• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approximate Failures Semantics for Polynomial Labelled Transition Systems

    2013-12-28 07:38:02WANGChaoLIANGYiWUJinzhaoTANHongyan

    WANG Chao( ),LIANG Yi( ),WU Jin-zhao(),TAN Hong-yan()

    1 School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China

    2 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,Guangxi University for Nationalities,Nanning 530006,China

    3 Institute of Actuaries,Chinese Academy of Sciences,Beijing 100190,China

    Introduction

    The labelled transition system (LTS)[1]consists of a set of states and transitions between states.The transitions are labeled from a given set.Traditionally,the labels of LTS are abstract.They can represent different things depending on the problem of interest.Typically,the usages of labels include representing expected inputs (such as used in finite state machine),actions that performed during the transitions (such as used in process algebra),conditions that must be true to trigger the transitions (such as used in event condition action),and mixtures,for example,mixing conditions and time intervals (such as used in timed event level structure).

    A new variation of LTS named polynomial labelled transition system (PLTS) is proposed which refines the labels of LTS into multivariate polynomials,under the assumption that the number of variables is finite.A state of PLTS is an interpretation of all variables.Furthermore,the effect of a transition is to update the state by resetting the variables to zeros of the labelling multivariate polynomial.In other words,each transition is decorated with a non-deterministic update from an algebraic set.

    The multivariate polynomials have several advantages.Firstly,polynomials enhance the accuracy of description.That is to say,polynomials have a greater ability to characterize behaviors than abstract symbol.For example,an accelerated motionv=2t+1 contains more internal details than an abstract symbola.Secondly,polynomials are the simplest ones among all expressions.For example,polynomials are simpler than transcendental expressions (e.g.,exponential expressions and logarithmic expressions).Thirdly,polynomials have a very broad application since there are many well-developed theories of them.For example,computers can directly evaluate polynomials,and many expressions (e.g.,trigonometric expressions) can be approximated by polynomials.More important,Weierstrass Approximation Theorem tells us that the error of using polynomial approximation is under control when a continuous function is defined on the real interval.To sum up,refining abstract labels into multivariate polynomials has both theoretical and practical relevance.

    Based on the theory of numerical approximations,the following reduction methods will be used on labels of PLTS.

    (1) Replace polynomial labels under zeros equivalence.(e.g.,x2=0 andx=0 are equivalent.)

    (2) Simplify polynomial labels by using Taylor expansion,the best first order approximation or other approximation methods.

    (3) Decompose complex polynomial labels into several simple polynomial labels by using cubic spline interpolation,piecewise linear interpolation or other approximation methods.

    The methods above simplify polynomials and hence reduce the computational complexity.Besides,they create opportunities for using linear time-branching time spectrum behavioral equivalences[2-3]which minimize PLTS by decreasing the number of states.

    Various semantics equivalences are applied in finitely branching,concrete,sequential,nondeterministic processes[2-3],where finitely branching means there are only finitely many possible ways that a process can proceed in each state,concrete means a process does not have internal actions,sequential means it can perform at most one action at a time,and nondeterministic means a process after a trace may arrive at different states.It is noted that these processes may have infinite length actions.

    In this paper the failures semantics is focused on which is introduced by Brookesetal.[4]The motivation for failures semantics is presented in Ref.[5].The intersection operator[6]is also called synchronous parallel composition,which allows an action to happen only if it can happen on both sides of the operator.A process reaches a state of deadlock[7]when it can carry out no further actions.Failures semantics supports both intersection operator and deadlock behaviour,and it is the coarsest semantics supporting both of them among all semantics reviewed in linear time-branching time spectrum[2].

    In recent years,many researchers have taken failures semantics as one of the standard denotational semantics[8-9]of communicating sequential processes (CSP).However,existing researches ignore the concept of approximation which has a great potential to improve the computation efficiency.

    A similar definition to PLTS is algebraic transition system[10-11].However,algebraic transition system must employ current-state variables and next-state variables,and have initial conditions,while the PLTS does not have these restrictions.

    1 Polynomial Labelled Transition System (PLTS)

    This section presents the definition of polynomial labelled transition system (PLTS) and our replacement theorem.

    Definition1A PLTS is a tuple ,whereVis a finite set of variables,Sis a set of states,Ais a set of multivariate polynomials overV,and →?S×A×Sis a ternary transition relation.Vand the coefficients ofAare drawn from reals (complex) numbers.A states∈Sis an interpretation of all variables,in other words,an assignment of all variables inV,whereVis a finite set.Transitions are decorated by multivariate polynomials.And the effect of a transition is to update the state by resetting the variables to zeros of the labelling multivariate polynomial.In other words,each transition is decorated with a non-deterministic update from an algebraic set.

    Fig.1 An example of PLTS

    In a PLTS model diagram,states are represented by circles,and transitions from states to states are represented by edges and multivariate polynomials labelled on them.Figure 1 is an example of PLTS model diagram.The stateS1may perform an actionx-1 to reach the next stateS2,then it may do an actiony-xto reach the stateS3or do an actiony-x-1 to reach the stateS4.The choice betweeny-xandy-x-1 is interleaving concurrency.V={x,y},S={S1,S2,S3,S4},and the states are listed in Table 1.

    Table 1 The states of Fig.1

    The following are the symbols used in the paper.? denotes the empty set.εdenotes the empty sequence of polynomials.Zeros(a) denotes the zeros ofa∈Awith variable names.HenceZeros(x-1) is different fromZeros(y-1),whileZeros(x2) andZeros(x) are equivalent.

    Theorem1says that a complex polynomial can be replaced by a simple one which has the same zeros to reduce the computational complexity.

    Section 2 introduces the numerous advantages of multivariate polynomials.Since polynomial is more satisfactory in describing behaviour than abstract action,the scope of the problems which PLTS can solve is larger than that LTS can do.Although PLTS is more complex than LTS,the former can become simpler with the help of rich theory of numerical approximations.The technique of approximation is introduced in the next section.

    2 Approximation

    This section introduces a number of numerical approximation theorems,which are illustrated in the case studies and used to reduce the computational complexity.

    (1)

    xn+a1xn-1+…+an-1x+an=0,

    (2)

    xn+a1xn-1+…+an-1x+an+ω=0.

    (3)

    ProofByLemma1,subtract Eq.(3) from Eq.(2),yields:

    …+an-2(x2+x1)+an-1}+ω

    |ω|

    The idea ofTheorem2is a bit like interval polynomials[12].Theorem2can be generalized to a multi-variable version.The conclusions above remain valid when the disturbance term is related to other coefficient (e.g.,a1) .

    Theorem3Iff(x) has a continuous second derivative in the interval [a,b],then the piecewise linear interpolationL(x) satisfies

    Theorem4Iff(x) has a continuous second derivative in the interval [a,b] and the derivative does not change sign,then the best first order approximationp(x) satisfies

    Theorem5Taylor’s theorem: iff(x) isk(an integer,k≥1) times differentiable at the pointa,there existshk(x) such that

    Iff(x) isk+1 times differentiable on the open interval and continuous on the closed interval betweenaandx,Lagrange form of the remainder is

    whereξis betweenaandx.

    Theorem5can also be used in estimating the total error after propagation of errors.The technique is detailed in Section 4.3.Theorem6guarantees that there exists an approximated polynomial,given a error limit.Hence,the error of using polynomial approximation is under control.

    3 Failures Semantics

    This section describes the definitions of Failures semantics.

    Let Power(A) denote the power set ofA.With the help of definition of initial actions,the definition of failure pair is as follows.

    A failure pair <δ,X> of a processprecords that the actions setXis refused by the processpafter a certain sequence of actionsδ.The set of all failure pairs of the processpis denotedF(p),called the failures set ofp.The set is used to determine whether a process is failures equivalent with another process.

    Definition4Two processespandqare failures equivalent,notationp=Fq,iffF(p)=F(q).

    Ifp=Fq,then in failures semanticspandqare identified,that is to say there is no difference betweenpandqunder failures semantics.Besides that,one and only one process can be constructed under failures semantics equivalence for a given failures set.

    Obviously,ifδ∈T(p),<δ,?>∈F(p).In order to letT(p) andF(p) have the same form,δis identified with a pair <δ,?> in this paper.

    For example,the failures set of Fig.1 is {<ε,{y-1}>,<ε,{y-2}>,<ε,?>,,,<(x-1)(y-1),{x-1}>,<(x-1)(y-1),{y-1}>,<(x-1)(y-1),{y-2}>,<(x-1)(y-1),{x-1,y-1}>,<(x-1)(y-1),{x-1,y-2}>,<(x-1)(y-1),{y-1,y-2}>,<(x-1)(y-1),{x-1,y-1,y-2}>,<(x-1)(y-1),?>,<(x-1)(y-2),{x-1}>,<(x-1)(y-2),{y-1}>,<(x-1)(y-2),{y-2}>,<(x-1)(y-2),{x-1,y-1}>,<(x-1)(y-2),{x-1,y-2}>,<(x-1)(y-2),{y-1,y-2}>,<(x-1)(y-2),{x-1,y-1,y-2}>,<(x-1)(y-2),?>}.

    Theorem7Failures are finer than completed trace,coarser than readiness semantics and failure trace semantics.

    Let CT,F,R,and FT respectively denote completed trace semantics,failures semantics,readiness semantics,and failure trace semantics.Then the relations inTheorem7can be denoted as CT

    Using behaviour equivalence which alleviates the state explosion problem,a simpler equivalent model can be selected to verify both safety and liveness properties.

    4 Case Studies

    This section presents three cases studies of our technique which combines approximation and failures semantics equivalence on PLTS.

    Case 1 illustrates how to transform actual problem into PLTS and use numerical approximation methods to simplify PLTS.

    Case 2 illustrates our approximate failures semantics for PLTS,namely,combines numerical approximation and failures semantics equivalence.

    Case 3 illustrates how to estimate total error after propagation of errors.

    4.1 Numerical approximation

    Figure 2 considers a diamond ABCD whose center is O,∠ADC=60°,OA=x,its perimeterp=8 and its areaa=3.464.This implies the following conclusion:

    (4)

    p=AB+BC+CD+DA=8x.

    (5)

    Equation (4) is a quadratic equation ofx.When solving this equation,using quadratic formula method is denoted asm=1,and using completing the square method is denoted asm=2.There is only one way to solve Eq.(5) which is denoted asm=1.In other words,after calculation of Eq.(4) there are two options (m=1,m=2) which can be chosen,and after calculation of Eq.(5) there is only one option (m=1).Then this problem corresponds to PLTS model diagram (Fig.3).

    Fig.2 A diamond

    Fig.3 PLTS model

    Fig.4 Numerical approximation

    Since the failures set of Fig.4 has a failure pair that the failures set of Fig.5 does not have,Figs.4 and 5 are not equivalent under failures semantics.Intuitively,Fig.4 has simpler polynomial labels than Fig.3.Hence Fig.4 has lower computational complexity.In this case,it is very efficient to use numerical approximation methods to simplify PLTS.

    Fig.5 Another PLTS model

    4.2 Approximate failures semantics

    Fig.6 Original model(x∈[0,2])

    Fig.7 Best first order approximation

    The failures set of Fig.7 is {<ε,{y-7x+6,y-x}>, <ε,{y-7x+6}>, <ε,{y-x}>, <ε,?>, , , , , , <(z-0.618x-0.893)(y-7x+6),{z-0.618x-0.893,y-7x+6,y-x}>, <(z-0.618x-0.893)(y-7x+6),{y-7x+6,y-x}>, <(z-0.618x-0.893)(y-7x+6),{z-0.618x-0.893,y-x}>, <(z-0.618x-0.893)(y-7x+6),{z-0.618x-0.893,y-7x+6}>, <(z-0.618x-0.893)(y-7x+6),{z-0.618x-0.893}>, <(z-0.618x-0.893)(y-7x+6),{y-7x+6}>, <(z-0.618x-0.893)(y-7x+6),{y-x}>, <(z-0.618x-0.893)(y-7x+6),?>, <(z-0.618x-0.893)(y-x),{z-0.618x-0.893,y-7x+6,y-x}>, <(z-0.618x-0.893)(y-x),{y-7x+6,y-x}>, <(z-0.618x-0.893)(y-x),{z-0.618x-0.893,y-x}>, <(z-0.618x-0.893)(y-x),{z-0.618x-0.893,y-7x+6}>, <(z-0.618x-0.893)(y-x),{z-0.618x-0.893}>, <(z-0.618x-0.893)(y-x),{y-7x+6}>, <(z-0.618x-0.893)(y-x),{y-x}>, <(z-0.618x-0.893)(y-x),?>}

    A new PLTS model (Fig.8) can be generally constructed which matches the failures set expression above.Hence,Figs.8 and 7 are equivalent under failures semantics.

    Fig.8 failures semantics equivalence

    To sum up,under the conditionez≤0.107,Fig.6 is approximately failures semantics equivalent to Fig.8.Intuitively,Fig.8 has lower computational complexity and a smaller number of states than Fig.6.So it is more efficient to use PLTS model (Fig.8) instead of PLTS model (Fig.6) in formal description and verification.

    4.3 Propagation of errors

    In a multi-step PLTS model,the errors arising due to numerical approximation will propagate.The following case (Fig.9) describes a generic approach which is used to estimate total error after propagation of errors.

    F ig.9 Original model x∈[0,]

    In other words,z-y3is decomposed intoz-4.75y+3.75 andz-9.25y+10.5.Decomposition methods,which are somewhat analogous to action refinement methods,reduce the computational complexity but increase the number of states.So it requires further discussion about the advantages and disadvantages of each decomposition.The branch introduced by a piecewise function can be regarded as system choice.Hence Fig.9 is approximate to Fig.10 under the condition thatey≤0.092 andez≤0.375.

    Fig.10 After approximation

    The following will be derived fromTheorem5Taylor’s theorem and Lagrange form of the remainder,

    9.25ey≤0.849

    The error estimate method above can be always applied in the approximation on PLTS,even though the approximation takes place in the beginning of multi-step PLTS model.

    5 Conclusions

    A new variation of LTS named PLTS is proposed,which is used to extend the power of the model of LTS by specializing abstract labels as multivariate polynomials.The motivation comes from the need to improve the accuracy of description.The main advantage of PLTS is its great potential to alleviate the computational complexity and cut down the scale of PLTS since

    it is convenient to make full use of approximations of numerical computation and behavioural equivalence.The approximation methods include replacing polynomial labels,simplifying polynomial labels,and decomposing complex polynomial labels into several simple polynomial labels.For behavioural equivalence,in this paper failures semantics equivalence under polynomial form is focused on.All the methods above rebuild the PLTS model and gains in simplification and downsizing.Our methods will save a lot of work in formal description and verification.

    Decomposition method reduces computational complexity.The drawback of this method is that it increases the number of states.Hence it requires further discussion about the advantages and disadvantages of each decomposition.But it is still worth doing decomposition when it requires a very high running efficiency or it is time sensitive.

    The condition introduced by decomposing polynomial labels can be viewed as system choice,which can be amended by adding semi-algebraic feature to PLTS.Polynomials in PLTS have many features and only a small part of them has been studied in this paper.It would be one of the most controversial issues in the future and will be studied in our future work.

    [1] Keller R M.Formal Verification of Parallel Programs[J].CommunicationsoftheACM,1976,19(7): 371-384.

    [2] van Glabbeek R J.The Linear Time-Branching Time Spectrum I-the Semantics of Concrete,Sequential Processes[M]// Bergstra J A,Ponse A,Smolka S A.Handbook of Process Algebra.New York: Elsevier Science Inc.,2001: 3-99.

    [3] Maldonado A P,Monteiro L,Roggenbach M.Towards Bialgebraic Semantics for the Linear Time-Branching Time Spectrum[C].Proceedings of the 20th International Conference on Recent Trends in Algebraic Development Technique,Salamanca,Spain,2012: 209-225.

    [4] Brookes S D,Hoare C A R,Roscoe A W.A Theory of Communicating Sequential Processes[J].JournaloftheACM,1984,31(3): 560-599.

    [5] Main M G.Trace,Failure and Testing Equivalences for Communicating Processes[J].InternationalJournalofParallelProgramming,1987,16(5): 383-400.

    [6] Hoare C A R.Communicating Sequential Processes[J].CommunicationsoftheACM,1978,21(8): 666-677.

    [7] de Boer F S,van Eijk R M,van der Hoek W,etal.Failure Semantics for the Exchange of Information in Multi-Agent Systems[C].The 11th International Conference on Concurrency Theory,University Park,PA,USA,2000: 214-228.

    [8] Dunne S.Termination without Checkmark in CSP[C].The 17th International Symposium on Formal Methods,Limerick,Ireland,2011: 278-292.

    [9] Maldonado A P,Monteiro L,Roggenbach M.Towards Bialgebraic Semantics for the Linear Time-Branching Time Spectrum[C].Proceedings of the 20th International Conference on Recent Trends in Algebraic Development Techniques,Salamanca,Spain,2012: 209-225.

    [10] Sankaranarayanan S,Sipma H B,Manna Z.Non-linear Loop Invariant Generation Using Gr?bner Bases[J].ACMSIGPLANNotices,2004,39(1): 318-329.

    [11] Maza M M,Xiao R.Generating Program Invariants via Interpolation[EB/OL] (2012-01-24)[2012-12-02].http://arxiv.org/abs/1201.5086.

    [12] Ferreira J A,Patrcio F,Oliveira F.On the Computation of Solutions of Systems of Interval Polynomial Equations[J].JournalofComputationalandAppliedMathematics,2005,173(2): 295-302.

    国产精品综合久久久久久久免费| 久久欧美精品欧美久久欧美| 欧美不卡视频在线免费观看| 在线观看舔阴道视频| 日本一本二区三区精品| 性欧美人与动物交配| 在线观看日韩欧美| 亚洲五月天丁香| 午夜亚洲福利在线播放| 十八禁网站免费在线| 亚洲国产精品999在线| ponron亚洲| 日本黄色视频三级网站网址| 免费看光身美女| 真人做人爱边吃奶动态| 亚洲在线自拍视频| 人妻久久中文字幕网| 最近在线观看免费完整版| 91在线精品国自产拍蜜月 | 亚洲精品国产精品久久久不卡| 成人三级黄色视频| 日韩免费av在线播放| 黄色成人免费大全| 人人妻人人看人人澡| 国产 一区 欧美 日韩| 国内久久婷婷六月综合欲色啪| av片东京热男人的天堂| 最近在线观看免费完整版| a级毛片在线看网站| or卡值多少钱| 男女做爰动态图高潮gif福利片| 两个人的视频大全免费| 无限看片的www在线观看| 日日夜夜操网爽| 亚洲男人的天堂狠狠| 两人在一起打扑克的视频| 国产成人aa在线观看| 久久九九热精品免费| bbb黄色大片| 国产真实乱freesex| 狠狠狠狠99中文字幕| 亚洲熟妇中文字幕五十中出| 久久这里只有精品中国| 色在线成人网| 国产精品久久久久久亚洲av鲁大| 全区人妻精品视频| 在线观看66精品国产| 日本熟妇午夜| 超碰成人久久| 窝窝影院91人妻| 两个人看的免费小视频| svipshipincom国产片| 国产v大片淫在线免费观看| 欧美日韩福利视频一区二区| 午夜精品久久久久久毛片777| 亚洲黑人精品在线| 国产伦人伦偷精品视频| 中文字幕熟女人妻在线| 国产高清视频在线观看网站| 深夜精品福利| 午夜免费观看网址| 在线永久观看黄色视频| 在线观看一区二区三区| 国产野战对白在线观看| 亚洲精品在线观看二区| 亚洲真实伦在线观看| 好男人电影高清在线观看| 国产黄片美女视频| 网址你懂的国产日韩在线| 99国产精品一区二区三区| 日本熟妇午夜| 国产亚洲精品一区二区www| 国产1区2区3区精品| 国产精品一区二区免费欧美| 高清在线国产一区| 成年女人毛片免费观看观看9| 黄色片一级片一级黄色片| 国产成人aa在线观看| 国产成人aa在线观看| 黄色片一级片一级黄色片| 香蕉国产在线看| 真人一进一出gif抽搐免费| 高清毛片免费观看视频网站| 欧美成人一区二区免费高清观看 | 亚洲欧美日韩高清在线视频| 午夜久久久久精精品| 国内久久婷婷六月综合欲色啪| 中文字幕最新亚洲高清| 两个人看的免费小视频| 国产精品久久电影中文字幕| 久久久久国产一级毛片高清牌| 美女扒开内裤让男人捅视频| 欧美极品一区二区三区四区| 91麻豆av在线| 精品日产1卡2卡| 婷婷丁香在线五月| 国产激情久久老熟女| 熟女少妇亚洲综合色aaa.| 欧美3d第一页| 精品一区二区三区四区五区乱码| 操出白浆在线播放| 99久久国产精品久久久| 亚洲人与动物交配视频| 亚洲人成伊人成综合网2020| 成人鲁丝片一二三区免费| 狂野欧美白嫩少妇大欣赏| 美女 人体艺术 gogo| 久久久色成人| 成人av在线播放网站| 午夜激情福利司机影院| 午夜激情欧美在线| 久久这里只有精品19| 亚洲欧美激情综合另类| 麻豆成人av在线观看| 亚洲无线观看免费| 欧美乱色亚洲激情| 99国产精品一区二区三区| 久久精品亚洲精品国产色婷小说| 又黄又粗又硬又大视频| 在线a可以看的网站| 欧美绝顶高潮抽搐喷水| 国产成人精品久久二区二区免费| 99热精品在线国产| 一级毛片女人18水好多| 国产av一区在线观看免费| 亚洲第一欧美日韩一区二区三区| 给我免费播放毛片高清在线观看| 男人的好看免费观看在线视频| 亚洲av熟女| 91在线精品国自产拍蜜月 | 亚洲熟妇中文字幕五十中出| 欧美成人性av电影在线观看| a在线观看视频网站| 久久亚洲真实| 99久久国产精品久久久| 无人区码免费观看不卡| 熟女人妻精品中文字幕| 操出白浆在线播放| 欧美丝袜亚洲另类 | 午夜精品久久久久久毛片777| 欧美乱妇无乱码| 成人亚洲精品av一区二区| 亚洲国产中文字幕在线视频| 搞女人的毛片| 黄色日韩在线| 国产乱人视频| 欧美+亚洲+日韩+国产| 又粗又爽又猛毛片免费看| 又粗又爽又猛毛片免费看| 波多野结衣高清无吗| 此物有八面人人有两片| 国产精品影院久久| 人人妻人人澡欧美一区二区| 日韩成人在线观看一区二区三区| 美女午夜性视频免费| 九九久久精品国产亚洲av麻豆 | 免费看美女性在线毛片视频| 免费看美女性在线毛片视频| 国产精品女同一区二区软件 | 欧美乱妇无乱码| 亚洲欧美日韩高清专用| 桃色一区二区三区在线观看| 亚洲男人的天堂狠狠| 亚洲中文日韩欧美视频| av福利片在线观看| 日韩欧美国产一区二区入口| 亚洲成人中文字幕在线播放| 99re在线观看精品视频| 亚洲18禁久久av| 精品久久久久久久末码| 性色av乱码一区二区三区2| 久久中文字幕人妻熟女| 久久久国产精品麻豆| 亚洲精品国产精品久久久不卡| 久久久水蜜桃国产精品网| 成年女人永久免费观看视频| 综合色av麻豆| or卡值多少钱| 偷拍熟女少妇极品色| 我要搜黄色片| 精品免费久久久久久久清纯| 搡老妇女老女人老熟妇| 欧美zozozo另类| 色播亚洲综合网| 丝袜人妻中文字幕| 美女cb高潮喷水在线观看 | 99国产精品一区二区三区| 在线十欧美十亚洲十日本专区| 白带黄色成豆腐渣| 在线a可以看的网站| 午夜福利在线观看免费完整高清在 | 女同久久另类99精品国产91| 黄色女人牲交| 性色avwww在线观看| svipshipincom国产片| 国产精品一区二区精品视频观看| 18禁国产床啪视频网站| 国产淫片久久久久久久久 | 亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 成人av在线播放网站| 一级毛片高清免费大全| 日韩欧美 国产精品| 99re在线观看精品视频| 岛国在线免费视频观看| 熟女少妇亚洲综合色aaa.| 少妇熟女aⅴ在线视频| 国产av在哪里看| 国产乱人视频| 日本与韩国留学比较| 亚洲精品粉嫩美女一区| 18禁黄网站禁片午夜丰满| 亚洲中文日韩欧美视频| 日本五十路高清| 国产精品九九99| 青草久久国产| 午夜久久久久精精品| 欧美日韩综合久久久久久 | 亚洲av中文字字幕乱码综合| 精品不卡国产一区二区三区| 国产野战对白在线观看| 国产黄色小视频在线观看| 精品日产1卡2卡| 久久国产精品影院| 国产精品香港三级国产av潘金莲| 国产伦人伦偷精品视频| 亚洲精品456在线播放app | 啦啦啦观看免费观看视频高清| 真人做人爱边吃奶动态| 老司机深夜福利视频在线观看| 全区人妻精品视频| 热99在线观看视频| 国内毛片毛片毛片毛片毛片| 久久久久国内视频| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 最好的美女福利视频网| 国产蜜桃级精品一区二区三区| 老汉色av国产亚洲站长工具| 搡老妇女老女人老熟妇| 别揉我奶头~嗯~啊~动态视频| 一本精品99久久精品77| 国产黄片美女视频| 日韩成人在线观看一区二区三区| 亚洲国产欧美人成| 久久久久国内视频| 99久国产av精品| 欧美日本视频| 日韩免费av在线播放| 波多野结衣高清作品| 亚洲精品久久国产高清桃花| 久久久久精品国产欧美久久久| 亚洲一区二区三区不卡视频| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 欧美色视频一区免费| 国产久久久一区二区三区| 91九色精品人成在线观看| ponron亚洲| 日本精品一区二区三区蜜桃| 一个人观看的视频www高清免费观看 | 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 免费观看精品视频网站| 激情在线观看视频在线高清| av中文乱码字幕在线| 九九热线精品视视频播放| 久99久视频精品免费| 国产欧美日韩精品一区二区| 身体一侧抽搐| 久久精品综合一区二区三区| 成人鲁丝片一二三区免费| 亚洲专区字幕在线| 中文字幕人成人乱码亚洲影| 757午夜福利合集在线观看| 国产精品一及| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站高清观看| 999久久久精品免费观看国产| 免费高清视频大片| 久久午夜亚洲精品久久| 九色国产91popny在线| 精品电影一区二区在线| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 白带黄色成豆腐渣| 一区福利在线观看| 天天一区二区日本电影三级| 欧美日本亚洲视频在线播放| 在线观看免费视频日本深夜| 亚洲av免费在线观看| 国产精品 国内视频| 中出人妻视频一区二区| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 99国产精品一区二区蜜桃av| 国产av一区在线观看免费| 亚洲国产高清在线一区二区三| 免费高清视频大片| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| 两个人视频免费观看高清| 亚洲在线自拍视频| 88av欧美| 亚洲av成人精品一区久久| 国产精品久久久人人做人人爽| 欧美一级毛片孕妇| 国产一区在线观看成人免费| 久久草成人影院| 午夜福利在线在线| 国内精品久久久久久久电影| 亚洲av成人精品一区久久| 丰满的人妻完整版| 级片在线观看| 国产精品,欧美在线| svipshipincom国产片| 99re在线观看精品视频| 久久久久性生活片| 国产精品综合久久久久久久免费| 欧美色视频一区免费| 人人妻人人看人人澡| 国产精品久久久久久亚洲av鲁大| 少妇丰满av| 亚洲国产看品久久| 男女视频在线观看网站免费| 啦啦啦韩国在线观看视频| 国产亚洲av高清不卡| 亚洲人与动物交配视频| 免费看日本二区| 757午夜福利合集在线观看| 久久精品aⅴ一区二区三区四区| 美女cb高潮喷水在线观看 | 一级a爱片免费观看的视频| 嫩草影院入口| 国产精品电影一区二区三区| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 脱女人内裤的视频| 欧美av亚洲av综合av国产av| 一边摸一边抽搐一进一小说| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 日韩高清综合在线| 天堂av国产一区二区熟女人妻| 日本五十路高清| 最近最新免费中文字幕在线| 窝窝影院91人妻| 五月伊人婷婷丁香| 波多野结衣高清作品| 亚洲七黄色美女视频| 国产精品久久久久久人妻精品电影| 亚洲av日韩精品久久久久久密| 嫩草影院入口| 热99re8久久精品国产| 国产成人精品久久二区二区免费| 国产精品综合久久久久久久免费| 成年女人永久免费观看视频| 99久久无色码亚洲精品果冻| 国内久久婷婷六月综合欲色啪| 亚洲国产精品合色在线| 欧美日韩黄片免| 91麻豆精品激情在线观看国产| a级毛片在线看网站| 精品久久蜜臀av无| av国产免费在线观看| 欧美黄色淫秽网站| 亚洲国产精品999在线| 成人鲁丝片一二三区免费| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 成人三级做爰电影| 婷婷六月久久综合丁香| 高清在线国产一区| 久久久久久久久久黄片| 日韩大尺度精品在线看网址| 亚洲中文av在线| 国产1区2区3区精品| 琪琪午夜伦伦电影理论片6080| 99久久精品一区二区三区| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 黄色视频,在线免费观看| 韩国av一区二区三区四区| 叶爱在线成人免费视频播放| 欧美精品啪啪一区二区三区| 欧美黑人巨大hd| av福利片在线观看| 国产亚洲精品久久久com| 夜夜看夜夜爽夜夜摸| 两性夫妻黄色片| av在线蜜桃| 成人性生交大片免费视频hd| 人人妻,人人澡人人爽秒播| 国产日本99.免费观看| 亚洲乱码一区二区免费版| 午夜精品在线福利| 中文字幕久久专区| 在线观看日韩欧美| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产综合久久久| 亚洲 国产 在线| 日本 欧美在线| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| h日本视频在线播放| 久久中文字幕人妻熟女| 国产精品野战在线观看| 欧美午夜高清在线| 欧美黄色淫秽网站| www.自偷自拍.com| 中文字幕人妻丝袜一区二区| 法律面前人人平等表现在哪些方面| 精品一区二区三区视频在线观看免费| 岛国在线免费视频观看| 日韩国内少妇激情av| 极品教师在线免费播放| 成人三级做爰电影| 亚洲成人中文字幕在线播放| x7x7x7水蜜桃| ponron亚洲| 精品一区二区三区视频在线 | 又黄又粗又硬又大视频| 国产午夜精品久久久久久| 夜夜躁狠狠躁天天躁| 久久天堂一区二区三区四区| 99久久成人亚洲精品观看| 久久久成人免费电影| 91麻豆av在线| 国产野战对白在线观看| 女警被强在线播放| 午夜福利在线观看免费完整高清在 | 久久午夜亚洲精品久久| 黄色成人免费大全| а√天堂www在线а√下载| 无限看片的www在线观看| 变态另类丝袜制服| 级片在线观看| 久久人人精品亚洲av| 这个男人来自地球电影免费观看| 亚洲无线观看免费| 亚洲中文av在线| 亚洲天堂国产精品一区在线| 国产三级在线视频| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 中亚洲国语对白在线视频| 在线观看舔阴道视频| 亚洲最大成人中文| 国产精品国产高清国产av| 欧美性猛交黑人性爽| 观看免费一级毛片| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 日韩免费av在线播放| 色视频www国产| 亚洲国产看品久久| 黑人欧美特级aaaaaa片| 久久久精品欧美日韩精品| 色老头精品视频在线观看| 嫁个100分男人电影在线观看| 欧美一区二区精品小视频在线| 国产69精品久久久久777片 | 亚洲欧美激情综合另类| 亚洲片人在线观看| 国产探花在线观看一区二区| 精品国产乱码久久久久久男人| 国语自产精品视频在线第100页| 国产亚洲精品久久久com| 波多野结衣高清无吗| 人妻久久中文字幕网| 欧美黄色片欧美黄色片| 在线观看舔阴道视频| 夜夜爽天天搞| 两个人的视频大全免费| 欧美中文日本在线观看视频| 国产精品,欧美在线| 小蜜桃在线观看免费完整版高清| 亚洲aⅴ乱码一区二区在线播放| 精品国产亚洲在线| 国产97色在线日韩免费| 久久精品国产清高在天天线| 国产1区2区3区精品| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 非洲黑人性xxxx精品又粗又长| 国产一区二区在线观看日韩 | 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| 日本免费一区二区三区高清不卡| 老司机福利观看| 亚洲18禁久久av| 国产午夜精品论理片| 久久天躁狠狠躁夜夜2o2o| 日韩免费av在线播放| 精品午夜福利视频在线观看一区| 欧美黑人欧美精品刺激| 久久精品亚洲精品国产色婷小说| 高清毛片免费观看视频网站| av中文乱码字幕在线| 国产成+人综合+亚洲专区| 日韩高清综合在线| 亚洲真实伦在线观看| 国产精品永久免费网站| 九九热线精品视视频播放| 亚洲av五月六月丁香网| 在线观看免费午夜福利视频| 最新中文字幕久久久久 | 香蕉av资源在线| 成人精品一区二区免费| 国产精品 国内视频| ponron亚洲| 熟女少妇亚洲综合色aaa.| 亚洲精品美女久久av网站| 熟妇人妻久久中文字幕3abv| 两性夫妻黄色片| 日韩成人在线观看一区二区三区| 男女那种视频在线观看| 欧美日韩乱码在线| 亚洲一区二区三区色噜噜| 少妇的丰满在线观看| 岛国视频午夜一区免费看| 一本综合久久免费| 毛片女人毛片| 亚洲成人精品中文字幕电影| 亚洲在线自拍视频| 亚洲av第一区精品v没综合| 国产极品精品免费视频能看的| 性欧美人与动物交配| 在线免费观看的www视频| 欧美日韩国产亚洲二区| 男人的好看免费观看在线视频| 国产男靠女视频免费网站| 国产综合懂色| 欧美日韩乱码在线| 我的老师免费观看完整版| 成人三级做爰电影| 久久久久久国产a免费观看| 国产黄片美女视频| 免费在线观看亚洲国产| 久久中文看片网| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 成人三级黄色视频| 脱女人内裤的视频| 国产精品久久久久久人妻精品电影| 精品电影一区二区在线| 日本在线视频免费播放| 听说在线观看完整版免费高清| 三级男女做爰猛烈吃奶摸视频| 99精品久久久久人妻精品| 国产一区二区在线观看日韩 | 曰老女人黄片| 三级毛片av免费| 91麻豆精品激情在线观看国产| 国产亚洲精品一区二区www| 午夜精品在线福利| 一a级毛片在线观看| 小蜜桃在线观看免费完整版高清| 这个男人来自地球电影免费观看| 日本与韩国留学比较| 夜夜躁狠狠躁天天躁| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站 | 九色成人免费人妻av| 国语自产精品视频在线第100页| 久久这里只有精品19| 日韩欧美三级三区| 亚洲欧美日韩东京热| av女优亚洲男人天堂 | 国产1区2区3区精品| 麻豆av在线久日| 午夜影院日韩av| 免费在线观看日本一区| 久久亚洲真实| 男女午夜视频在线观看| 少妇的丰满在线观看| 十八禁网站免费在线| 757午夜福利合集在线观看| bbb黄色大片| 国产精品,欧美在线| 少妇熟女aⅴ在线视频| 女警被强在线播放| 国产精品,欧美在线| 成人高潮视频无遮挡免费网站| 成人性生交大片免费视频hd| 丰满的人妻完整版| 老司机深夜福利视频在线观看| 亚洲人成电影免费在线| 久久精品国产清高在天天线| 日本熟妇午夜| 在线免费观看不下载黄p国产 | 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| 国产不卡一卡二| 亚洲国产日韩欧美精品在线观看 | 中文字幕久久专区| 久久天躁狠狠躁夜夜2o2o| 日韩成人在线观看一区二区三区| 窝窝影院91人妻| 99riav亚洲国产免费| 啦啦啦免费观看视频1| 日韩欧美在线乱码| 精品欧美国产一区二区三| 黄色女人牲交| 免费看光身美女| 亚洲人成伊人成综合网2020| 亚洲精品美女久久久久99蜜臀|