• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete mitochondrial genome of the Five-dot Sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications

    2013-12-25 01:02:50TIANLiLiSUNXiaoYanCHENMeiGAIYongHuaHAOJiaShengYANGQun
    Zoological Research 2013年3期
    關(guān)鍵詞:富集區(qū)鱗翅目蛺蝶

    TIAN Li-Li, SUN Xiao-Yan, CHEN Mei, GAI Yong-Hua, HAO Jia-Sheng,,*, YANG Qun,*

    (1. College of Life Sciences, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Palaeontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    Complete mitochondrial genome of the Five-dot SergeantParathyma sulpitia(Nymphalidae: Limenitidinae) and its phylogenetic implications

    TIAN Li-Li1, SUN Xiao-Yan2, CHEN Mei1, GAI Yong-Hua2, HAO Jia-Sheng1,2,*, YANG Qun2,*

    (1.College of Life Sciences,Anhui Normal University,Wuhu241000,China; 2.LPS, Institute of Geology and Palaeontology,the Chinese Academy of Sciences,Nanjing210008,China)

    The complete mitochondrial genome of theParathyma sulpitia(Lepidoptera, Nymphalidae, Limenitidinae) was determined. The entire mitochondrial DNA (mtDNA) molecule was 15 268 bp in size. Its gene content and organization were the same as those of other lepidopteran species, except for the presence of the 121 bp long intergenic spacer betweentrnS1(AGN) andtrnE. The 13 protein-coding genes (PCGs) started with the typical ATN codon, with the exception of thecox1gene that used CGA as its initial codon. In addition, all protein-coding genes terminated at the common stop codon TAA, except thenad4gene which used a single T as its terminating codon. All 22 tRNA genes possessed the typical clover leaf secondary structure except fortrnS1(AGN), which had a simple loop with the absence of the DHU stem. Excluding the A+T-rich region, the mtDNA genome ofP. sulpitiaharbored 11 intergenic spacers, the longest of which was 121 bp long with the highest A+T content (100%), located betweentrnS1(AGN) andtrnE. As in other lepidopteran species, there was an 18-bp poly-T stretch at the 3'-end of the A+T-rich region, and there were a few short microsatellite-like repeat regions without conspicuous macro-repeats in the A+T-rich region. The phylogenetic analyses of the published complete mt genomes from nine Nymphalidae species were conducted using the concatenated sequences of 13 PCGs with maximum likelihood and Bayesian inference methods. The results indicated that Limenitidinae was a sister to the Heliconiinae among the main Nymphalidae lineages in this study, strongly supporting the results of previous molecular data, while contradicting speculations based on morphological characters.

    Parathyma sulpitia; Lepidoptera; Nymphalidae; Limenitidinae; Mitochondrial genome

    Insect mitochondrial DNA (mtDNA) is a circular DNA molecule 14-20 kb in size with 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 tRNA genes, and one A+T-rich region which contains the initiation sites for transcription and replication (Boore, 1999; Clayton, 1992; Wolstenholme, 1992). In recent years, owing to its maternal inheritance, lack of recombination and accelerated nucleotide substitution rates compared to those of the nuclear DNA, the mitochondrial genome has been popularly used in studies on phylogenetics, comparative and evolutionary genomics, population genetics, and molecular evolution.

    The Nymphalidae is one of the largest groups of butterflies, comprising about 7 200 described species throughout the world. Its systematic and evolutionary process has long been a matter of controversy (Ackery, 1984, 1999; de Jong et al, 1996; Ehrlich, 1958; Harvey, 1991). Until recently, however, only eight complete or nearly complete mt genome sequences have been determined from Nymphalidae among some forty sequences for Lepidoptera. That is, two from Heliconiinae, two from Satyrinae, and one each from Calinaginae, Apaturinae, Danainae, and Libytheinae.

    Limenitidinae is a subfamily of Nymphalidae that includes the admirals and its close relatives. This butterfly group has long been the subject of scientific curiosity, serving as the model organism in diverse fields such as genetics, developmental biology, and evolutionary ecology (Fiedler, 2010; Platt & Maudsley, 1994). However, its sub-group classifications and phylogenetic relationships with the other Nymphalidae groups remains unresolved based on morphological and molecular criteria (Freitas & Brown, 2004; Wahlberg et al, 2003, 2005; Wahlberg & Wheat, 2008; Zhang et al, 2008).

    Parathyma sulpitiais a representative species of the subfamily Limenitidinae (Lepidoptera: Nymphalidae) and it is widely distributed in Southeastern Asian areas, such as Vietnam, Burma, India, and China. We determined its complete mitochondrial genome sequence and compared this sequence with those of the other eight-nymphalid butterfly species available. Additionally, we performed phylogenetic analyses using maximum likelihood and Bayesian inference methods based on the concatenated 13 protein coding gene (PCG) sequences. The new sequence data and related analyses may provide useful information about the systematics and evolution of Nymphalidae at the genomic level.

    1 Materials and Methods

    1.1 Specimen collection

    Adult butterflies ofP. sulpitiawere collected from the Jiulianshan National Nature Reserve, Jiangxi Province, China. The specimens were preserved immediately in 100% ethanol and then stored at -20 °C before genomic DNA extraction.

    1.2 DNA extraction, PCR amplification and sequencing

    Whole genomic DNA was extracted from thoracic muscle tissue with the DNeasy Tissue Kit (Qiagen) after the protocol of Hao et al (2005). Some universal PCR primers for short fragment amplifications of thecox1,cobandrrnLgenes were synthesized (Simon et al, 1994). The remaining short and long primers were designed based on the sequence alignment of the available complete lepidopteran mitogenomes using Primer Premier 5.0 software (Singh et al, 1998).

    The entire mitogenome ofP. sulpitiawas amplified in six fragments (cox1-cox3,cox3-nad5,nad5-nad4,nad4-cob,cob-rrnL,rrnL-cox1) using long-PCR techniques with TaKaRa LATaq polymerase under the following cycling conditions: initial denaturation for five minutes at 95 °C, followed by 30 cycles of 95 °C for 50 s, 45-50 °C for 50 s, 68 °C for 2 min and 30 s; and a final extension step of 68 °C for 10 min. The PCR products were visualized by electrophoresis on 1.2% agarose gel, then purified using a 3S Spin PCR Product Purification Kit and sequenced directly with an ABI–377 automatic DNA sequencer. For each long PCR product, the full, double-stranded sequence was determined by primer walking. The mitogenome sequence data were deposited into the GenBank database under the accession number JQ347260.

    1.3 Sequence analysis and annotation

    The tRNA genes and their secondary structure were predicted using tRNAscan-SE software v.1.21 (Lowe & Eddy, 1997) and the putative tRNA genes, which were not found by tRNAscan-SE, were determined by sequence comparison ofP. sulpitiawith other lepidopterans. The PCGs and rRNAs were confirmed by sequence comparison with ClustalX1.8 software and NCBI BLAST search function (Altschul et al, 1990). Nucleotide composition and codon usage were calculated with DAMBE software (Xia & Xie, 2001).

    1.4 Phylogenetic analysis

    Multiple sequence alignments of the concatenated sequences the 13 PCGs of the nine nymphalid species with available mitogenomes (Tab. 2) were conducted using Clustal X 1.8 software and then proofread manually (Thompson et al,1997). The phylogenetic trees were constructed using maximum likelihood (ML) (Abascal et al, 2007) and Bayesian inference (BI) (Yang & Rannala, 1997) methods with moth speciesManduca sexta(Cameron & Whiting, 2008) (Tab. 2) used as outgroup. The ML analysis for the nucleotide and amino acid sequences were implemented in the PAUP* software (version 4.0b8) (Swofford, 2002) with TBR branch swapping (10 random addition sequences), the best fitting nucleotide substitution model (GTR+I+Γ) was selected using Modeltest version 3.06 (Posa & Krandall, 1998), and the confidence values of the ML tree were evaluated via the bootstrap test with 100 iterations. The Bayesian analyses were performed using MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003) with the partitioned strategy, the best fitting substitution model was selected as in the ML analysis; the MCMC analyses (with random starting trees) were run with one cold and three heated chains simultaneously for 1 000 000 generations sampled every 100 generations; Bayesian posterior probabilities were calculated from the sample points after the MCMC algorithm started to converge.

    2 Results

    2.1 Genome organization

    The mitogenome ofP. sulpitiawas a circular molecule 15 268 bp long and consisted of 13 PCGs [cytochrome oxidase subunits 1-3 (cox1-3), NADH dehydrogenase subunits 1-6 and 4L (nad1-6andnad4L), cytochrome oxidase b (cob), ATP synthase subunits 6 and 8 genes (atp6andatp8)], two ribosomal RNA genes for small and large subunits (rrnSandrrnL), 22 transfer RNA genes (one for each amino acid and two for leucine and serine) and a non-coding A+T-rich region. The gene orientation and order of theP. sulpitiamitogenome were identical to those of the other available lepidopteran mitogenomes, except for the presence of the 121 bp long intergenic spacer betweentrnS1(AGN) andtrnE(Tab. 1, Fig. 1). As is the case in many insect mitogenomes, the major strand coded for more genes (nine PCGs and 14 tRNAs) and the A+T-rich region, whereas less genes were coded in the minor strand (four PCGs, eight tRNAs and two rRNA genes).

    Fig. 1 Circular map of the mitochondrial genome of Parathyma sulpitia

    2.2 Protein-coding genes, tRNA and rRNA genes and A+T-rich region

    All PCGs in theP. sulpitiamitogenome were initiated by typical ATN codons (seven with ATG, four with ATT, one with ATA), except thecox1gene which was tentatively designated by the CGA codon (Tab. 1). Twelve PCGs ofP. sulpitiahad a common stop codon (TAA), except for thenad4gene which harbored a single T.

    The 22 tRNAs varied from 61 [trnCandtrnS1(AGN)] to 71 bp (trnK) in size, and presented typical clover-leaf structure, with the unique exception oftrnS1(AGN), which lacked the dihydrouridine (DHU) stem (Fig. 2). TheP. sulpitiatRNAs harbored a total of 24 pair mismatches in their stems, including six pairs in the DHU stems, eight pairs in the amino acid acceptor stems, two pairs in the TΨC stems and eight pairs in the anticodon stems, respectively. Among these 24 mismatches, 18 were G·U pairs which formed a weak bond in the secondary structure, and the other six were U·U (Fig. 2).

    Tab. 1 Summary of the mitogenome of Parathyma sulpitia

    As with other insect mitogenome sequences, two rRNA genes (rrnLandrrnS) were detected inP. sulpitia, located betweentrnL1(CUN) andtrnV, and betweentrnVand A+T region, respectively (Fig. 1). The lengths of therrnLand therrnSwere determined as 1 319 bp and 779 bp, respectively.

    The A+T-rich region ofP. sulpitiawas 349 bp in size. There was an 18-bp poly-T stretch at the 3'end of the A+T-rich region, and some short microsatellite-like repeat regions without conspicuous macro-repeats throughout the A+T-rich region.

    2.3 Phylogenetic analysis

    The resultant tree topologies of the ML and Bayesian analyses based on the nucleotide and amino acid sequences were the same, only with a slight difference in their bootstrap support or posterior probability values. For the paper length limit, we have only showed trees based on the nucleotide sequences (Fig. 4) in this paper.

    Fig. 2 Predicted secondary clover leaf structures for the 22 tRNA genes of Parathyma sulpitia

    3 Discussion

    3.1 Genome structure, organization and composition

    TheP. sulpitiamitogenome size (15 268 bp) was well within the range detected in the completely sequenced lepidopteran insects, from 15 140 bp inArtogeia melete(GenBank accession no. NC_010568; Hong et al, 2009) to 16 094 bp inAgehana maraho(GenBank accession no. NC_014055; Wu et al, 2010). The nucleotide composition of A+T for theP. sulpitiamitogenome major strand was 81.9%, showing a strongly biased value, which was the highest of all the nymphalid species determined to date (Tab. 2).

    Tab. 2 Mitogenomes of the nymphalids used in this study and their partial characteristics

    To evaluate the degree of base bias for theP. sulpitiamitogenome, base-skewness was also measured in this study. The results showed that AT and GC-skewness values of the whole genome (measured from the major strand) were -0.048 and -0.178, respectively. This indicated that T and C were more frequently used than A and G in the genome, similar to results found in other nymphalid species used in this study (Tab. 3). However, when the two skewness values were considered separately, it was clear that the AT skew was the highest and the GC skew was the lowest of all the nymphalids in this study.

    Tab. 3 Nucleotide composition and skewness of the nymphalid mitogenomes

    3.2 Protein-coding genes

    Twelve PCGs ofP. sulpitiamitogenome were initiated by typical ATN codons, except for thecox1gene. For theP. sulpitiaCOI gene, no typical ATN initiator was found in its starting region or in its neighboringtrnYsequences. As for thecox1initiation codon in animals, significantly different cases have been reported, for example, tetranucleotides such as TTAG inCoreana raphaelis(Kim et al, 2006), ATAA inDrosophila yakuba(Clary & Wolstenholme, 1985) are used, while hexanucleotides such as TATTAG inOstrinia nubilalisandOstrinia furnicalis(Coates et al, 2005), TTTTAG inBombyx mori(Yukuhiro et al, 2002), TATCTA inPenaeus monodon(Wilson et al, 2000), ATTTAA inAnopheles gambiae(Beard et al, 1993),Anopheles quadrimaculatus(Mitchell et al, 1993), andCeratitis capitata(Spanos et al, 2000) are used. Generally, the trinucleotide TTG was assumed to be thecox1start codon for some invertebrate taxa including insect species, such asPyrocoelia rufa(Bae et al, 2004),Caligula boisdnvalii(Hong et al, 2008), andAcraea issoria(Hu et al, 2010). In this study, however, according to sequence homologies with other available relevant insect species, the codon CGA was hypothesized to be thecox1initiator synapomorphically characteristic of most lepidopteran species (Kim et al, 2009, 2010).

    Thenad4gene ofP. sulpitiaharbored a single T, rather than the common stop codon TAA. Incomplete termination codons are frequently observed in most insect mitogenomes including all the sequenced lepidopteran insects to date (Kim et al, 2009), which has been interpreted in terms of post-transcriptional polyadenylation, in which two A residues are added to create the TAA terminator (Anderson et al, 1981; Ojala et al, 1981).

    The value of A+T content for all PCGs was 80.6%, whereas, the corresponding values for the major and minor strands were 79.2% and 83.1%, respectively. Both values were the highest of all the nymphalids analysed in this study (Tab. 4). Furthermore, the A+T content of the PCG third codon position was calculated to be 96.7%, which was significantly higher than those of the first (74.8%) and the second (70.5%) codon positions. This value was the highest of all the corresponding values among the nymphalids (Tab. 4). With regard to AT-skew, the degree of A+T bias was calculated in different strands of theP. sulpitiamitogenome PCGs: the major strand evidenced a value of -0.172, whereas the minor strand exhibited a value of -0.154. In contrast, for the GC-skew, the major and minor strands showed values of -0.100 and 0.266, respectively (Tab. 3). Additionally, the A+T bias of the PCG codon usage for theP. sulpitiamitogenome (the relative synonymous codon frequencies, RSCU) revealed that codons harboring A or T in the third position were frequently used compared to other synonymous codons (Tab. 5).

    Tab. 4 Summary of base composition at each codon* position of the 13 PCGs in the nymphalid mitogenomes used in this study

    Tab. 5 Codon usage of the protein coding genes of the Parathyma sulpitia mitogenome

    3.3 Transfer RNA and ribosomal RNA genes

    TheP. sulpitiamitogenome harbored 22 tRNA genes, which were scattered throughout its whole region as is typically observed in metazoans including insects (Cha et al, 2007; Crozier & Crozier, 1993; Hong et al, 2008; Kim et al, 2010; Wilson et al, 2000; Yukuhiro et al, 2002). All tRNAs presented typical clover-leaf structure, with the unique exception oftrnS1(AGN), which lacked the dihydrouridine (DHU) stem (Fig. 2). TheP. sulpitiatRNAs harbored a total of 22 pair mismatches in their stems, with the number of mismatches inP. sulpitiaroughly the same as those detected in other lepidopteran species such asAntheraea pernyi(Liu et al, 2008) andEriogyna pyretorum(Jiang et al, 2009), but less than those inOchrogaster lunifer(Salvato et al, 2008). These tRNAs mismatches can be corrected through RNA-editing mechanisms, which are well known for arthropod mtDNA (Lavrov et al, 2000).

    As in all other insect mitogenome sequences, two rRNA genes (rrnLandrrnS) were detected inP. sulpitia. They were located betweentrnL1(CUN) andtrnV, and betweentrnVand the A+T region, respectively (Fig. 1). The length of therrnLwas determined to be 1 319 bp, which was within the size range observed in the other available sequenced insects, from 470 bp inBemisia tabaci(Thao et al, 2004) to 1 426 bp inHyphantria cunea(Liao et al, 2010). The length of therrnSwas determined to be 779 bp, which was well within the size range observed in other completely sequenced insects, from 434 bp inOstrinia nubilalis(Clary & Wolstenholme, 1985) to 827 bp inLocusta migratoria(Flook et al, 1995).

    3.4 Intergenic spacers and overlapping regions

    The mtDNA genome ofP. sulpitiaincluded a total of 213 bp intergenic spacer sequences which were spread over 11 regions ranging in size from one to 121 bp. The largest spacer sequence (121 bp) was located between thetrnS1(AGN) and thetrnE, rather than between thetrnQand thenad2gene as found in other lepidopteran mitogenomes (Tab. 1). This spacer contained the highest A+T nucleotide (100%) of all the corresponding regions in all other lepidopterans determined. The sequence alignment of this spacer with partial A+T-rich region revealed a sequence homology of 74.4% (Fig. 3), suggesting that this spacer may have originated from a partial duplication of the A+T-rich region.

    Fig. 3 Alignment of the largest spacer located between trnS1(AGN) and trnE and the partial A+T region

    The second largest intergenic spacer was 52 bp long, located between thetrnQandnad2genes. This spacer is present in all lepidopteran mitogenomes sequenced, but absent in all non-lepidopteran insects (Hong et al, 2008). The sequence alignment of this spacer with the neighboringnad2gene revealed a sequence homology of 62%, and thus, this spacer was proposed to have been originated from a partial duplication of thenad2gene (Kim et al, 2009), with similar cases presented in other sequenced lepidopterans, such asArtogeia melete(70%) (Hong et al, 2009),C. raphaelis(62%) (Kim et al, 2006),Parnassius bremeri(70%) (Kim et al, 2009), andPhthonandria atrilineata(70%) (Yang et al, 2009). The other nine smaller intergenic spacers ranged in size from one to 11 bp were dispersed throughout the whole genome, and their details are listed in Tab. 1.

    A total of 92 bp were identified as overlapping sequences varying from one to 35 bp in 15 regions of the genome (Tab. 2). The longest overlap was 35 bp located between thecox2andtrnKgenes, and the second largest was 20 bp long located betweentrnFandnad5. The third longest was 8 bp betweentrnWandtrnC, with similarly sized overlaps also detected in other lepidopteran species (Hong et al, 2008). As expected, the 7 bp overlap within theatp8andatp6reading frames, which is characteristic of many animal mitogenomes (Boore, 1999; Hong et al, 2008), was also detected in this study. In addition, a 5 bp and a 3 bp overlap were located betweencox1andtrnL(UUR), and betweentrnIandtrnQ, respectively. As for the remaining nine overlaps of 1 or 2 bp in size, their detailed cases are shown in Tab. 1.

    3.5 A+T-rich region

    The A+T-rich region ofP. sulpitiawas 349 bp in size, located betweenrrnSandtrnM(Fig. 1). This region showed the second highest A+T content (94.6%), slightly lower than the largest intergenic spacer (100%). This region included the ON(origin of minority or light strand replication), which was identified by the motif ATAGA located 20 bp downstream fromrrnS. Additionally, a motif ATAGA followed by 19 bp poly-T, which has been suggested as the structural signal for the recognition of proteins in the replication initiation of minor-strand mtDNA, was detected, which is similar to that observed in other lepidopteran species such as theBombyx mori(Yukuhiro et al, 2002). Finally, a few of multiple short microsatellite-like repeat regions, such as the (AT)7located 195 bp upstream fromrnnSand preceded by the ATTTA motif, were present, which was as expected as they are also detected in the majority of other sequenced lepidopterans (Hong et al, 2008; Hu et al, 2010; Kim et al, 2009; Mao et al, 2010; Pan et al, 2008; Wang et al, 2011; Xia et al, 2011). As for the tRNA-like sequences and the tandemly repeated elements often reported in other lepidopteran species (Kim et al, 2009; Pan et al, 2008), no relevant structures were detected in theP. sulpitiaA+T-rich region.

    3.6 Phylogenetic analysis

    An up-to-date and comprehensive classification of Nymphalidae was made by Ackery et al (1999) based on morphological characters, while work on molecular systematics of various lineages within Nymphalidae is beginning to clarify their relationships with interesting results (Brower et al, 2000; Wahlberg et al, 2003, 2005). Though the twelve subgroups of Nymphalidae (Libytheinae, Danainae, Charaxinae, Morphinae, Satyrinae, Calinaginae, Heliconiinae, Limenitidinae, Cyrestinae, Biblidinae, Apaturinae, and Nymphalinae) are widely accepted at the subfamily level, some relationships within this group remain unresolved. For example, the phylogenetic positions of Danainae, Libytheinae, and Limenitidinae within Nymphalidae are still controversial.

    As for the Limenitidinae, its sister group within the Nymphalidae has been the subject of substantial debate (Freitas & Brown, 2004; Harvey, 1991). From a morphological view, the close relationships of Limenitidinae, Heliconiinae, Nymphalinae, and Apaturinae have never been suggested (de Jong et al, 1996; Freitas & Brown, 2004; Harvey, 1991). For example, Freitas & Brown (2004) conducted a cladistic analysis of Nymphalidae based on immature and adult morphological characters, and the results showed that Limenitidinae is sister to the grouping of (Apaturinae + (Calinaginae + Satyrinae)), exclusive of the remaining nymphalidae taxa (Freitas & Brown, 2004). However, phylogenetic analyses based on molecular sequence data have convincingly suggested that Limenitidinae is the sister group of Heliconiinae (Brower, 2000; Wahlberg et al, 2003, 2005; Zhang et al, 2008). In this study, the ML and BI phylogenetic analyses based on the mitogenomic data of the nine available nymphalids, including that ofP. sulpitiaand other unpublished species, revealed the following relationships: (Danainae + ((Libytheinae + ((Satyrinae + Calinaginae) + (Apaturinae + (Heliconiinae + Limenitidinae) + Nymphalinae))))) with high support values (Fig. 4), which is congruent with those reported by Wahlberg et al (2003, 2005) and Brower (2000).

    Fig. 4 ML (A) and BI (B) trees of the nymphalid species based on nucleotide sequences of the 13 protein-coding genes Numbers at nodes are bootstrap values/posterior probabilities.

    In conclusion, the complete mitogenome ofP. sulpitiaharbored nearly the same characters as those of other nymphalids. Phylogenetic analysis on a mitogenomic level indicated that Limenitidinae was most closely related to Heliconiinae than other groups of Nymphalidae in this study, strongly supporting the results of former molecular studies, while contradicting the prevailing speculations based on morphological characters.

    Abascal F, Posada D, Zardoya R. 2007. MtArt: a new model of amino acid replacement for arthropoda[J].Mol Biol Evol,24(1): 1-5.

    Ackery PR. 1984. Systematic and faunistic studies on butterflies [M] //Vane-Wright RI, Ackery PR. (Eds.), Systematic and Faunistic Studies on Butterflies. Princeton, USA: Princeton University Press, 9-21.

    Ackery PR, de Jong R, Vane-Wright RI. 1999. The butterflies: Hedyloidea, Hesperoidea, and Papilionoidea [M] //Kristensen NP. (Ed.), Lepidoptera, Moths and Butterflies. Handbook of Zoology, Lepidoptera. Berlin: De Gruyter, 263-300.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool [J].J Mol Biol,215(3): 403-410.

    Anderson S, Bankier AT, Barrell BG, de Bruijin MHL, Coulson AR, Droujn J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome [J].Nature,290(5806): 457-465.

    Bae JS, Kim I, Sohn HD, Jin BR. 2004. The mitochondrial genome of the firefly,Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J].Mol Phylogenet Evol,32(3): 978-985.

    Beard CB, Hamm DM, Colllins FH. 1993. The mitochondrial genome of the mosquitoAnopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects [J].Insect Mol Biol,2(2): 103-124.

    Boore JL. 1999. Animal mitochondrial genomes [J].Nucleic Acids Res,27(8): 1767-1780.

    Brower AVZ. 2000. Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of thewinglessgene [J].Proc R Soc Lond B,267(1449): 1201-1211.

    Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm,Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths [J].Gene,408(1-2): 112-123.

    Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I. 2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee,Bombus ignitus(Hymenoptera: Apidae) [J].Gene,392(1-2): 206-220.

    Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code [J].J Mol Evol,22(3): 252-271.

    Clayton DA. 1992. Transcription and replication of animal mitochondrial DNA [J].Int Rev Cytol,141: 217-232.

    Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequences ofOstrinia nubilalisandOstrinia furnicalis[J].Int J Biol Sci,1(1): 13-18.

    Crozier RH, Crozier YC. 1993. The mitochondrial genome of the honeybeeApis mellifera: complete sequence and genome organization [J].Genetics,133(1): 97-117.

    de Jong R, Vane-Wright RI, Ackery PR. 1996. The higher classification of butterflies (Lepidoptera): problems and prospects [J].Entomol Scand,27(1): 65-101.

    Ehrlich PR. 1958. The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera) [J].Syst Entomol,10: 11-32.

    Fiedler K. 2010. The coming and going of Batesian mimicry in a Holarctic butterfly clade.BMC Biol, 8(1): 122.

    Flook PK, Rowell CHF, Grellissen G. 1995. The sequence organisation, and evolution of theLouocsta migratoriamitochondrial genome[J].J Mol Evol,41(6): 928-941.

    Freitas AVL, Brown KS Jr. 2004. Phylogeny of the Nymphalidae (Lepidoptera) [J].Syst Biol,53(3):363-383.

    Hao JS, Li CX, Sun XY, Yang Q. 2005. Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochodrial 16S rRNA sequences [J].Chn Sci Bull,50(12): 1205-1211.

    Harvey DJ. 1991. Higher classification of the Nymphalidae, Appendix B [M] //Nijhout HF. (Ed.), The Development and Evolution of Butterfly Wing Patterns. Washington, DC: Smithsonian Institution Press, 255-273.

    Hong GY, Jiang ST, Yu M, Yang Y, Li F, Xue FS, Wei ZJ. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly,Artogeia melete(Lepidoptera: Pieridae) [J].Acta Biochim Biophys Sin,41(6): 446-455.

    Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Huang JS, Jin BR, Kang PD, Kim KG, Han YS, Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk mothCaligula boisduvalii(Lepidoptera: Saturniidae) and comparison with other lepidopteran insects [J].Gene,413(1-2): 49-57.

    Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster,Acraea issoria(Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event [J].Mol Biol Rep,37(7): 3431-3438.

    Jiang ST, Hong GY, Yu M, Li N, Yang Y, Liu YQ, Wei ZJ. 2009. Characterization of the complete mitochondrial genome of the giant silkworm moth,Eriogyna pyretorum(Lepidoptera: Saturniidae) [J].Int J Biol Sci,5(4): 351-365.

    Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006. The mitochondrial genome of the Korean hairstreak,Coreana raphaelis(Lepidoptera: Lycaenidae) [J].Insect Mol Biol,15(2): 217-225.

    Kim MI, Beak JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I. 2009. Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly,Parnassius bremeri(Lepidoptera: Papilionidae) and comparison with other lepidopteran insects [J].Mol Cell,28(4): 347-363.

    Kim MJ, Wan XL, Kim KG, Hwang JS, Kim I. 2010. Complete nucleotide sequence and organization of the mitogenome of endangeredEumenis autonoe(Lepidoptera: Nymphalidae) [J].Afr J Biotechnol,9(5): 735-754.

    Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipedeLithobius forficatus[J].Proc Natl Acad Sci USA,97(25): 13738-13742.

    Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, Niu CJ, Liu YQ, Li MG. 2010. The complete mitochondrial genome of the fall webworm,Hyphantria cunea(Lepidoptera: Arctiidae) [J].Int J Biol Sci,6(2): 172-186.

    Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z. 2008. The complete mitochondrial genome of the Chinese oak silkmoth,Antheraea pernyi(Lepidoptera: Saturniidae) [J].Acta Biochim Biophys Sin,40(8): 693-703.

    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J].Nucleic Acids Res,25(5): 955-964.

    Mao ZH, Hao JS, Zhu GP, Hu J, Si MM, Zhu CD. 2010. Sequencing and analysis of the complete mitochondrial genome ofPieris rapaeLinnaeus (Lepidoptera: Pieridae) [J].Acta Entomol Sin,53(11): 1295-1304.

    Mitchell SE, Cockburn AF, Seawright JA. 1993. The mitochondrial genome ofAnopheles quadrimaculatusspecies A: complete nucleotide sequence and gene organization [J].Genome,36(6): 1058-1073.

    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria [J].Nature,290(5806): 470-474.

    Pan MH, Yu QY, Xia YL, Dai FY, Liu YQ, Lu C, Zhang Z, Xiang ZH. 2008. Characterization of mitochondrial genome of Chinese wild mulberry silkworm,Bomyx mandarina(Lepidoptera: Bombycidae) [J].Sci Chn: Ser C-Life Sci,51(8): 693-701.

    Platt AP, Maudsley JR. 1994. Continued interspecific hybridization betweenLimenitis(Basilarchia)arthemis astyanaxandL.(B.)archippusin the southeastern US (Nymphalidae) [J].J Lepidopt Soc,48(3): 190-198.

    Posa D, Krandall KA. 1998. Modeltest: testing the model of DNA substitution [J].Bioinformatics,14(9): 817-818.

    Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models [J].Bioinformatics,19(12): 1572-1574.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter mothOchrogaster lunifer(Lepidoptera, Notodontidae) [J].BMC Genomics,9: 331.

    Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [J].Ann Entomol Soc Am,87(6): 651-701.

    Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier: Program for design of degenerate primers from a protein sequence [J].Biotechniques,24(2): 318-319.

    Spanos L, Koutroumbras G, Kotsyfakis M, Louis C. 2000. The mitochondrial genome of the Mediterranean fruit fly,Ceratitis capitata[J].Insect Mol Biol,9(2):139-144.

    Swofford DL. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0 [M]. Sunderland: Sinauer Associates.

    Thao ML, Baumann L, Baumann P. 2004. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha) [J].BMC Evol Biol,4: 25.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools [J].Nucl Acids Res,25(24): 4876-4882.

    Wahlberg N, Braby M F, Brower AVZ, de Jong R, Lee MM, Nylin S, Pierce NF, Sperling FAH, Vila R, Warren AD, Zakharov E. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers [J].Proc R Soc Lond B,272(1572): 1577-1586.

    Wahlberg N, Weingartner E, Nylin S. 2003. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea) [J].Mol Phylogenet Evol,28(3): 473-484.

    Wahlberg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera [J].Syst Biol,57(2): 231-242.

    Wang XC, Sun XY, Sun QQ, Zhang DX, Hu J, Yang Q, Hao JS. 2011. Complete mitochondrial genome of the laced fritillaryArgyreus hyperbius(Lepidoptera: Nymphalidae) [J].Zool Res,32(5): 465-475.

    Wilson K, Cahill V, Ballment E, Benzie J. 2000. The complete sequence of the mitochondrial genome of the crustaceanPenaeus monodon: are Malacostracan crustaceans more closely related to insects than to Branchiopods [J].Mol Biol Evol,17(6): 863-874.

    Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution [J].Int Rev Cytol,141: 173-216.

    Wu LW, Lees DC, Yen SH, Lu CC, Hsu YF. 2010. The complete mitochondrial genome of the near-threatened swallowtail,Agehana maraho(Lepidoptera: Papilionidae): evaluating sequence variability and suitable markers for conservation genetic studies [J].Entomol News,121(3): 267-280.

    Xia J, Hu J, Zhu GP, Zhu CD, Hao JS. 2011. Sequencing and analysis of the complete mitochondrial genome ofCalinaga davidisOberthür (Lepidoptera: Nymphalidae) [J].Acta Entomol Sin,54(5): 555-565.

    Xia X, Xie Z. 2001. DAMBE: Data analysis in molecular biology and evolution [J].J Hered,92(4): 371-373.

    Yang L, Wei ZJ, Hong GY, Jiang ST, Wen LP. 2009. The complete nucleotide sequence of the mitochondrial genome ofPhthonandria atrilineata(Lepidoptera: Geometridae) [J].Mol Biol Rep,36(6): 1441-1449.

    Yang Z, Rannala B. 1997. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method [J].Mol Biol Evol,14(7): 717-724.

    Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarina, and its close relative, the domesticated silkmoth,Bombyx mori[J].Mol Biol Evol,19(8): 1385-1389.

    Zhang M, Zhong Y, Cao TW, Geng YP, Zhang Y, Jin K, Ren ZM, Zhang R, Guo YP, Ma EB. 2008. Phylogenetic relationship and morphological evolution in the subfamily Limenitidinae (Lepidoptera: Nymphalidae) [J].Prog Nat Sci,18(11): 1357-1364.

    殘鍔線蛺蝶線粒體基因組全序列及其系統(tǒng)學(xué)意義

    田麗麗1, 孫曉燕2, 陳 梅1, 蓋永華2, 郝家勝1,2,*, 楊 群2,*

    (1. 安徽師范大學(xué) 生命科學(xué)學(xué)院分子進(jìn)化與生物多樣性研究室, 安徽 蕪湖 241000; 2. 中國(guó)科學(xué)院南京地質(zhì)古生物研究所 現(xiàn)代古生物學(xué)與地層學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 南京 210008)

    對(duì)殘鍔線蛺蝶(Parathyma sulpitia)(鱗翅目:蛺蝶科)線粒體基因組全序列進(jìn)行了測(cè)定。結(jié)果表明:殘鍔線蛺蝶線粒體基因組全序列全長(zhǎng)為15 268 bp, 除了在trnS1(AGN) 和trnE基因之間有一段121 bp長(zhǎng)的基因間隔外, 其基因的排列順序及排列方向與大多數(shù)已測(cè)鱗翅目物種基本一致。在蛋白質(zhì)編碼基因中, 除cox1以CGA作為其起始密碼子之外, 其余12個(gè)蛋白質(zhì)編碼基因都以標(biāo)準(zhǔn)的ATN作為起始密碼子。此外, 除nad4基因以單獨(dú)的T為終止密碼子, 其余12個(gè)蛋白質(zhì)編碼基因都以TAA結(jié)尾。除trnS1(AGN) 缺少DHU臂之外, 22個(gè)tRNA基因都顯示典型的三葉草形二級(jí)結(jié)構(gòu)。除A+T富集區(qū)外的非編碼序列中, 線粒體基因組共含有11個(gè)基因間隔區(qū)。其中,最長(zhǎng)的一個(gè)121 bp的基因間隔區(qū)位于trnS1(AGN)和trnE之間, 其A+T含量高達(dá)100%。另外, 和其他鱗翅目物種一樣, 在其A+T富集區(qū)的3'端有一段長(zhǎng)達(dá)18 bp的poly-T結(jié)構(gòu)。A+T富集區(qū)內(nèi)部沒有明顯的小衛(wèi)星樣多拷貝重復(fù)序列, 而含有一些微衛(wèi)星樣的重復(fù)結(jié)構(gòu)。本研究基于 13種蛋白編碼基因序列的組合數(shù)據(jù), 用最大似然法和貝葉斯法對(duì)蛺蝶科幾個(gè)主要亞科間共 9個(gè)代表物種間的系統(tǒng)發(fā)生關(guān)系進(jìn)行了分析。結(jié)果表明, 本研究的結(jié)果與前人的分子系統(tǒng)學(xué)研究結(jié)論基本吻合(其中, 線蛺蝶亞科和釉蛺蝶亞科互為姐妹群), 而與形態(tài)學(xué)的研究結(jié)論不一致。

    2011-11-18;接受日期:2012-02-28

    殘鍔線蛺蝶; 鱗翅目; 蛺蝶科; 線蛺蝶亞科; 線粒體基因組

    Q969.42; Q969.439.2 ; Q754

    A

    0254-5853-(2012)02-0133-11

    10.3724/SP.J.1141.2012.02133

    date:2011-11-18; < class="emphasis_bold">Accepted date

    date: 2012-02-28

    s:This work was supported by the National Natural Science Foundation of China (41172004), the CAS/SAFEA International Partnership Program for Creative Research Teams, Chinese Academy of Sciences (KZCX22YW2JC104), the Provincial Key Project of the Natural Science Foundation from the Anhui Province, China (KJ2010A142), and the Open Funds from the State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences* Corresponding authors (通信作者), E-mail: jshaonigpas@sina.com; qunyang@nigpas.ac.cn

    猜你喜歡
    富集區(qū)鱗翅目蛺蝶
    上海嘉定區(qū)蠶豆新記錄蟲害——豆小卷蛾
    低階煤煤層氣富集區(qū)預(yù)測(cè)方法研究與應(yīng)用
    貓蛺蝶和黑脈蛺蝶
    幼兒100(2020年25期)2020-10-22 05:25:20
    礦床富集區(qū)的控礦規(guī)律與找礦勘查實(shí)踐
    金堇蛺蝶
    寶清東升自然保護(hù)區(qū)鱗翅目昆蟲資源及蝶類多樣性分析
    括蒼山自然保護(hù)區(qū)鱗翅目昆蟲數(shù)據(jù)庫(kù)的構(gòu)建
    鱗翅目昆蟲觸角感器研究進(jìn)展
    孔雀蛺蝶
    能源富集區(qū)資源紅利與民生問題——以晉、陜、蒙為例
    日韩大片免费观看网站| 男人添女人高潮全过程视频| 国产免费视频播放在线视频| 国精品久久久久久国模美| 午夜91福利影院| 国产成人免费观看mmmm| 在线观看国产h片| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 久久久久久免费高清国产稀缺| 狂野欧美激情性bbbbbb| 日韩电影二区| 一级毛片黄色毛片免费观看视频| 免费人妻精品一区二区三区视频| 女人精品久久久久毛片| 啦啦啦视频在线资源免费观看| www日本在线高清视频| 国产成人欧美| 99国产精品免费福利视频| av网站免费在线观看视频| 久久精品国产自在天天线| 欧美国产精品一级二级三级| 女性被躁到高潮视频| 亚洲图色成人| 午夜福利在线免费观看网站| 亚洲欧美成人综合另类久久久| 久久久久人妻精品一区果冻| 麻豆乱淫一区二区| 蜜桃在线观看..| 在线看a的网站| 免费观看a级毛片全部| 免费av中文字幕在线| 日韩免费高清中文字幕av| 国产精品蜜桃在线观看| 亚洲精品美女久久av网站| 亚洲av中文av极速乱| 在线观看三级黄色| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 天天操日日干夜夜撸| 99久久中文字幕三级久久日本| 中文字幕av电影在线播放| 国产乱来视频区| 一区二区日韩欧美中文字幕| 久久免费观看电影| 五月天丁香电影| 99久久人妻综合| 十八禁网站网址无遮挡| 婷婷色综合大香蕉| 国产1区2区3区精品| 久久精品久久久久久久性| 考比视频在线观看| 日韩av在线免费看完整版不卡| 精品久久蜜臀av无| 丰满少妇做爰视频| 久久久久久人妻| 在线精品无人区一区二区三| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 亚洲精品一二三| 欧美精品一区二区大全| 国产精品欧美亚洲77777| 99久国产av精品国产电影| 亚洲少妇的诱惑av| 性高湖久久久久久久久免费观看| 亚洲av成人精品一二三区| 观看美女的网站| 麻豆乱淫一区二区| 亚洲在久久综合| 香蕉国产在线看| 久久ye,这里只有精品| 丝袜脚勾引网站| 美女中出高潮动态图| 叶爱在线成人免费视频播放| 亚洲综合色惰| 王馨瑶露胸无遮挡在线观看| 欧美日韩av久久| 免费黄频网站在线观看国产| 18禁国产床啪视频网站| 母亲3免费完整高清在线观看 | 搡老乐熟女国产| 欧美日韩av久久| 秋霞伦理黄片| 亚洲精品久久久久久婷婷小说| 国产精品三级大全| 秋霞在线观看毛片| 亚洲成av片中文字幕在线观看 | 国产精品久久久久久精品电影小说| 少妇精品久久久久久久| 纵有疾风起免费观看全集完整版| 黑人猛操日本美女一级片| 少妇 在线观看| 两个人免费观看高清视频| 边亲边吃奶的免费视频| 久久ye,这里只有精品| 韩国av在线不卡| 国产不卡av网站在线观看| 亚洲激情五月婷婷啪啪| 人人澡人人妻人| 久久久精品区二区三区| 国产欧美亚洲国产| 亚洲av男天堂| 亚洲国产色片| 欧美激情 高清一区二区三区| 汤姆久久久久久久影院中文字幕| 日本av手机在线免费观看| 婷婷色av中文字幕| 国产白丝娇喘喷水9色精品| 日韩伦理黄色片| 中文字幕av电影在线播放| 亚洲美女搞黄在线观看| 在线看a的网站| 国产精品免费大片| 国产亚洲一区二区精品| 成人免费观看视频高清| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区乱码不卡18| 日日啪夜夜爽| 天天操日日干夜夜撸| 男女高潮啪啪啪动态图| 欧美亚洲日本最大视频资源| 欧美最新免费一区二区三区| 又粗又硬又长又爽又黄的视频| www日本在线高清视频| 在线观看免费视频网站a站| 伊人亚洲综合成人网| 欧美国产精品一级二级三级| 女的被弄到高潮叫床怎么办| 国产熟女欧美一区二区| 国产人伦9x9x在线观看 | 日韩不卡一区二区三区视频在线| 春色校园在线视频观看| 午夜福利一区二区在线看| 日韩av在线免费看完整版不卡| 精品第一国产精品| 亚洲少妇的诱惑av| 午夜日本视频在线| 毛片一级片免费看久久久久| 日韩精品免费视频一区二区三区| 中文欧美无线码| 久久青草综合色| 久久久久久人妻| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| www日本在线高清视频| 国产av一区二区精品久久| 2022亚洲国产成人精品| 黑人欧美特级aaaaaa片| 亚洲精品一区蜜桃| 麻豆av在线久日| 国产视频首页在线观看| 18禁观看日本| 久久99一区二区三区| 亚洲欧洲日产国产| 久久人人97超碰香蕉20202| 熟女电影av网| 国产一区二区 视频在线| 亚洲国产成人一精品久久久| 中文天堂在线官网| 日日爽夜夜爽网站| 亚洲国产看品久久| 日本av免费视频播放| 毛片一级片免费看久久久久| 热99久久久久精品小说推荐| 久久这里只有精品19| a级毛片黄视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费在线观看视频国产中文字幕亚洲 | 亚洲久久久国产精品| 人人妻人人澡人人看| 我要看黄色一级片免费的| 亚洲视频免费观看视频| 一本—道久久a久久精品蜜桃钙片| 下体分泌物呈黄色| 女性生殖器流出的白浆| 精品一区在线观看国产| 日产精品乱码卡一卡2卡三| 欧美少妇被猛烈插入视频| 日韩中文字幕欧美一区二区 | 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 老司机亚洲免费影院| 日韩一区二区视频免费看| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 一级a爱视频在线免费观看| 十八禁网站网址无遮挡| 亚洲国产av新网站| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 国产精品一区二区在线不卡| 日本欧美视频一区| 国产精品一国产av| 亚洲国产最新在线播放| 1024香蕉在线观看| 在线观看三级黄色| 黄色 视频免费看| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| h视频一区二区三区| 日本色播在线视频| 国产片特级美女逼逼视频| 亚洲在久久综合| 在线观看三级黄色| 亚洲国产成人一精品久久久| 超色免费av| 91精品国产国语对白视频| 久久狼人影院| 亚洲伊人久久精品综合| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 国产一区二区 视频在线| 在线观看人妻少妇| 少妇人妻 视频| 欧美精品亚洲一区二区| 国产熟女欧美一区二区| 黄色毛片三级朝国网站| 欧美人与善性xxx| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| kizo精华| xxx大片免费视频| 老汉色∧v一级毛片| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 考比视频在线观看| 国产成人精品婷婷| 新久久久久国产一级毛片| 久久精品亚洲av国产电影网| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 熟女少妇亚洲综合色aaa.| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 日韩 亚洲 欧美在线| 国产精品av久久久久免费| 久久热在线av| 一区二区日韩欧美中文字幕| xxx大片免费视频| 男人舔女人的私密视频| 男人操女人黄网站| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 精品久久久精品久久久| 国产欧美亚洲国产| 午夜免费鲁丝| 亚洲视频免费观看视频| 色哟哟·www| www.自偷自拍.com| 免费观看a级毛片全部| 九色亚洲精品在线播放| 寂寞人妻少妇视频99o| 啦啦啦中文免费视频观看日本| 两个人免费观看高清视频| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 纵有疾风起免费观看全集完整版| 一本久久精品| 欧美激情 高清一区二区三区| 日韩精品有码人妻一区| 亚洲精品第二区| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 国产黄色免费在线视频| 大片免费播放器 马上看| 伦精品一区二区三区| 国产国语露脸激情在线看| 少妇熟女欧美另类| 老司机影院毛片| 人人澡人人妻人| www.自偷自拍.com| 波多野结衣一区麻豆| 久久精品国产综合久久久| 新久久久久国产一级毛片| 国产熟女午夜一区二区三区| 亚洲综合精品二区| 国产精品一区二区在线观看99| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区蜜桃| 美女大奶头黄色视频| 男女边摸边吃奶| 国产成人av激情在线播放| 久久久精品免费免费高清| av在线观看视频网站免费| 亚洲四区av| 亚洲视频免费观看视频| 黑人猛操日本美女一级片| 青春草国产在线视频| 国产成人精品久久二区二区91 | 亚洲国产av影院在线观看| 亚洲精品第二区| 亚洲国产日韩一区二区| 欧美日韩亚洲国产一区二区在线观看 | 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 国产人伦9x9x在线观看 | 美女国产视频在线观看| 久久久久久久大尺度免费视频| 欧美日韩一区二区视频在线观看视频在线| 咕卡用的链子| 国产午夜精品一二区理论片| 国产亚洲欧美精品永久| 久热久热在线精品观看| 日本av免费视频播放| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| 欧美国产精品一级二级三级| 精品一区二区三卡| 亚洲美女黄色视频免费看| 国产 精品1| 亚洲精品美女久久久久99蜜臀 | 国产黄色免费在线视频| 丝袜脚勾引网站| 亚洲欧美一区二区三区黑人 | 男女啪啪激烈高潮av片| 中文字幕av电影在线播放| 亚洲久久久国产精品| 中国国产av一级| 亚洲精品久久成人aⅴ小说| xxx大片免费视频| 亚洲三区欧美一区| 中文欧美无线码| 一边摸一边做爽爽视频免费| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 久久影院123| 热99久久久久精品小说推荐| av免费在线看不卡| 熟妇人妻不卡中文字幕| 精品国产乱码久久久久久小说| 欧美日韩精品网址| 日韩人妻精品一区2区三区| 热re99久久国产66热| 99国产精品免费福利视频| 亚洲综合色网址| 日本91视频免费播放| 国产黄色免费在线视频| 日韩成人av中文字幕在线观看| 18+在线观看网站| 黄片无遮挡物在线观看| 天堂俺去俺来也www色官网| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 18+在线观看网站| 久久久精品94久久精品| 老熟女久久久| 亚洲国产av新网站| 老汉色∧v一级毛片| 日本av免费视频播放| 超碰成人久久| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 日本猛色少妇xxxxx猛交久久| 日韩电影二区| 精品久久久久久电影网| 99久久人妻综合| 免费人妻精品一区二区三区视频| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 曰老女人黄片| 国产有黄有色有爽视频| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 一级片'在线观看视频| 日本欧美视频一区| 久久久精品国产亚洲av高清涩受| 亚洲美女搞黄在线观看| 亚洲天堂av无毛| 老汉色∧v一级毛片| 最近最新中文字幕大全免费视频 | 国产一区二区三区综合在线观看| 免费不卡的大黄色大毛片视频在线观看| 香蕉精品网在线| 香蕉国产在线看| 欧美日韩精品网址| 在线观看免费日韩欧美大片| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 精品少妇内射三级| 丝袜美腿诱惑在线| 亚洲欧美中文字幕日韩二区| 国产精品国产三级专区第一集| 国产精品国产三级国产专区5o| 中文欧美无线码| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 99热全是精品| 99香蕉大伊视频| 精品国产超薄肉色丝袜足j| 午夜福利在线免费观看网站| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 超碰成人久久| 国产免费现黄频在线看| 在线观看免费高清a一片| 久久国产精品大桥未久av| 久久久久久久精品精品| 国产在线免费精品| 黑人欧美特级aaaaaa片| 成人免费观看视频高清| 久久久久久久久免费视频了| 黄色配什么色好看| 国产亚洲午夜精品一区二区久久| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| 亚洲,欧美精品.| 观看美女的网站| 国产精品国产av在线观看| 欧美日韩视频高清一区二区三区二| 亚洲国产看品久久| 成人漫画全彩无遮挡| 欧美+日韩+精品| 久久国产亚洲av麻豆专区| 国产成人精品在线电影| 欧美人与性动交α欧美软件| 久久国产精品大桥未久av| 2021少妇久久久久久久久久久| 中文天堂在线官网| 女性被躁到高潮视频| 亚洲精品自拍成人| 一本大道久久a久久精品| 天天操日日干夜夜撸| 亚洲欧美日韩另类电影网站| 最近最新中文字幕大全免费视频 | 亚洲伊人久久精品综合| 日韩视频在线欧美| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 精品视频人人做人人爽| 久久影院123| 丁香六月天网| 欧美中文综合在线视频| 亚洲男人天堂网一区| 国产人伦9x9x在线观看 | 伦理电影免费视频| 在线精品无人区一区二区三| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av涩爱| 丝袜美足系列| 亚洲成色77777| 在现免费观看毛片| 中文字幕人妻丝袜制服| av在线观看视频网站免费| 99久国产av精品国产电影| 看免费成人av毛片| 人妻人人澡人人爽人人| a级毛片在线看网站| 亚洲av免费高清在线观看| 欧美精品一区二区大全| 老司机亚洲免费影院| 2022亚洲国产成人精品| 亚洲欧美一区二区三区国产| 国产熟女午夜一区二区三区| 男女午夜视频在线观看| 国产97色在线日韩免费| 蜜桃在线观看..| 亚洲欧洲日产国产| 黄色配什么色好看| 国产精品女同一区二区软件| 国产高清不卡午夜福利| 久久久久网色| 国产精品 国内视频| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 亚洲伊人色综图| 美女主播在线视频| tube8黄色片| √禁漫天堂资源中文www| 日韩精品免费视频一区二区三区| 人人澡人人妻人| 18禁国产床啪视频网站| 久久午夜福利片| 久久精品人人爽人人爽视色| 9热在线视频观看99| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 日韩熟女老妇一区二区性免费视频| 亚洲 欧美一区二区三区| 国产野战对白在线观看| 中国三级夫妇交换| 18+在线观看网站| 日本猛色少妇xxxxx猛交久久| 九草在线视频观看| 成年人午夜在线观看视频| 91aial.com中文字幕在线观看| 男女午夜视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲视频免费观看视频| 国产视频首页在线观看| 十八禁网站网址无遮挡| 免费在线观看视频国产中文字幕亚洲 | 少妇人妻 视频| 亚洲av在线观看美女高潮| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av | 热re99久久国产66热| 国产女主播在线喷水免费视频网站| 超碰成人久久| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 亚洲av福利一区| 国产乱人偷精品视频| 男女高潮啪啪啪动态图| 国产免费现黄频在线看| 国产在视频线精品| 成人手机av| 丝袜在线中文字幕| av网站在线播放免费| 亚洲欧美成人精品一区二区| 亚洲情色 制服丝袜| 亚洲成人av在线免费| 夜夜骑夜夜射夜夜干| 国产极品天堂在线| 国产精品99久久99久久久不卡 | 亚洲欧洲日产国产| 大香蕉久久网| 美女福利国产在线| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 午夜av观看不卡| 国产成人精品一,二区| 久久久国产一区二区| 不卡视频在线观看欧美| 亚洲色图综合在线观看| 伊人亚洲综合成人网| 伊人久久大香线蕉亚洲五| 亚洲国产av影院在线观看| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图| 丝袜美腿诱惑在线| 啦啦啦啦在线视频资源| 国产欧美日韩综合在线一区二区| 人妻 亚洲 视频| 啦啦啦视频在线资源免费观看| 久久久久久久久久人人人人人人| 最近的中文字幕免费完整| 成人手机av| 免费少妇av软件| 综合色丁香网| 女人久久www免费人成看片| 最近2019中文字幕mv第一页| freevideosex欧美| 一个人免费看片子| 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 免费黄色在线免费观看| 亚洲精品久久久久久婷婷小说| 亚洲国产精品国产精品| 两个人看的免费小视频| 女人久久www免费人成看片| 少妇 在线观看| 一级,二级,三级黄色视频| 极品少妇高潮喷水抽搐| 久久热在线av| 国产欧美亚洲国产| 国产精品免费视频内射| av网站免费在线观看视频| 婷婷成人精品国产| av网站在线播放免费| 国产av一区二区精品久久| 精品久久久精品久久久| 午夜av观看不卡| 亚洲伊人色综图| 久久综合国产亚洲精品| 尾随美女入室| av女优亚洲男人天堂| 精品一区二区三区四区五区乱码 | 日韩av免费高清视频| 九草在线视频观看| 热re99久久国产66热| 久久99精品国语久久久| 午夜福利视频在线观看免费| 免费久久久久久久精品成人欧美视频| 欧美最新免费一区二区三区| 夜夜骑夜夜射夜夜干| 欧美日韩一级在线毛片| 人妻 亚洲 视频| 久久人人爽av亚洲精品天堂| 午夜福利在线观看免费完整高清在| 亚洲欧美中文字幕日韩二区| 美女国产视频在线观看| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 欧美日韩视频精品一区| 人妻 亚洲 视频| 免费观看性生交大片5| 亚洲精品自拍成人| 国产成人精品一,二区| 黑人猛操日本美女一级片| 日本免费在线观看一区| 老司机亚洲免费影院| 中文天堂在线官网| 最近的中文字幕免费完整| 中文字幕人妻熟女乱码| 精品亚洲成a人片在线观看| 国精品久久久久久国模美| 免费高清在线观看视频在线观看| 免费少妇av软件|