线观看| 国产成人91sexporn| 在线免费观看不下载黄p国产| 人人妻人人澡人人爽人人夜夜 | 久久久久久久亚洲中文字幕| 男女下面进入的视频免费午夜| 水蜜桃什么品种好| 国产一级毛片七仙女欲春2| 日日干狠狠操夜夜爽| 亚洲丝袜综合中文字幕| 国产精品久久久久久精品电影| 99热6这里只有精品| 97超碰精品成人国产| www.色视频.com| 久久99热6这里只有精品| 免费观看av网站的网址| 天天躁日日操中文字幕| 精品少妇黑人巨大在线播放| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 最新中文字幕久久久久| 国产视频内射| 永久网站在线| 一二三四中文在线观看免费高清| 小蜜桃在线观看免费完整版高清| 国产成人精品婷婷| 99久久人妻综合| 午夜日本视频在线| 男人爽女人下面视频在线观看| 大香蕉久久网| 日本av手机在线免费观看| 成年女人在线观看亚洲视频 | 18禁在线无遮挡免费观看视频| 欧美变态另类bdsm刘玥| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 国产乱人视频| 一区二区三区免费毛片| www.av在线官网国产| 国产精品三级大全| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 男女边摸边吃奶| 日韩欧美精品免费久久| 成人亚洲精品一区在线观看 | 精品人妻视频免费看| 成年人午夜在线观看视频 | 国产黄色小视频在线观看| 久久精品熟女亚洲av麻豆精品 | 如何舔出高潮| av播播在线观看一区| 在线免费十八禁| 大陆偷拍与自拍| 一个人免费在线观看电影| 午夜免费观看性视频| 日本wwww免费看| 婷婷色av中文字幕| 国产极品天堂在线| 亚洲精品第二区| 永久网站在线| 高清欧美精品videossex| 欧美激情久久久久久爽电影| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 少妇丰满av| 少妇熟女欧美另类| 日韩精品青青久久久久久| 免费观看的影片在线观看| 免费大片黄手机在线观看| 一级毛片电影观看| 成年女人在线观看亚洲视频 | 大香蕉97超碰在线| 九九在线视频观看精品| 成人无遮挡网站| 天天一区二区日本电影三级| 18禁在线播放成人免费| 中文资源天堂在线| 色综合站精品国产| 午夜视频国产福利| 精品久久久久久久久av| 久久久a久久爽久久v久久| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 日本与韩国留学比较| 成人性生交大片免费视频hd| 一区二区三区高清视频在线| 男人爽女人下面视频在线观看| 精品国产露脸久久av麻豆 | 欧美+日韩+精品| 精品一区在线观看国产| 看黄色毛片网站| 国产国拍精品亚洲av在线观看| videos熟女内射| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一二三区在线看| 成人毛片60女人毛片免费| 欧美xxxx黑人xx丫x性爽| 九草在线视频观看| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 中文精品一卡2卡3卡4更新| 国产 一区 欧美 日韩| 亚洲国产av新网站| 欧美极品一区二区三区四区| 久久久久精品久久久久真实原创| 亚洲人成网站在线播| 国产午夜精品久久久久久一区二区三区| 亚洲欧美一区二区三区国产| 91午夜精品亚洲一区二区三区| 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 插阴视频在线观看视频| 免费观看av网站的网址| 国产精品熟女久久久久浪| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看| av福利片在线观看| av国产久精品久网站免费入址| 伦理电影大哥的女人| 国产黄片视频在线免费观看| 欧美激情久久久久久爽电影| 国产成人a∨麻豆精品| 日本熟妇午夜| 国产免费视频播放在线视频 | 好男人在线观看高清免费视频| 国产老妇女一区| 美女内射精品一级片tv| 亚洲av二区三区四区| 国产av国产精品国产| 免费看光身美女| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 亚洲精品影视一区二区三区av| 日韩,欧美,国产一区二区三区| 综合色丁香网| 日韩国内少妇激情av| 一个人免费在线观看电影| 欧美人与善性xxx| 免费看美女性在线毛片视频| 伦精品一区二区三区| 成人漫画全彩无遮挡| 亚洲国产日韩欧美精品在线观看| 视频中文字幕在线观看| 欧美激情久久久久久爽电影| 六月丁香七月| 亚洲成人av在线免费| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩东京热| 免费观看性生交大片5| 日韩国内少妇激情av| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 啦啦啦中文免费视频观看日本| 搞女人的毛片| 国产成人a∨麻豆精品| 亚洲av二区三区四区| 国产精品久久视频播放| 国产有黄有色有爽视频| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 日本黄大片高清| 在线 av 中文字幕| 日韩精品青青久久久久久| 韩国av在线不卡| 日本与韩国留学比较| 国产单亲对白刺激| 精品国产三级普通话版| 免费黄频网站在线观看国产| 777米奇影视久久| 成人欧美大片| 欧美性感艳星| 黄色一级大片看看| 精品久久久精品久久久| 永久网站在线| 午夜激情欧美在线| 黄片无遮挡物在线观看| 99热这里只有精品一区| 亚洲欧美成人综合另类久久久| 久久精品国产鲁丝片午夜精品| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻一区二区三区麻豆| 黑人高潮一二区| 国产成人a区在线观看| 免费不卡的大黄色大毛片视频在线观看 | av国产免费在线观看| 欧美精品一区二区大全| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 激情 狠狠 欧美| 精品少妇黑人巨大在线播放| 美女内射精品一级片tv| 亚洲av日韩在线播放| 男人爽女人下面视频在线观看| 国产永久视频网站| 久久精品久久久久久久性| 精品久久久久久久久亚洲| 别揉我奶头 嗯啊视频| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品 | 夜夜爽夜夜爽视频| 亚洲最大成人av| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 精品国产一区二区三区久久久樱花 | 亚洲精品视频女| 亚洲一区高清亚洲精品| 亚洲怡红院男人天堂| 男女那种视频在线观看| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添av毛片| 在线观看免费高清a一片| 国产av码专区亚洲av| 好男人在线观看高清免费视频| 久久精品人妻少妇| 99久国产av精品| 国产精品久久久久久精品电影| 亚洲av成人精品一区久久| 九色成人免费人妻av| 国产亚洲精品av在线| 最近中文字幕高清免费大全6| 免费av不卡在线播放| 日本一二三区视频观看| 午夜福利高清视频| 国产精品久久久久久久久免| 国产中年淑女户外野战色| 永久网站在线| 建设人人有责人人尽责人人享有的 | 国产在视频线在精品| 国产成年人精品一区二区| 欧美变态另类bdsm刘玥| 亚洲欧美日韩卡通动漫| 欧美日韩一区二区视频在线观看视频在线 | 国产精品久久久久久av不卡| 精品熟女少妇av免费看| 麻豆乱淫一区二区| 日韩不卡一区二区三区视频在线| 精品久久久噜噜| 久久久精品欧美日韩精品| 国产毛片a区久久久久| 能在线免费看毛片的网站| 中文天堂在线官网| 亚洲精品456在线播放app| 国产成人91sexporn| 免费观看精品视频网站| 观看美女的网站| 欧美日韩综合久久久久久| 成人性生交大片免费视频hd| 97人妻精品一区二区三区麻豆| 精品人妻一区二区三区麻豆| 欧美另类一区| 女人久久www免费人成看片| 亚洲va在线va天堂va国产| 中文字幕av成人在线电影| 蜜桃亚洲精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av男天堂| 欧美变态另类bdsm刘玥| 91久久精品国产一区二区成人| 欧美三级亚洲精品| 韩国高清视频一区二区三区| 免费av毛片视频| 成人午夜精彩视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品熟女少妇av免费看| 天堂俺去俺来也www色官网 | 成人亚洲精品av一区二区| 我的女老师完整版在线观看| 看黄色毛片网站| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 久久99热6这里只有精品| 久久99热这里只有精品18| 秋霞伦理黄片| 色播亚洲综合网| 亚洲精品aⅴ在线观看| 男人狂女人下面高潮的视频| 亚州av有码| 国产伦理片在线播放av一区| 好男人视频免费观看在线| 国产爱豆传媒在线观看| 午夜精品国产一区二区电影 | 校园人妻丝袜中文字幕| 日本-黄色视频高清免费观看| 青春草国产在线视频| 精品国产三级普通话版| 午夜免费观看性视频| 国精品久久久久久国模美| 肉色欧美久久久久久久蜜桃 | 99re6热这里在线精品视频| 插阴视频在线观看视频| 只有这里有精品99| 最近最新中文字幕大全电影3| 搡老乐熟女国产| 国产男女超爽视频在线观看| 99热6这里只有精品| 日韩制服骚丝袜av| 国产精品人妻久久久久久| 国产精品久久视频播放| 国产黄色免费在线视频| 亚洲不卡免费看| 精品久久国产蜜桃| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线| 欧美bdsm另类| 成人一区二区视频在线观看| 色播亚洲综合网| 在线观看av片永久免费下载| 精品99又大又爽又粗少妇毛片| 亚洲内射少妇av| 精品酒店卫生间| 乱系列少妇在线播放| 少妇被粗大猛烈的视频| 久久这里有精品视频免费| 91精品伊人久久大香线蕉| 日韩av不卡免费在线播放| 亚洲不卡免费看| av一本久久久久| 欧美日韩综合久久久久久| 国产视频内射| 黑人高潮一二区| 十八禁网站网址无遮挡 | 久久国产乱子免费精品| 精品一区二区三卡| 国产免费视频播放在线视频 | 精品久久久久久成人av| 久久久久久国产a免费观看| 波野结衣二区三区在线| 麻豆精品久久久久久蜜桃| 最近最新中文字幕免费大全7| 国产午夜精品论理片| 国产在视频线精品| 国产三级在线视频| 真实男女啪啪啪动态图| 最近中文字幕高清免费大全6| 国产女主播在线喷水免费视频网站 | 男人舔奶头视频| 日韩欧美国产在线观看| 欧美日韩视频高清一区二区三区二| 精品熟女少妇av免费看| 特大巨黑吊av在线直播| 久久久久久久午夜电影| 最近中文字幕2019免费版| 欧美3d第一页| 久久久国产一区二区| 久久久久久久久久久免费av| 狂野欧美白嫩少妇大欣赏| 亚洲av.av天堂| 99re6热这里在线精品视频| 国产片特级美女逼逼视频| 热99在线观看视频| 中国美白少妇内射xxxbb| 亚洲av免费高清在线观看| 欧美bdsm另类| 国产又色又爽无遮挡免| 国语对白做爰xxxⅹ性视频网站| 欧美日韩在线观看h| 国产淫语在线视频| 国产精品久久视频播放| 91aial.com中文字幕在线观看| 免费观看精品视频网站| 嫩草影院入口| 国产亚洲5aaaaa淫片| 又黄又爽又刺激的免费视频.| 啦啦啦中文免费视频观看日本| 日韩av不卡免费在线播放| 国产大屁股一区二区在线视频| 综合色丁香网| 午夜福利高清视频| 亚洲天堂国产精品一区在线| 日本爱情动作片www.在线观看| 在线观看av片永久免费下载| 午夜久久久久精精品| 综合色丁香网| 日韩人妻高清精品专区| 久久久a久久爽久久v久久| 久久6这里有精品| 婷婷色麻豆天堂久久| 亚洲在线观看片| 性插视频无遮挡在线免费观看| 日本与韩国留学比较| 欧美潮喷喷水| av国产久精品久网站免费入址| 国产真实伦视频高清在线观看| 一级毛片aaaaaa免费看小| 精品久久久精品久久久| 婷婷色综合大香蕉| 日韩在线高清观看一区二区三区| 日韩亚洲欧美综合|