• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Coding Based on Linear Block Codes for Multi-source Cooperative Relaying Networks

    2013-12-28 07:38:03LIZongyanLIShiyinLIDeliang

    LI Zong-yan(),LI Shi-yin(),LI De-liang()

    1 School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116,China

    2 Xuzhou College of Industrial Technology,Xuzhou 221140,China

    Introduction

    Relaying and cooperation have attracted many researchers’ attention for the improvement of the wireless network performance.Recently,there has been an increasing interest in applying the idea of network coding[1- 6]to the cooperative relay scenario.The idea of network coding was originally proposed to enhance the capacity of wired networks[7].Then,the idea was extended to wireless networks to enable efficient relay[8].Most existing network coding schemes demonstrate that network coding approach provides an efficient way to generate spatial diversity under the constraint of limited resources.Since the network coding techniques are applied in various cellular/relaying structures in which the relay serves as a cooperating source,such an approach leads to a more efficient exploitation of the relay resources.

    In a cooperative scenario where multiple sources have distinct messages to transmit,the available resources must be shared to support multi-source data transmission.It is more beneficial to allow intermediate nodes to process different messages before forwarding the destination,rather than process the message from each source individually.This idea of treating different messages as mathematical entities,on which finite field algebraic operations can be performed,is known as network coding.

    For instance,there are some ideas proposed to consider data aggregation for two sources.Hausletal.evaluated the performance of decode-and-forward (DF) strategy over multiple access relay channel (MARC),in that the relay sends the network coded version of codewords from the two sources,x1⊕x2to the destination instead ofx1andx2respectively[9].Given the same spectrum efficiency,the scheme using the XOR-operation shows the performance improvement.This work was extended in Ref.[10] where the log-likelihood ratio (LLR) ofx1⊕x2was relayed to the destination.And this work was further studied to consider data aggregation for multiple sources[11-13].Although interesting results are reported in some current studies,it is recognized that a broad range of issues still need further research.

    Taking the issues above into account,in this paper,we try to study the multi-source single-relay uplink cooperation networks and focus on the relay-coded matrix design for multi-source cooperation at relay node,the multi-source cooperative decoding of the pre-designed relay coding matrix,and the extrinsic information transfer (EXIT) chart analysis for iterative decoding at base station (BS).Meanwhile,at BS,it is shown that iterative decoding plays an important role in ensuring a good performance,and by enabling more scenarios that destination applies in iterative decoding,significant improvement can be achieved.

    1 System Description

    1.1 System model

    Relay cooperative system model,withM(M≥2) sources (denoted asS1,S2,…,SM) transmitting independent information (denoted asu1,u2,…,uM) to the BS via a single relay node (RN),is considered as shown in Fig.1.At the source nodeSm,the information blockumis encoded into its corresponding codewordcm,m=1,2,…,M.Thus,one transmission data packet consists of two phases,withMsources,and one RN taking turns to transmit.In the first phase,each source node broadcasts the coded data to RN and BS.After decoding the received data packets ofMsources,RN performs encoding processing on the data streams according to the pre-assigned relay-coding matrix and forwards the coded data streams to BS through relay (RN-BS) link in the second phase.During the process,the RN and BS received signal fromm-th source nodeSmat a time can be expressed as

    ymR=hmR·xm+nmR,ymB=hmB·xm+nmB,
    m=1,2,…,M.

    (1)

    The BS received signal from RN at a time can be written as

    yRB=hRB·xR+nRB,

    (2)

    wherexmis the transmitted symbol bySm,xRis the forwarded symbol by RN.hmR,hmB,andhRBare channel fading coefficients.nmR,nmB,andnRBare complex zero-mean Gaussian noise with single sided power spectral densityN0.For simplicity,in this paper,we assume that all the source-relay links are error free.

    Fig.1 Multi-source one-relay network

    1.2 Network coding based on linear block codes

    There are many ways,such as random network coding and linear block codes,which can be used for the multi-source network coding at RN.In this paper,we consider the relay network coding based on linear block codes.At BS,the multi-source one-relay network can be represented by a transfer matrix which in turn can be seen as a generator matrix of a systematic linear block code.

    At timek,defineC(k)=[c1(k),c2(k),…,cM(k)] the coded data fromS1,S2,…,SMthat are received at RN.As described in Fig.1,the relay output isP=[P1,P2,…,PM]=G′CT,whereG′={g(i,j)} is anM×Mrelay coding matrix andgi,j∈{0,1},i,j=1,2,…,M.For simplicity,we design one type of relay coding matricesG′ which is based on row (or column) circulant permutation.At BS,coded data fromMsources together with extra redundancy forwarded by RN form a systematic low-density-generator-matrix (LDGM) code with generator matrixG(the generator matrix may be dense),whereG=[IG′] is anM×2Mcoding matrix which consists of two parts,an identity matrixIon the left and matrixG′ on the right.

    The parity check matrix of these coded data can be expressed asH=[G′TI],notice thatHis also sparse,and therefore LDGM codes[14]can be considered as a particular class of low-density-parity-check (LDPC) codes,which can be decoded by particularizing decoding algorithm for standard LDPC codes.

    In this paper,we denote those systematic codes by (U,V) LDGM codes in which all theMcheck codes have degreeV+1,all theMsystematic bit nodes have degreeU,and each of theMcoded bit nodes has degree 1 and is associated to its corresponding check nodes.

    TakeM=4 for example,considering (2,2) and (3,3) LDGM codes,the generator matrices are as follows.

    (3)

    The corresponding parity check matrices of these codes can be expressed as below.

    (4)

    2 Cooperative and Iterative Decoding Principle

    2.1 Reference scheme

    We set the reference scheme as a typical DF-based relay scheme that the relay decodes the data for each source node and only forwards the same data for a certain source node by repetition.In such scenario,there are two paths of information,one from direct link and another from relay link,at BS for each source.

    For a transmitted binary phase shift keying (BPSK) symbolxmfrom them-th source node,the LLR is defined as

    (5)

    which is often termed as the priori information ofxm.

    In the reference scheme,we calculate the conditional LLR

    (6)

    L(xm)=0,when the a priori information ofxmis not available at BS.It should be noted that whenL(um)=0,Eq.(6) is exactly the maximal ratio combining (MRC) which is the optimal diversity process with two receiving copies.

    2.2 Cooperative decoding

    For the proposed system shown in Fig.1 with M-source using the RN simultaneously,the data from the source nodes are coded according to the pre-assigned relay-coding matrix at RN.

    At BS,we can get the check matrixHcorresponding to the generator matrixG.TakeGM=4(3,3) as an example,and the corresponding check matrixHM=4(3,3) is given in Eq.(4).

    Thus,we can see thatHis anM×2Mcheck matrix.In terms of check matrixH,we can obtain the factor graph.The factor graph has both variable nodes,representing the codeword bits,and parity check nodes,representing the parity check equations of the code’s parity check matrix.According to the row and column of check matrixH,different computations are performed to utilize the extrinsic principle.Therefore,a priori information of each source decoder can be obtained through the multi-source cooperative decoding under belief propagation (BP) algorithm.

    LetLpriordenote the received priori LLR of the cooperative decoder.qi→jdenotes LLR message passed from the variable-nodeito the check-nodej.ri←jdenotes the LLR message passed from the check-nodejto variable-nodei.Lextoutdenotes the extrinsic information output of the cooperative decoder.

    Define function:

    (7)

    The main operations of multi-source cooperative BP decoding algorithm can be synthesized as below.

    (1) Initialization,qi→j=0,ri←j=0,i=1,2,…,2M,j=1,2,…,M.

    (2) Each column performs the following computation for its outgoing LLR messageqi→jto check nodej.

    (8)

    (3) Each row performs the following computation for its outgoing LLR messageri←jto variable nodei.

    (9)

    (4) The extrinsic information output

    (10)

    whererow[j]{i} denotes the set of row locations of the non-zero’s in thej-th row,excluding locationi;col[i]{j} denotes the set of column locations of the non-zero’s in thei-th column,excluding locationj.

    2.3 Iterative decoding

    The reference scheme carries out direct decoding to the received MRC data,while the iterative decoding algorithm is used for the proposed scheme.

    At BS,for the proposed scheme,the decoder consists of two blocks,denoted as relay cooperative decoder (RCD) and a group of single-source channel decoders (CD).The iterative decoding structure is shown in Fig.2,and the process bears the decoding principle of turbo codes.

    Fig.2 Iterative decoding structure between cooperative decoder and a group of channel decoders

    It is important to note that,in all the computations above,only the so-called extrinsic information is exchanged between the component blocks.Due to the sub-optimal nature of the iterative decoding scheme,we prefer the term “reliability” to the term “probability” when referring to the quantities at the input and output of the soft-input soft-output (SISO) channel decoder block,usually referred to as a priori and a posteriori probabilities.

    The overall decoding algorithm at BS can be described as follows.

    (1) As initialization step,the priori probability of the multi-source coded information at the input of cooperative decoder corresponds to complete uncertainty (a value equal to 0 in the LL domain),LAR=0.

    (2) Decoding starts from cooperative decoder,which computes output reliabilitiesLERfrom channel observationsymBandyRB.ThenLERis passed through a bit interleaver to generate the a priori inputLAmof the channel decoder group.

    (3) The group of channel decoders,thus,computes the extrinsic informationLEmwhich is passed through an inverse bit interleaver to become the a priori inputLARof the cooperative decoder.

    (4) The algorithm iterates between steps (2) and (3) until no more improvement is observed or a maximum number of iteration (IT) is performed.

    (5) At the end of the process,the complete (not extrinsic) reliabilities are computed by the channel decoder group and a decision output is made.

    One important issue in the decoding implementation of this scheme is the processing of the extrinsic information including both systematic and parity information of each participating source node.We use the conventional BCJR maximum a posteriori probability (MAP) algorithm[15]for the calculation of LLR of the parity information.

    3 EXIT Charts Analysis of the Iterative Decoder

    The EXIT chart is considered as a useful engineering tool to analyze the performance of iterative decoding.The decoding process can then be represented as a recursive update of the mutual information (MI) in the EXIT charts.If MI converges to 1,it is possible to predict that the bit error ratio (BER) will converge.

    At this point,we are interested in the computation of the EXIT charts of two decoding blocks.In general,the analytical computation of the EXIT curve is a difficult task,approximate computation can be accomplished by Monte Carlo simulations[16].Within the approximation of the EXIT chart-based analysis,the iterative decoding process converges to the final signal-to-noise ratio (SNR) threshold.

    In the following discussion,we study the EXIT charts of the two components marked in Fig.2.For iterations between the two components,the extrinsic information is usually measured by MI.As shown in Fig.2,MI at the output of each decoder block is denoted asIERandIEm,respectively; MI at the input of each decoder block is labeledIARandIAm,respectively.ViewingIERas a function ofIARand theEb/N0value of the direct link and relay link,the EXIT characteristics are defined as

    IER=T1(IAR,Eb/N0),

    (11)

    whereEbis the received energy per bit andN0is the one-sided power spectral density.

    Similarly,given a particular SNR,the EXIT characteristics are defined as

    IER=T2(IAR).

    (12)

    It is shown that given a particular SNR,convergence of the decoding process can be obtained if the tunnel between the two EXIT curves is open[7].In other words,if the tunnel between the two EXIT curves is at pinch-off,a small SNR increment should be sufficient to open it.

    The performance of the considered scheme,first studied through an EXIT chart-based analysis,is evaluated in terms of BER versusEb/N0.In the simulation,we use the systematic rate 1/2 recursive systematic convolutional (RSC) codes with generator (013,015) as the channel codes.

    In Fig.3,EXIT curves are shown for (2,2) and (3,3) LDGM codes withM=4,which are computed atEb/N0=0.0 dB over AWGN channel.Note that the SNR does not influence the EXIT curve relative to the channel decoder.It is easy to see that the tunnel is closed in Figs.3(a) and (b),respectively.

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (3,3) LDGM code (tunnel is closed)

    In Fig.4,EXIT curves are shown for these two schemes,which are computed atEb/N0=1.5 dB.It is immediately recognized that the tunnel is at pinch-off: convergence at this and lower values ofEb/N0is not possible in Fig.4(b).Nevertheless,the EXIT curve as shown in Fig.4(a): the tunnel is still closed.

    In Fig.5,EXIT curves are shown for two different schemes atEb/N0=2.5 dB.It can be observed that the tunnel is at pinch-off in Fig.5(a).

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (3,3) LDGM code (tunnel is near pinch-off)

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is near pinch-off)

    (b) EXIT chart of relay network coding with (3,3) LDGM code (tunnel is open)

    Figures 6,7,and 8 depict the EXIT charts with transfer characteristics over a set ofEb/N0values (0.0,0.75,2.5 dB) for (2,2) and (5,5) LDGM codes withM=6.Note that in the graphical representation the iterative decoder characteristics are plotted up to their intersection,pinch-off,and opening; moreover,we can see that the convergence SNR thresholds predicted by the results in Figs.7(b) and 8(a) are respectively around 0.75 dB and 2.5 dB.

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (5,5) LDGM code (tunnel is closed)

    Figures 5(b) and 8(b) show trajectories of iterative decoding atEb/N0=2.5 dB; the trajectory is a simulation result taken from the “free-running” iterative decoder.In addition,it can be noted that the decoding generally convergences within 3 iterations in Figs.5(b) and 8(b).This is because the relay network coding in the vertical direction of check matrixHis for small value ofU.Hence the correction between the extrinsic information in this direction occurs quickly.

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (5,5) LDGM code (tunnel is near pinch-off)

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is near pinch-off)

    (b) EXIT chart of relay network coding with (5,5) LDGM code (tunnel is open)

    4 Simulation Results

    The proposed scheme has the same spectrum efficiency with the reference scheme,so we can focus on the BER performance only.

    The performance of the considered system,is evaluated in terms of BER versusEb/N0of the relay link and direct link.A maximum number of 5 iterations are allowed.

    Figure 9 shows the iterative decoding performance of the proposed relay network coding scheme against reference scheme over AWGN channel,in the case of rate 1/2 (2,2) and (3,3) LDGM codes forM=4.From Fig.9,we observe that the proposed scheme performs worse than the reference scheme at the low SNR regime.This is attributed to the poor channel messages of each source through soft information combining.However,the proposed scheme significantly outperforms the reference scheme at all BER values of interest with only a few iterations.More iterations do not help much.It can also be observed that good performance is obtained by (2,2) LDGM codes; moreover,the introduction of (3,3) LDGM codes shifts the BER curve to the left,with an SNR improvement of about 1.0 dB,as predicted by the EXIT charts-based analysis.

    Figure 10 depicts the BER over theEb/N0under AWGN channel,in the case of rate 1/2 (2,2) and (3,3) LDGM codes forM=6.We can see similar performance as in Fig.9,which is also predicted by EXIT charts-based analysis.

    Fig.9 BER performance of different schemes with M=4 over AWGN channel

    Fig.10 BER performance of different schemes with M=6 over AWGN channel

    5 Conclusions

    A network coding matrix for the relay-based cooperative communication with flexible number of sources is presented and analyzed.The proposed scheme uses BP decoding algorithm for relay cooperative decoder.In particular,the iterative decoding between a cooperative decoder and a number of single-source decoders is implemented,which shows a fast convergence in only a few iterations with additional gains by the EXIT chart-based analysis.One type of relay network coding matrices at the relay,some implementation details,and simulation results have been provided.The proposed scheme has shown promising performance improvement over the scheme without multi-user cooperation at all BER values of interest.

    [1] Hausl C,Dupraz P.Joint Network-Channel Coding for the Multiple-Access Relay Channel [C].IEEE Conference on Sensor and Ad Hoc Communication and Networks,Virginia,USA,2006: 817- 822.

    [2] Xiao L,F(xiàn)uja T,Kliewre J,etal.A Network Coding Approach to Cooperative Diversity [J].IEEETransactionsonInformationTheory,2007,53(10): 3714-3722.

    [3] Ding Z G,Leung K,Goeckel D L,etal.On the Study of Network Coding with Diversity [J].IEEETransactionsonWirelessCommunications,2009,8(3): 1247-1259.

    [4] Du J F,Xiao M,Mikael S.Cooperative Network Coding Strategies for Wireless Relay Networks with Backhaul [J].IEEETransactionsonCommunications,2011,59(9): 2502- 2514.

    [5] Bui H C,Meric H,Lacan J.A Cooperative Network Coding Strategy for the Interference Relay Channel [J].IEEEWirelessCommunicationsLetters,2012,1(5): 456- 459.

    [6] Kim D,Kim H M,Im G H.Improved Network-Coded Cooperative Transmission with Low-Complexity Adaptation to Wireless Channels [J].IEEETransactionsonWirelessCommunications,2012,59(10): 2916- 2926.

    [7] Ahlswede R,Cai N,Li S R,etal.Netwrok Information Flow [J].IEEETransactionsonInformationTheory,2000,46(4): 1204-1216.

    [8] Yeung R W,Li S R,Cai N,etal.Network Coding Theory [J].FoundationsandTrendsinCommunicationsandInformationTheory,2005,2(4): 241-329.

    [9] Hausl C,Schreckenbach F,Oikonomidis I,etal.Iterative Network and Channel Decoding on a Tanner Graph [C].Processing of the 39th Allerton Conference on Communication,Control and Computing,Urbana Champaign,USA,2005: 1-10.

    [10] Lin R,Martin P A,Taylor D P.Two-User Cooperative Transmission Using Superposition Modulation and Soft Information Combining [C].IEEE 72nd Vehicular Technology Conference Fall,Ottawa,Canada,2010: 1- 5.

    [11] Cao L.A Relay-Coding Matrix for Multi-user Cooperation Communications [C].IEEE International Conference on Communications (ICC),Kyoto,Japan,2011: 1-5.

    [12] Zhang X H,Ghrayed A,Hasna M.On Relay Assignment in Network-Coded Cooperative Systems [J].IEEETransactionsonWirelessCommunications,2011,10(3): 868- 876.

    [13] Li J,Yuan J H,Malaney R,etal.Full-Diversity Binary Frame-Wise Network Coding for Multiple-Source Multiple-Relay Networks over Slow-Fading Channels [J].IEEETransactionsonVehicularTechnology,2012,61(3): 1346-1360.

    [14] Garcia-Frias J,Zhang W.Approaching Shannon Performance by Iterative Decoding of Linear Codes with Low-Density Generator Matrix [J].IEEECommunicationsLetters,2003,7(6): 266- 268.

    [15] Brink S T,Kramer G,Ashikhmin A.Design of Low-Density Parity-Check Codes for Modulation and Detection [J].IEEETransactionsonCommunications,2004,52(4): 670- 678.

    [16] Brink S T.Convergence of Iterative Decoding [J].IEEEElectronicsLetters,1999,35(10): 806- 808.

    2021天堂中文幕一二区在线观| 日日撸夜夜添| 亚洲成av人片在线播放无| 亚洲国产精品成人久久小说| 亚洲熟妇中文字幕五十中出| 欧美+日韩+精品| 午夜福利视频1000在线观看| 99热网站在线观看| 国产精品.久久久| 最近的中文字幕免费完整| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线 | 岛国在线免费视频观看| 午夜福利成人在线免费观看| 成人无遮挡网站| 亚洲真实伦在线观看| kizo精华| 精品人妻熟女av久视频| 国产一区二区在线av高清观看| 日韩一本色道免费dvd| 波多野结衣巨乳人妻| 久久久久性生活片| 九九热线精品视视频播放| 久久精品人妻少妇| 色5月婷婷丁香| 亚洲av不卡在线观看| 男女视频在线观看网站免费| 色综合亚洲欧美另类图片| 欧美日韩一区二区视频在线观看视频在线 | 少妇猛男粗大的猛烈进出视频 | 狂野欧美白嫩少妇大欣赏| 成人特级av手机在线观看| 在线观看一区二区三区| 亚洲性久久影院| 简卡轻食公司| 18禁在线无遮挡免费观看视频| 国产精品女同一区二区软件| 国产精品一区二区性色av| 亚洲欧美精品综合久久99| 日本午夜av视频| 可以在线观看毛片的网站| 啦啦啦啦在线视频资源| 六月丁香七月| 听说在线观看完整版免费高清| 欧美日韩一区二区视频在线观看视频在线 | 日韩 亚洲 欧美在线| 高清av免费在线| 人人妻人人澡欧美一区二区| 国内精品美女久久久久久| 国产大屁股一区二区在线视频| 水蜜桃什么品种好| 1024手机看黄色片| 国语对白做爰xxxⅹ性视频网站| 国产精品,欧美在线| 在线观看66精品国产| 国产大屁股一区二区在线视频| 精品一区二区三区视频在线| 高清av免费在线| 国产白丝娇喘喷水9色精品| 久久久色成人| 午夜福利在线观看吧| 亚洲欧美日韩卡通动漫| 美女脱内裤让男人舔精品视频| 中文字幕免费在线视频6| 少妇熟女欧美另类| 舔av片在线| 男女下面进入的视频免费午夜| 欧美日韩一区二区视频在线观看视频在线 | 国产人妻一区二区三区在| 久久久精品欧美日韩精品| 黄片无遮挡物在线观看| 夫妻性生交免费视频一级片| a级一级毛片免费在线观看| 久久99热6这里只有精品| 一边摸一边抽搐一进一小说| 男女边吃奶边做爰视频| 亚洲精品成人久久久久久| 寂寞人妻少妇视频99o| 国产成人freesex在线| 99热这里只有精品一区| 毛片女人毛片| 噜噜噜噜噜久久久久久91| 国产成人福利小说| 成年女人永久免费观看视频| 国产精品.久久久| 一级爰片在线观看| 国产69精品久久久久777片| 亚洲精品国产av成人精品| 欧美性猛交黑人性爽| 九九久久精品国产亚洲av麻豆| 男女啪啪激烈高潮av片| 亚洲性久久影院| 99热这里只有是精品50| 国产 一区 欧美 日韩| 久久久久久久亚洲中文字幕| 内地一区二区视频在线| 18禁动态无遮挡网站| 插阴视频在线观看视频| 欧美性感艳星| 九色成人免费人妻av| 3wmmmm亚洲av在线观看| 免费看a级黄色片| 2021天堂中文幕一二区在线观| 久久99蜜桃精品久久| 永久网站在线| 久久亚洲国产成人精品v| 真实男女啪啪啪动态图| 极品教师在线视频| 禁无遮挡网站| 久久99热这里只频精品6学生 | 国产一区二区在线av高清观看| 精品国产三级普通话版| 日韩一本色道免费dvd| 欧美最新免费一区二区三区| 日韩在线高清观看一区二区三区| 国产在视频线在精品| a级毛色黄片| 乱人视频在线观看| 日本色播在线视频| 一个人看的www免费观看视频| 日韩欧美在线乱码| 亚洲熟妇中文字幕五十中出| 久久婷婷人人爽人人干人人爱| 国产成年人精品一区二区| 日本五十路高清| 精品人妻视频免费看| 91av网一区二区| 国产精品人妻久久久影院| 男女国产视频网站| 国产黄色小视频在线观看| 丝袜美腿在线中文| 欧美色视频一区免费| 美女高潮的动态| 欧美高清性xxxxhd video| 国产淫语在线视频| 内射极品少妇av片p| 全区人妻精品视频| 国产精品一及| 最近手机中文字幕大全| 中文字幕久久专区| 深夜a级毛片| 欧美激情在线99| 色尼玛亚洲综合影院| 亚洲中文字幕日韩| 欧美一区二区国产精品久久精品| 女的被弄到高潮叫床怎么办| 久久精品91蜜桃| 久久人人爽人人爽人人片va| 亚洲一区高清亚洲精品| 白带黄色成豆腐渣| 在线免费观看的www视频| 毛片女人毛片| 国产伦一二天堂av在线观看| 亚洲怡红院男人天堂| videossex国产| 一级爰片在线观看| 亚洲真实伦在线观看| 狠狠狠狠99中文字幕| 99热这里只有精品一区| 国产精品一区二区性色av| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| 欧美最新免费一区二区三区| 欧美性猛交黑人性爽| 久久精品久久久久久久性| 国产探花极品一区二区| 免费电影在线观看免费观看| 国产视频内射| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 亚洲aⅴ乱码一区二区在线播放| 欧美丝袜亚洲另类| 国产av一区在线观看免费| 啦啦啦韩国在线观看视频| a级一级毛片免费在线观看| 日韩av在线免费看完整版不卡| 一级二级三级毛片免费看| 91精品国产九色| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲自拍偷在线| 日韩av在线大香蕉| 一级毛片aaaaaa免费看小| 婷婷色麻豆天堂久久 | 免费无遮挡裸体视频| 亚洲一级一片aⅴ在线观看| 日韩 亚洲 欧美在线| 内射极品少妇av片p| 精品久久久久久电影网 | www.av在线官网国产| 亚洲人成网站在线观看播放| 卡戴珊不雅视频在线播放| 搡老妇女老女人老熟妇| 舔av片在线| 欧美成人一区二区免费高清观看| 老司机影院成人| 麻豆av噜噜一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 看片在线看免费视频| 天天一区二区日本电影三级| 日本黄大片高清| 亚洲乱码一区二区免费版| av又黄又爽大尺度在线免费看 | 国产高清国产精品国产三级 | 女人久久www免费人成看片 | 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| eeuss影院久久| 舔av片在线| 亚洲精品乱码久久久v下载方式| 亚洲av日韩在线播放| 深爱激情五月婷婷| 天堂网av新在线| 2022亚洲国产成人精品| 女人十人毛片免费观看3o分钟| 亚洲人成网站高清观看| 2021天堂中文幕一二区在线观| 18禁在线无遮挡免费观看视频| 一级毛片aaaaaa免费看小| 97人妻精品一区二区三区麻豆| 91精品伊人久久大香线蕉| 联通29元200g的流量卡| 日韩人妻高清精品专区| 一级毛片我不卡| 可以在线观看毛片的网站| 91av网一区二区| 亚洲最大成人手机在线| 搞女人的毛片| 一边亲一边摸免费视频| 蜜桃久久精品国产亚洲av| 91久久精品电影网| 好男人视频免费观看在线| av专区在线播放| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 一边摸一边抽搐一进一小说| av在线亚洲专区| 99久久精品热视频| av女优亚洲男人天堂| www.av在线官网国产| 变态另类丝袜制服| 直男gayav资源| 十八禁国产超污无遮挡网站| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 国产探花极品一区二区| 国产精品三级大全| 国产在视频线在精品| 国产极品天堂在线| 男插女下体视频免费在线播放| 日韩成人伦理影院| 国产男人的电影天堂91| 欧美极品一区二区三区四区| 亚洲第一区二区三区不卡| 亚洲国产精品专区欧美| 变态另类丝袜制服| 欧美人与善性xxx| 欧美变态另类bdsm刘玥| 黄色日韩在线| 免费观看a级毛片全部| 国产av不卡久久| 免费观看性生交大片5| 人妻少妇偷人精品九色| 亚洲精品乱码久久久v下载方式| 国产成人一区二区在线| 成人毛片60女人毛片免费| 菩萨蛮人人尽说江南好唐韦庄 | 欧美xxxx黑人xx丫x性爽| 国产单亲对白刺激| 秋霞伦理黄片| 日韩国内少妇激情av| 亚洲精品亚洲一区二区| 精品久久久久久久久av| 水蜜桃什么品种好| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产99精品国产亚洲性色| 国产大屁股一区二区在线视频| 午夜福利在线观看免费完整高清在| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 久久久色成人| 色尼玛亚洲综合影院| 精品久久久噜噜| 免费av不卡在线播放| 哪个播放器可以免费观看大片| 日韩强制内射视频| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| 日韩国内少妇激情av| 亚洲国产欧美人成| 性插视频无遮挡在线免费观看| 国产 一区 欧美 日韩| 国产乱人视频| 日本免费a在线| 亚洲av成人精品一区久久| 91久久精品电影网| 国产亚洲午夜精品一区二区久久 | 成年女人看的毛片在线观看| 成人特级av手机在线观看| 能在线免费观看的黄片| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 丝袜美腿在线中文| 天堂影院成人在线观看| 免费观看在线日韩| 成人国产麻豆网| 欧美色视频一区免费| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 国产一区二区三区av在线| 国产亚洲91精品色在线| 国产精品久久久久久av不卡| 高清毛片免费看| 国模一区二区三区四区视频| 久久久久久久国产电影| 少妇高潮的动态图| 热99在线观看视频| 日本免费a在线| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 日韩三级伦理在线观看| 水蜜桃什么品种好| 中国美白少妇内射xxxbb| 色噜噜av男人的天堂激情| 午夜免费激情av| 一级毛片aaaaaa免费看小| 亚洲精品日韩在线中文字幕| 久久综合国产亚洲精品| 如何舔出高潮| 夫妻性生交免费视频一级片| 亚洲精品色激情综合| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看| 久久99热这里只频精品6学生 | 中文天堂在线官网| 久久久国产成人免费| 免费av不卡在线播放| 国产高清有码在线观看视频| 国产成人freesex在线| 我要看日韩黄色一级片| 亚洲成av人片在线播放无| 有码 亚洲区| 国产精品麻豆人妻色哟哟久久 | 精品免费久久久久久久清纯| 久久久久免费精品人妻一区二区| 一级毛片电影观看 | 在线观看一区二区三区| 成人亚洲精品av一区二区| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| 在线天堂最新版资源| 亚洲高清免费不卡视频| 国产精品一区二区三区四区免费观看| 久久6这里有精品| 亚洲性久久影院| 淫秽高清视频在线观看| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 一级爰片在线观看| 亚洲av福利一区| 尤物成人国产欧美一区二区三区| 精品国产三级普通话版| 别揉我奶头 嗯啊视频| 日本午夜av视频| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 免费观看的影片在线观看| h日本视频在线播放| 成人午夜高清在线视频| 日韩,欧美,国产一区二区三区 | 夫妻性生交免费视频一级片| 欧美xxxx黑人xx丫x性爽| 三级经典国产精品| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 丝袜美腿在线中文| 久久久久久久久久久免费av| 人人妻人人澡人人爽人人夜夜 | 日韩欧美精品免费久久| 插逼视频在线观看| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆 | 1024手机看黄色片| 国产爱豆传媒在线观看| 简卡轻食公司| 婷婷色麻豆天堂久久 | 亚洲精品成人久久久久久| 国产单亲对白刺激| 国产不卡一卡二| 久热久热在线精品观看| 男女下面进入的视频免费午夜| 国产单亲对白刺激| 看非洲黑人一级黄片| 老司机福利观看| 3wmmmm亚洲av在线观看| 日本三级黄在线观看| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 99久久精品热视频| 丝袜喷水一区| 国产高清视频在线观看网站| 国产欧美日韩精品一区二区| or卡值多少钱| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| www.av在线官网国产| 69av精品久久久久久| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久| 熟妇人妻久久中文字幕3abv| 国产高清国产精品国产三级 | 日本免费a在线| 搞女人的毛片| 免费搜索国产男女视频| 亚洲经典国产精华液单| 午夜免费激情av| 天堂中文最新版在线下载 | 26uuu在线亚洲综合色| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 亚洲成色77777| 欧美成人a在线观看| 成人亚洲欧美一区二区av| 91在线精品国自产拍蜜月| 色综合色国产| 国产在视频线精品| 国产精品综合久久久久久久免费| 久久久久性生活片| 亚洲精品成人久久久久久| 99热这里只有精品一区| 最近最新中文字幕免费大全7| 国产 一区 欧美 日韩| 亚洲国产欧洲综合997久久,| 欧美变态另类bdsm刘玥| 一个人免费在线观看电影| 黄色一级大片看看| 亚洲综合精品二区| ponron亚洲| 久久人人爽人人片av| av在线观看视频网站免费| 一级av片app| 成人国产麻豆网| 中文字幕人妻熟人妻熟丝袜美| ponron亚洲| 国产美女午夜福利| 免费看a级黄色片| 久久草成人影院| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 日韩精品有码人妻一区| 日本一本二区三区精品| 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 乱人视频在线观看| 女人久久www免费人成看片 | 又粗又爽又猛毛片免费看| 久久人人爽人人片av| 久久国产乱子免费精品| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 精品国内亚洲2022精品成人| 成人漫画全彩无遮挡| 国产探花极品一区二区| 亚洲国产最新在线播放| 我的老师免费观看完整版| 精品无人区乱码1区二区| 成人三级黄色视频| 级片在线观看| 国产一区二区亚洲精品在线观看| 内射极品少妇av片p| 精品久久久久久久末码| 边亲边吃奶的免费视频| 久久久国产成人精品二区| 26uuu在线亚洲综合色| 老师上课跳d突然被开到最大视频| 久久人人爽人人爽人人片va| 欧美日韩国产亚洲二区| 色播亚洲综合网| 久久精品91蜜桃| 三级毛片av免费| 亚洲成人精品中文字幕电影| 亚洲国产精品国产精品| 国产成人福利小说| 久久精品国产亚洲av涩爱| videossex国产| 日韩欧美 国产精品| 麻豆乱淫一区二区| 搡女人真爽免费视频火全软件| 国产亚洲av片在线观看秒播厂 | 嫩草影院精品99| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 久久久午夜欧美精品| 亚洲国产成人一精品久久久| 亚州av有码| 免费av观看视频| 丝袜美腿在线中文| 人妻夜夜爽99麻豆av| 日本黄色片子视频| 99热网站在线观看| 一级毛片aaaaaa免费看小| 美女xxoo啪啪120秒动态图| 国产精品国产高清国产av| 春色校园在线视频观看| 亚洲精品亚洲一区二区| 欧美3d第一页| 美女大奶头视频| 色视频www国产| 人人妻人人澡欧美一区二区| 国产亚洲一区二区精品| 蜜臀久久99精品久久宅男| 99热6这里只有精品| 久久欧美精品欧美久久欧美| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 美女内射精品一级片tv| 秋霞伦理黄片| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| av专区在线播放| 亚洲欧洲国产日韩| 禁无遮挡网站| 特级一级黄色大片| 日本av手机在线免费观看| 国产亚洲精品av在线| 我要看日韩黄色一级片| 色5月婷婷丁香| 超碰av人人做人人爽久久| 欧美日韩国产亚洲二区| 国产黄色小视频在线观看| 一个人看视频在线观看www免费| 我要搜黄色片| 国产成人freesex在线| 狠狠狠狠99中文字幕| 日韩,欧美,国产一区二区三区 | 国产伦在线观看视频一区| 一级二级三级毛片免费看| 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 欧美一区二区亚洲| 日本熟妇午夜| av视频在线观看入口| 白带黄色成豆腐渣| 亚洲国产最新在线播放| 成年女人看的毛片在线观看| 99在线视频只有这里精品首页| 中文天堂在线官网| 国产中年淑女户外野战色| 久久99精品国语久久久| 建设人人有责人人尽责人人享有的 | 国产欧美日韩精品一区二区| 国产高清有码在线观看视频| 成人毛片60女人毛片免费| 嘟嘟电影网在线观看| 五月玫瑰六月丁香| 国产精品乱码一区二三区的特点| 美女cb高潮喷水在线观看| 蜜臀久久99精品久久宅男| 精品人妻一区二区三区麻豆| 嫩草影院精品99| 最近中文字幕2019免费版| 少妇人妻精品综合一区二区| 九九久久精品国产亚洲av麻豆| 麻豆一二三区av精品| 亚洲高清免费不卡视频| 亚洲精品日韩在线中文字幕| 亚洲国产精品久久男人天堂| 久久久久久大精品| 精品不卡国产一区二区三区| 精品无人区乱码1区二区| 99热网站在线观看| 尾随美女入室| 99久国产av精品国产电影| 日本色播在线视频| 国产淫语在线视频| 91久久精品国产一区二区成人| 午夜福利高清视频| 精品99又大又爽又粗少妇毛片| 国产成人精品婷婷| 天天一区二区日本电影三级| av女优亚洲男人天堂| 久久久久精品久久久久真实原创| 精品久久久久久久人妻蜜臀av| 国产精品久久视频播放| 国产av在哪里看| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| 久久热精品热| 国产乱人偷精品视频| 深爱激情五月婷婷| 国产一级毛片七仙女欲春2| 久久精品国产99精品国产亚洲性色| 国产精品一区二区三区四区久久| 伦精品一区二区三区| 欧美色视频一区免费| 国内揄拍国产精品人妻在线| 久久这里有精品视频免费| 一区二区三区免费毛片| 2021天堂中文幕一二区在线观| 成人美女网站在线观看视频| 日韩成人av中文字幕在线观看| 国产女主播在线喷水免费视频网站 | 欧美成人精品欧美一级黄| 国产一区二区在线av高清观看| 国产精品一区二区在线观看99 | 18禁动态无遮挡网站| 色综合站精品国产| 一级黄色大片毛片|