• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete mitochondrial genome of the Five-dot Sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications

    2013-12-25 01:02:50TIANLiLiSUNXiaoYanCHENMeiGAIYongHuaHAOJiaShengYANGQun
    Zoological Research 2013年3期
    關(guān)鍵詞:富集區(qū)鱗翅目蛺蝶

    TIAN Li-Li, SUN Xiao-Yan, CHEN Mei, GAI Yong-Hua, HAO Jia-Sheng,,*, YANG Qun,*

    (1. College of Life Sciences, Anhui Normal University, Wuhu 241000, China; 2. LPS, Institute of Geology and Palaeontology, the Chinese Academy of Sciences, Nanjing 210008, China)

    Complete mitochondrial genome of the Five-dot SergeantParathyma sulpitia(Nymphalidae: Limenitidinae) and its phylogenetic implications

    TIAN Li-Li1, SUN Xiao-Yan2, CHEN Mei1, GAI Yong-Hua2, HAO Jia-Sheng1,2,*, YANG Qun2,*

    (1.College of Life Sciences,Anhui Normal University,Wuhu241000,China; 2.LPS, Institute of Geology and Palaeontology,the Chinese Academy of Sciences,Nanjing210008,China)

    The complete mitochondrial genome of theParathyma sulpitia(Lepidoptera, Nymphalidae, Limenitidinae) was determined. The entire mitochondrial DNA (mtDNA) molecule was 15 268 bp in size. Its gene content and organization were the same as those of other lepidopteran species, except for the presence of the 121 bp long intergenic spacer betweentrnS1(AGN) andtrnE. The 13 protein-coding genes (PCGs) started with the typical ATN codon, with the exception of thecox1gene that used CGA as its initial codon. In addition, all protein-coding genes terminated at the common stop codon TAA, except thenad4gene which used a single T as its terminating codon. All 22 tRNA genes possessed the typical clover leaf secondary structure except fortrnS1(AGN), which had a simple loop with the absence of the DHU stem. Excluding the A+T-rich region, the mtDNA genome ofP. sulpitiaharbored 11 intergenic spacers, the longest of which was 121 bp long with the highest A+T content (100%), located betweentrnS1(AGN) andtrnE. As in other lepidopteran species, there was an 18-bp poly-T stretch at the 3'-end of the A+T-rich region, and there were a few short microsatellite-like repeat regions without conspicuous macro-repeats in the A+T-rich region. The phylogenetic analyses of the published complete mt genomes from nine Nymphalidae species were conducted using the concatenated sequences of 13 PCGs with maximum likelihood and Bayesian inference methods. The results indicated that Limenitidinae was a sister to the Heliconiinae among the main Nymphalidae lineages in this study, strongly supporting the results of previous molecular data, while contradicting speculations based on morphological characters.

    Parathyma sulpitia; Lepidoptera; Nymphalidae; Limenitidinae; Mitochondrial genome

    Insect mitochondrial DNA (mtDNA) is a circular DNA molecule 14-20 kb in size with 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 tRNA genes, and one A+T-rich region which contains the initiation sites for transcription and replication (Boore, 1999; Clayton, 1992; Wolstenholme, 1992). In recent years, owing to its maternal inheritance, lack of recombination and accelerated nucleotide substitution rates compared to those of the nuclear DNA, the mitochondrial genome has been popularly used in studies on phylogenetics, comparative and evolutionary genomics, population genetics, and molecular evolution.

    The Nymphalidae is one of the largest groups of butterflies, comprising about 7 200 described species throughout the world. Its systematic and evolutionary process has long been a matter of controversy (Ackery, 1984, 1999; de Jong et al, 1996; Ehrlich, 1958; Harvey, 1991). Until recently, however, only eight complete or nearly complete mt genome sequences have been determined from Nymphalidae among some forty sequences for Lepidoptera. That is, two from Heliconiinae, two from Satyrinae, and one each from Calinaginae, Apaturinae, Danainae, and Libytheinae.

    Limenitidinae is a subfamily of Nymphalidae that includes the admirals and its close relatives. This butterfly group has long been the subject of scientific curiosity, serving as the model organism in diverse fields such as genetics, developmental biology, and evolutionary ecology (Fiedler, 2010; Platt & Maudsley, 1994). However, its sub-group classifications and phylogenetic relationships with the other Nymphalidae groups remains unresolved based on morphological and molecular criteria (Freitas & Brown, 2004; Wahlberg et al, 2003, 2005; Wahlberg & Wheat, 2008; Zhang et al, 2008).

    Parathyma sulpitiais a representative species of the subfamily Limenitidinae (Lepidoptera: Nymphalidae) and it is widely distributed in Southeastern Asian areas, such as Vietnam, Burma, India, and China. We determined its complete mitochondrial genome sequence and compared this sequence with those of the other eight-nymphalid butterfly species available. Additionally, we performed phylogenetic analyses using maximum likelihood and Bayesian inference methods based on the concatenated 13 protein coding gene (PCG) sequences. The new sequence data and related analyses may provide useful information about the systematics and evolution of Nymphalidae at the genomic level.

    1 Materials and Methods

    1.1 Specimen collection

    Adult butterflies ofP. sulpitiawere collected from the Jiulianshan National Nature Reserve, Jiangxi Province, China. The specimens were preserved immediately in 100% ethanol and then stored at -20 °C before genomic DNA extraction.

    1.2 DNA extraction, PCR amplification and sequencing

    Whole genomic DNA was extracted from thoracic muscle tissue with the DNeasy Tissue Kit (Qiagen) after the protocol of Hao et al (2005). Some universal PCR primers for short fragment amplifications of thecox1,cobandrrnLgenes were synthesized (Simon et al, 1994). The remaining short and long primers were designed based on the sequence alignment of the available complete lepidopteran mitogenomes using Primer Premier 5.0 software (Singh et al, 1998).

    The entire mitogenome ofP. sulpitiawas amplified in six fragments (cox1-cox3,cox3-nad5,nad5-nad4,nad4-cob,cob-rrnL,rrnL-cox1) using long-PCR techniques with TaKaRa LATaq polymerase under the following cycling conditions: initial denaturation for five minutes at 95 °C, followed by 30 cycles of 95 °C for 50 s, 45-50 °C for 50 s, 68 °C for 2 min and 30 s; and a final extension step of 68 °C for 10 min. The PCR products were visualized by electrophoresis on 1.2% agarose gel, then purified using a 3S Spin PCR Product Purification Kit and sequenced directly with an ABI–377 automatic DNA sequencer. For each long PCR product, the full, double-stranded sequence was determined by primer walking. The mitogenome sequence data were deposited into the GenBank database under the accession number JQ347260.

    1.3 Sequence analysis and annotation

    The tRNA genes and their secondary structure were predicted using tRNAscan-SE software v.1.21 (Lowe & Eddy, 1997) and the putative tRNA genes, which were not found by tRNAscan-SE, were determined by sequence comparison ofP. sulpitiawith other lepidopterans. The PCGs and rRNAs were confirmed by sequence comparison with ClustalX1.8 software and NCBI BLAST search function (Altschul et al, 1990). Nucleotide composition and codon usage were calculated with DAMBE software (Xia & Xie, 2001).

    1.4 Phylogenetic analysis

    Multiple sequence alignments of the concatenated sequences the 13 PCGs of the nine nymphalid species with available mitogenomes (Tab. 2) were conducted using Clustal X 1.8 software and then proofread manually (Thompson et al,1997). The phylogenetic trees were constructed using maximum likelihood (ML) (Abascal et al, 2007) and Bayesian inference (BI) (Yang & Rannala, 1997) methods with moth speciesManduca sexta(Cameron & Whiting, 2008) (Tab. 2) used as outgroup. The ML analysis for the nucleotide and amino acid sequences were implemented in the PAUP* software (version 4.0b8) (Swofford, 2002) with TBR branch swapping (10 random addition sequences), the best fitting nucleotide substitution model (GTR+I+Γ) was selected using Modeltest version 3.06 (Posa & Krandall, 1998), and the confidence values of the ML tree were evaluated via the bootstrap test with 100 iterations. The Bayesian analyses were performed using MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003) with the partitioned strategy, the best fitting substitution model was selected as in the ML analysis; the MCMC analyses (with random starting trees) were run with one cold and three heated chains simultaneously for 1 000 000 generations sampled every 100 generations; Bayesian posterior probabilities were calculated from the sample points after the MCMC algorithm started to converge.

    2 Results

    2.1 Genome organization

    The mitogenome ofP. sulpitiawas a circular molecule 15 268 bp long and consisted of 13 PCGs [cytochrome oxidase subunits 1-3 (cox1-3), NADH dehydrogenase subunits 1-6 and 4L (nad1-6andnad4L), cytochrome oxidase b (cob), ATP synthase subunits 6 and 8 genes (atp6andatp8)], two ribosomal RNA genes for small and large subunits (rrnSandrrnL), 22 transfer RNA genes (one for each amino acid and two for leucine and serine) and a non-coding A+T-rich region. The gene orientation and order of theP. sulpitiamitogenome were identical to those of the other available lepidopteran mitogenomes, except for the presence of the 121 bp long intergenic spacer betweentrnS1(AGN) andtrnE(Tab. 1, Fig. 1). As is the case in many insect mitogenomes, the major strand coded for more genes (nine PCGs and 14 tRNAs) and the A+T-rich region, whereas less genes were coded in the minor strand (four PCGs, eight tRNAs and two rRNA genes).

    Fig. 1 Circular map of the mitochondrial genome of Parathyma sulpitia

    2.2 Protein-coding genes, tRNA and rRNA genes and A+T-rich region

    All PCGs in theP. sulpitiamitogenome were initiated by typical ATN codons (seven with ATG, four with ATT, one with ATA), except thecox1gene which was tentatively designated by the CGA codon (Tab. 1). Twelve PCGs ofP. sulpitiahad a common stop codon (TAA), except for thenad4gene which harbored a single T.

    The 22 tRNAs varied from 61 [trnCandtrnS1(AGN)] to 71 bp (trnK) in size, and presented typical clover-leaf structure, with the unique exception oftrnS1(AGN), which lacked the dihydrouridine (DHU) stem (Fig. 2). TheP. sulpitiatRNAs harbored a total of 24 pair mismatches in their stems, including six pairs in the DHU stems, eight pairs in the amino acid acceptor stems, two pairs in the TΨC stems and eight pairs in the anticodon stems, respectively. Among these 24 mismatches, 18 were G·U pairs which formed a weak bond in the secondary structure, and the other six were U·U (Fig. 2).

    Tab. 1 Summary of the mitogenome of Parathyma sulpitia

    As with other insect mitogenome sequences, two rRNA genes (rrnLandrrnS) were detected inP. sulpitia, located betweentrnL1(CUN) andtrnV, and betweentrnVand A+T region, respectively (Fig. 1). The lengths of therrnLand therrnSwere determined as 1 319 bp and 779 bp, respectively.

    The A+T-rich region ofP. sulpitiawas 349 bp in size. There was an 18-bp poly-T stretch at the 3'end of the A+T-rich region, and some short microsatellite-like repeat regions without conspicuous macro-repeats throughout the A+T-rich region.

    2.3 Phylogenetic analysis

    The resultant tree topologies of the ML and Bayesian analyses based on the nucleotide and amino acid sequences were the same, only with a slight difference in their bootstrap support or posterior probability values. For the paper length limit, we have only showed trees based on the nucleotide sequences (Fig. 4) in this paper.

    Fig. 2 Predicted secondary clover leaf structures for the 22 tRNA genes of Parathyma sulpitia

    3 Discussion

    3.1 Genome structure, organization and composition

    TheP. sulpitiamitogenome size (15 268 bp) was well within the range detected in the completely sequenced lepidopteran insects, from 15 140 bp inArtogeia melete(GenBank accession no. NC_010568; Hong et al, 2009) to 16 094 bp inAgehana maraho(GenBank accession no. NC_014055; Wu et al, 2010). The nucleotide composition of A+T for theP. sulpitiamitogenome major strand was 81.9%, showing a strongly biased value, which was the highest of all the nymphalid species determined to date (Tab. 2).

    Tab. 2 Mitogenomes of the nymphalids used in this study and their partial characteristics

    To evaluate the degree of base bias for theP. sulpitiamitogenome, base-skewness was also measured in this study. The results showed that AT and GC-skewness values of the whole genome (measured from the major strand) were -0.048 and -0.178, respectively. This indicated that T and C were more frequently used than A and G in the genome, similar to results found in other nymphalid species used in this study (Tab. 3). However, when the two skewness values were considered separately, it was clear that the AT skew was the highest and the GC skew was the lowest of all the nymphalids in this study.

    Tab. 3 Nucleotide composition and skewness of the nymphalid mitogenomes

    3.2 Protein-coding genes

    Twelve PCGs ofP. sulpitiamitogenome were initiated by typical ATN codons, except for thecox1gene. For theP. sulpitiaCOI gene, no typical ATN initiator was found in its starting region or in its neighboringtrnYsequences. As for thecox1initiation codon in animals, significantly different cases have been reported, for example, tetranucleotides such as TTAG inCoreana raphaelis(Kim et al, 2006), ATAA inDrosophila yakuba(Clary & Wolstenholme, 1985) are used, while hexanucleotides such as TATTAG inOstrinia nubilalisandOstrinia furnicalis(Coates et al, 2005), TTTTAG inBombyx mori(Yukuhiro et al, 2002), TATCTA inPenaeus monodon(Wilson et al, 2000), ATTTAA inAnopheles gambiae(Beard et al, 1993),Anopheles quadrimaculatus(Mitchell et al, 1993), andCeratitis capitata(Spanos et al, 2000) are used. Generally, the trinucleotide TTG was assumed to be thecox1start codon for some invertebrate taxa including insect species, such asPyrocoelia rufa(Bae et al, 2004),Caligula boisdnvalii(Hong et al, 2008), andAcraea issoria(Hu et al, 2010). In this study, however, according to sequence homologies with other available relevant insect species, the codon CGA was hypothesized to be thecox1initiator synapomorphically characteristic of most lepidopteran species (Kim et al, 2009, 2010).

    Thenad4gene ofP. sulpitiaharbored a single T, rather than the common stop codon TAA. Incomplete termination codons are frequently observed in most insect mitogenomes including all the sequenced lepidopteran insects to date (Kim et al, 2009), which has been interpreted in terms of post-transcriptional polyadenylation, in which two A residues are added to create the TAA terminator (Anderson et al, 1981; Ojala et al, 1981).

    The value of A+T content for all PCGs was 80.6%, whereas, the corresponding values for the major and minor strands were 79.2% and 83.1%, respectively. Both values were the highest of all the nymphalids analysed in this study (Tab. 4). Furthermore, the A+T content of the PCG third codon position was calculated to be 96.7%, which was significantly higher than those of the first (74.8%) and the second (70.5%) codon positions. This value was the highest of all the corresponding values among the nymphalids (Tab. 4). With regard to AT-skew, the degree of A+T bias was calculated in different strands of theP. sulpitiamitogenome PCGs: the major strand evidenced a value of -0.172, whereas the minor strand exhibited a value of -0.154. In contrast, for the GC-skew, the major and minor strands showed values of -0.100 and 0.266, respectively (Tab. 3). Additionally, the A+T bias of the PCG codon usage for theP. sulpitiamitogenome (the relative synonymous codon frequencies, RSCU) revealed that codons harboring A or T in the third position were frequently used compared to other synonymous codons (Tab. 5).

    Tab. 4 Summary of base composition at each codon* position of the 13 PCGs in the nymphalid mitogenomes used in this study

    Tab. 5 Codon usage of the protein coding genes of the Parathyma sulpitia mitogenome

    3.3 Transfer RNA and ribosomal RNA genes

    TheP. sulpitiamitogenome harbored 22 tRNA genes, which were scattered throughout its whole region as is typically observed in metazoans including insects (Cha et al, 2007; Crozier & Crozier, 1993; Hong et al, 2008; Kim et al, 2010; Wilson et al, 2000; Yukuhiro et al, 2002). All tRNAs presented typical clover-leaf structure, with the unique exception oftrnS1(AGN), which lacked the dihydrouridine (DHU) stem (Fig. 2). TheP. sulpitiatRNAs harbored a total of 22 pair mismatches in their stems, with the number of mismatches inP. sulpitiaroughly the same as those detected in other lepidopteran species such asAntheraea pernyi(Liu et al, 2008) andEriogyna pyretorum(Jiang et al, 2009), but less than those inOchrogaster lunifer(Salvato et al, 2008). These tRNAs mismatches can be corrected through RNA-editing mechanisms, which are well known for arthropod mtDNA (Lavrov et al, 2000).

    As in all other insect mitogenome sequences, two rRNA genes (rrnLandrrnS) were detected inP. sulpitia. They were located betweentrnL1(CUN) andtrnV, and betweentrnVand the A+T region, respectively (Fig. 1). The length of therrnLwas determined to be 1 319 bp, which was within the size range observed in the other available sequenced insects, from 470 bp inBemisia tabaci(Thao et al, 2004) to 1 426 bp inHyphantria cunea(Liao et al, 2010). The length of therrnSwas determined to be 779 bp, which was well within the size range observed in other completely sequenced insects, from 434 bp inOstrinia nubilalis(Clary & Wolstenholme, 1985) to 827 bp inLocusta migratoria(Flook et al, 1995).

    3.4 Intergenic spacers and overlapping regions

    The mtDNA genome ofP. sulpitiaincluded a total of 213 bp intergenic spacer sequences which were spread over 11 regions ranging in size from one to 121 bp. The largest spacer sequence (121 bp) was located between thetrnS1(AGN) and thetrnE, rather than between thetrnQand thenad2gene as found in other lepidopteran mitogenomes (Tab. 1). This spacer contained the highest A+T nucleotide (100%) of all the corresponding regions in all other lepidopterans determined. The sequence alignment of this spacer with partial A+T-rich region revealed a sequence homology of 74.4% (Fig. 3), suggesting that this spacer may have originated from a partial duplication of the A+T-rich region.

    Fig. 3 Alignment of the largest spacer located between trnS1(AGN) and trnE and the partial A+T region

    The second largest intergenic spacer was 52 bp long, located between thetrnQandnad2genes. This spacer is present in all lepidopteran mitogenomes sequenced, but absent in all non-lepidopteran insects (Hong et al, 2008). The sequence alignment of this spacer with the neighboringnad2gene revealed a sequence homology of 62%, and thus, this spacer was proposed to have been originated from a partial duplication of thenad2gene (Kim et al, 2009), with similar cases presented in other sequenced lepidopterans, such asArtogeia melete(70%) (Hong et al, 2009),C. raphaelis(62%) (Kim et al, 2006),Parnassius bremeri(70%) (Kim et al, 2009), andPhthonandria atrilineata(70%) (Yang et al, 2009). The other nine smaller intergenic spacers ranged in size from one to 11 bp were dispersed throughout the whole genome, and their details are listed in Tab. 1.

    A total of 92 bp were identified as overlapping sequences varying from one to 35 bp in 15 regions of the genome (Tab. 2). The longest overlap was 35 bp located between thecox2andtrnKgenes, and the second largest was 20 bp long located betweentrnFandnad5. The third longest was 8 bp betweentrnWandtrnC, with similarly sized overlaps also detected in other lepidopteran species (Hong et al, 2008). As expected, the 7 bp overlap within theatp8andatp6reading frames, which is characteristic of many animal mitogenomes (Boore, 1999; Hong et al, 2008), was also detected in this study. In addition, a 5 bp and a 3 bp overlap were located betweencox1andtrnL(UUR), and betweentrnIandtrnQ, respectively. As for the remaining nine overlaps of 1 or 2 bp in size, their detailed cases are shown in Tab. 1.

    3.5 A+T-rich region

    The A+T-rich region ofP. sulpitiawas 349 bp in size, located betweenrrnSandtrnM(Fig. 1). This region showed the second highest A+T content (94.6%), slightly lower than the largest intergenic spacer (100%). This region included the ON(origin of minority or light strand replication), which was identified by the motif ATAGA located 20 bp downstream fromrrnS. Additionally, a motif ATAGA followed by 19 bp poly-T, which has been suggested as the structural signal for the recognition of proteins in the replication initiation of minor-strand mtDNA, was detected, which is similar to that observed in other lepidopteran species such as theBombyx mori(Yukuhiro et al, 2002). Finally, a few of multiple short microsatellite-like repeat regions, such as the (AT)7located 195 bp upstream fromrnnSand preceded by the ATTTA motif, were present, which was as expected as they are also detected in the majority of other sequenced lepidopterans (Hong et al, 2008; Hu et al, 2010; Kim et al, 2009; Mao et al, 2010; Pan et al, 2008; Wang et al, 2011; Xia et al, 2011). As for the tRNA-like sequences and the tandemly repeated elements often reported in other lepidopteran species (Kim et al, 2009; Pan et al, 2008), no relevant structures were detected in theP. sulpitiaA+T-rich region.

    3.6 Phylogenetic analysis

    An up-to-date and comprehensive classification of Nymphalidae was made by Ackery et al (1999) based on morphological characters, while work on molecular systematics of various lineages within Nymphalidae is beginning to clarify their relationships with interesting results (Brower et al, 2000; Wahlberg et al, 2003, 2005). Though the twelve subgroups of Nymphalidae (Libytheinae, Danainae, Charaxinae, Morphinae, Satyrinae, Calinaginae, Heliconiinae, Limenitidinae, Cyrestinae, Biblidinae, Apaturinae, and Nymphalinae) are widely accepted at the subfamily level, some relationships within this group remain unresolved. For example, the phylogenetic positions of Danainae, Libytheinae, and Limenitidinae within Nymphalidae are still controversial.

    As for the Limenitidinae, its sister group within the Nymphalidae has been the subject of substantial debate (Freitas & Brown, 2004; Harvey, 1991). From a morphological view, the close relationships of Limenitidinae, Heliconiinae, Nymphalinae, and Apaturinae have never been suggested (de Jong et al, 1996; Freitas & Brown, 2004; Harvey, 1991). For example, Freitas & Brown (2004) conducted a cladistic analysis of Nymphalidae based on immature and adult morphological characters, and the results showed that Limenitidinae is sister to the grouping of (Apaturinae + (Calinaginae + Satyrinae)), exclusive of the remaining nymphalidae taxa (Freitas & Brown, 2004). However, phylogenetic analyses based on molecular sequence data have convincingly suggested that Limenitidinae is the sister group of Heliconiinae (Brower, 2000; Wahlberg et al, 2003, 2005; Zhang et al, 2008). In this study, the ML and BI phylogenetic analyses based on the mitogenomic data of the nine available nymphalids, including that ofP. sulpitiaand other unpublished species, revealed the following relationships: (Danainae + ((Libytheinae + ((Satyrinae + Calinaginae) + (Apaturinae + (Heliconiinae + Limenitidinae) + Nymphalinae))))) with high support values (Fig. 4), which is congruent with those reported by Wahlberg et al (2003, 2005) and Brower (2000).

    Fig. 4 ML (A) and BI (B) trees of the nymphalid species based on nucleotide sequences of the 13 protein-coding genes Numbers at nodes are bootstrap values/posterior probabilities.

    In conclusion, the complete mitogenome ofP. sulpitiaharbored nearly the same characters as those of other nymphalids. Phylogenetic analysis on a mitogenomic level indicated that Limenitidinae was most closely related to Heliconiinae than other groups of Nymphalidae in this study, strongly supporting the results of former molecular studies, while contradicting the prevailing speculations based on morphological characters.

    Abascal F, Posada D, Zardoya R. 2007. MtArt: a new model of amino acid replacement for arthropoda[J].Mol Biol Evol,24(1): 1-5.

    Ackery PR. 1984. Systematic and faunistic studies on butterflies [M] //Vane-Wright RI, Ackery PR. (Eds.), Systematic and Faunistic Studies on Butterflies. Princeton, USA: Princeton University Press, 9-21.

    Ackery PR, de Jong R, Vane-Wright RI. 1999. The butterflies: Hedyloidea, Hesperoidea, and Papilionoidea [M] //Kristensen NP. (Ed.), Lepidoptera, Moths and Butterflies. Handbook of Zoology, Lepidoptera. Berlin: De Gruyter, 263-300.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool [J].J Mol Biol,215(3): 403-410.

    Anderson S, Bankier AT, Barrell BG, de Bruijin MHL, Coulson AR, Droujn J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome [J].Nature,290(5806): 457-465.

    Bae JS, Kim I, Sohn HD, Jin BR. 2004. The mitochondrial genome of the firefly,Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J].Mol Phylogenet Evol,32(3): 978-985.

    Beard CB, Hamm DM, Colllins FH. 1993. The mitochondrial genome of the mosquitoAnopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects [J].Insect Mol Biol,2(2): 103-124.

    Boore JL. 1999. Animal mitochondrial genomes [J].Nucleic Acids Res,27(8): 1767-1780.

    Brower AVZ. 2000. Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of thewinglessgene [J].Proc R Soc Lond B,267(1449): 1201-1211.

    Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm,Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths [J].Gene,408(1-2): 112-123.

    Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I. 2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee,Bombus ignitus(Hymenoptera: Apidae) [J].Gene,392(1-2): 206-220.

    Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code [J].J Mol Evol,22(3): 252-271.

    Clayton DA. 1992. Transcription and replication of animal mitochondrial DNA [J].Int Rev Cytol,141: 217-232.

    Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequences ofOstrinia nubilalisandOstrinia furnicalis[J].Int J Biol Sci,1(1): 13-18.

    Crozier RH, Crozier YC. 1993. The mitochondrial genome of the honeybeeApis mellifera: complete sequence and genome organization [J].Genetics,133(1): 97-117.

    de Jong R, Vane-Wright RI, Ackery PR. 1996. The higher classification of butterflies (Lepidoptera): problems and prospects [J].Entomol Scand,27(1): 65-101.

    Ehrlich PR. 1958. The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera) [J].Syst Entomol,10: 11-32.

    Fiedler K. 2010. The coming and going of Batesian mimicry in a Holarctic butterfly clade.BMC Biol, 8(1): 122.

    Flook PK, Rowell CHF, Grellissen G. 1995. The sequence organisation, and evolution of theLouocsta migratoriamitochondrial genome[J].J Mol Evol,41(6): 928-941.

    Freitas AVL, Brown KS Jr. 2004. Phylogeny of the Nymphalidae (Lepidoptera) [J].Syst Biol,53(3):363-383.

    Hao JS, Li CX, Sun XY, Yang Q. 2005. Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochodrial 16S rRNA sequences [J].Chn Sci Bull,50(12): 1205-1211.

    Harvey DJ. 1991. Higher classification of the Nymphalidae, Appendix B [M] //Nijhout HF. (Ed.), The Development and Evolution of Butterfly Wing Patterns. Washington, DC: Smithsonian Institution Press, 255-273.

    Hong GY, Jiang ST, Yu M, Yang Y, Li F, Xue FS, Wei ZJ. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly,Artogeia melete(Lepidoptera: Pieridae) [J].Acta Biochim Biophys Sin,41(6): 446-455.

    Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Huang JS, Jin BR, Kang PD, Kim KG, Han YS, Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk mothCaligula boisduvalii(Lepidoptera: Saturniidae) and comparison with other lepidopteran insects [J].Gene,413(1-2): 49-57.

    Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster,Acraea issoria(Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event [J].Mol Biol Rep,37(7): 3431-3438.

    Jiang ST, Hong GY, Yu M, Li N, Yang Y, Liu YQ, Wei ZJ. 2009. Characterization of the complete mitochondrial genome of the giant silkworm moth,Eriogyna pyretorum(Lepidoptera: Saturniidae) [J].Int J Biol Sci,5(4): 351-365.

    Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006. The mitochondrial genome of the Korean hairstreak,Coreana raphaelis(Lepidoptera: Lycaenidae) [J].Insect Mol Biol,15(2): 217-225.

    Kim MI, Beak JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I. 2009. Complete nucleotide sequence and organization of the mitogenome of the red-spotted Apollo butterfly,Parnassius bremeri(Lepidoptera: Papilionidae) and comparison with other lepidopteran insects [J].Mol Cell,28(4): 347-363.

    Kim MJ, Wan XL, Kim KG, Hwang JS, Kim I. 2010. Complete nucleotide sequence and organization of the mitogenome of endangeredEumenis autonoe(Lepidoptera: Nymphalidae) [J].Afr J Biotechnol,9(5): 735-754.

    Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipedeLithobius forficatus[J].Proc Natl Acad Sci USA,97(25): 13738-13742.

    Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, Niu CJ, Liu YQ, Li MG. 2010. The complete mitochondrial genome of the fall webworm,Hyphantria cunea(Lepidoptera: Arctiidae) [J].Int J Biol Sci,6(2): 172-186.

    Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z. 2008. The complete mitochondrial genome of the Chinese oak silkmoth,Antheraea pernyi(Lepidoptera: Saturniidae) [J].Acta Biochim Biophys Sin,40(8): 693-703.

    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J].Nucleic Acids Res,25(5): 955-964.

    Mao ZH, Hao JS, Zhu GP, Hu J, Si MM, Zhu CD. 2010. Sequencing and analysis of the complete mitochondrial genome ofPieris rapaeLinnaeus (Lepidoptera: Pieridae) [J].Acta Entomol Sin,53(11): 1295-1304.

    Mitchell SE, Cockburn AF, Seawright JA. 1993. The mitochondrial genome ofAnopheles quadrimaculatusspecies A: complete nucleotide sequence and gene organization [J].Genome,36(6): 1058-1073.

    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria [J].Nature,290(5806): 470-474.

    Pan MH, Yu QY, Xia YL, Dai FY, Liu YQ, Lu C, Zhang Z, Xiang ZH. 2008. Characterization of mitochondrial genome of Chinese wild mulberry silkworm,Bomyx mandarina(Lepidoptera: Bombycidae) [J].Sci Chn: Ser C-Life Sci,51(8): 693-701.

    Platt AP, Maudsley JR. 1994. Continued interspecific hybridization betweenLimenitis(Basilarchia)arthemis astyanaxandL.(B.)archippusin the southeastern US (Nymphalidae) [J].J Lepidopt Soc,48(3): 190-198.

    Posa D, Krandall KA. 1998. Modeltest: testing the model of DNA substitution [J].Bioinformatics,14(9): 817-818.

    Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models [J].Bioinformatics,19(12): 1572-1574.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter mothOchrogaster lunifer(Lepidoptera, Notodontidae) [J].BMC Genomics,9: 331.

    Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [J].Ann Entomol Soc Am,87(6): 651-701.

    Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier: Program for design of degenerate primers from a protein sequence [J].Biotechniques,24(2): 318-319.

    Spanos L, Koutroumbras G, Kotsyfakis M, Louis C. 2000. The mitochondrial genome of the Mediterranean fruit fly,Ceratitis capitata[J].Insect Mol Biol,9(2):139-144.

    Swofford DL. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0 [M]. Sunderland: Sinauer Associates.

    Thao ML, Baumann L, Baumann P. 2004. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha) [J].BMC Evol Biol,4: 25.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools [J].Nucl Acids Res,25(24): 4876-4882.

    Wahlberg N, Braby M F, Brower AVZ, de Jong R, Lee MM, Nylin S, Pierce NF, Sperling FAH, Vila R, Warren AD, Zakharov E. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers [J].Proc R Soc Lond B,272(1572): 1577-1586.

    Wahlberg N, Weingartner E, Nylin S. 2003. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea) [J].Mol Phylogenet Evol,28(3): 473-484.

    Wahlberg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera [J].Syst Biol,57(2): 231-242.

    Wang XC, Sun XY, Sun QQ, Zhang DX, Hu J, Yang Q, Hao JS. 2011. Complete mitochondrial genome of the laced fritillaryArgyreus hyperbius(Lepidoptera: Nymphalidae) [J].Zool Res,32(5): 465-475.

    Wilson K, Cahill V, Ballment E, Benzie J. 2000. The complete sequence of the mitochondrial genome of the crustaceanPenaeus monodon: are Malacostracan crustaceans more closely related to insects than to Branchiopods [J].Mol Biol Evol,17(6): 863-874.

    Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution [J].Int Rev Cytol,141: 173-216.

    Wu LW, Lees DC, Yen SH, Lu CC, Hsu YF. 2010. The complete mitochondrial genome of the near-threatened swallowtail,Agehana maraho(Lepidoptera: Papilionidae): evaluating sequence variability and suitable markers for conservation genetic studies [J].Entomol News,121(3): 267-280.

    Xia J, Hu J, Zhu GP, Zhu CD, Hao JS. 2011. Sequencing and analysis of the complete mitochondrial genome ofCalinaga davidisOberthür (Lepidoptera: Nymphalidae) [J].Acta Entomol Sin,54(5): 555-565.

    Xia X, Xie Z. 2001. DAMBE: Data analysis in molecular biology and evolution [J].J Hered,92(4): 371-373.

    Yang L, Wei ZJ, Hong GY, Jiang ST, Wen LP. 2009. The complete nucleotide sequence of the mitochondrial genome ofPhthonandria atrilineata(Lepidoptera: Geometridae) [J].Mol Biol Rep,36(6): 1441-1449.

    Yang Z, Rannala B. 1997. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method [J].Mol Biol Evol,14(7): 717-724.

    Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarina, and its close relative, the domesticated silkmoth,Bombyx mori[J].Mol Biol Evol,19(8): 1385-1389.

    Zhang M, Zhong Y, Cao TW, Geng YP, Zhang Y, Jin K, Ren ZM, Zhang R, Guo YP, Ma EB. 2008. Phylogenetic relationship and morphological evolution in the subfamily Limenitidinae (Lepidoptera: Nymphalidae) [J].Prog Nat Sci,18(11): 1357-1364.

    殘鍔線蛺蝶線粒體基因組全序列及其系統(tǒng)學(xué)意義

    田麗麗1, 孫曉燕2, 陳 梅1, 蓋永華2, 郝家勝1,2,*, 楊 群2,*

    (1. 安徽師范大學(xué) 生命科學(xué)學(xué)院分子進(jìn)化與生物多樣性研究室, 安徽 蕪湖 241000; 2. 中國(guó)科學(xué)院南京地質(zhì)古生物研究所 現(xiàn)代古生物學(xué)與地層學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 南京 210008)

    對(duì)殘鍔線蛺蝶(Parathyma sulpitia)(鱗翅目:蛺蝶科)線粒體基因組全序列進(jìn)行了測(cè)定。結(jié)果表明:殘鍔線蛺蝶線粒體基因組全序列全長(zhǎng)為15 268 bp, 除了在trnS1(AGN) 和trnE基因之間有一段121 bp長(zhǎng)的基因間隔外, 其基因的排列順序及排列方向與大多數(shù)已測(cè)鱗翅目物種基本一致。在蛋白質(zhì)編碼基因中, 除cox1以CGA作為其起始密碼子之外, 其余12個(gè)蛋白質(zhì)編碼基因都以標(biāo)準(zhǔn)的ATN作為起始密碼子。此外, 除nad4基因以單獨(dú)的T為終止密碼子, 其余12個(gè)蛋白質(zhì)編碼基因都以TAA結(jié)尾。除trnS1(AGN) 缺少DHU臂之外, 22個(gè)tRNA基因都顯示典型的三葉草形二級(jí)結(jié)構(gòu)。除A+T富集區(qū)外的非編碼序列中, 線粒體基因組共含有11個(gè)基因間隔區(qū)。其中,最長(zhǎng)的一個(gè)121 bp的基因間隔區(qū)位于trnS1(AGN)和trnE之間, 其A+T含量高達(dá)100%。另外, 和其他鱗翅目物種一樣, 在其A+T富集區(qū)的3'端有一段長(zhǎng)達(dá)18 bp的poly-T結(jié)構(gòu)。A+T富集區(qū)內(nèi)部沒有明顯的小衛(wèi)星樣多拷貝重復(fù)序列, 而含有一些微衛(wèi)星樣的重復(fù)結(jié)構(gòu)。本研究基于 13種蛋白編碼基因序列的組合數(shù)據(jù), 用最大似然法和貝葉斯法對(duì)蛺蝶科幾個(gè)主要亞科間共 9個(gè)代表物種間的系統(tǒng)發(fā)生關(guān)系進(jìn)行了分析。結(jié)果表明, 本研究的結(jié)果與前人的分子系統(tǒng)學(xué)研究結(jié)論基本吻合(其中, 線蛺蝶亞科和釉蛺蝶亞科互為姐妹群), 而與形態(tài)學(xué)的研究結(jié)論不一致。

    2011-11-18;接受日期:2012-02-28

    殘鍔線蛺蝶; 鱗翅目; 蛺蝶科; 線蛺蝶亞科; 線粒體基因組

    Q969.42; Q969.439.2 ; Q754

    A

    0254-5853-(2012)02-0133-11

    10.3724/SP.J.1141.2012.02133

    date:2011-11-18; < class="emphasis_bold">Accepted date

    date: 2012-02-28

    s:This work was supported by the National Natural Science Foundation of China (41172004), the CAS/SAFEA International Partnership Program for Creative Research Teams, Chinese Academy of Sciences (KZCX22YW2JC104), the Provincial Key Project of the Natural Science Foundation from the Anhui Province, China (KJ2010A142), and the Open Funds from the State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences* Corresponding authors (通信作者), E-mail: jshaonigpas@sina.com; qunyang@nigpas.ac.cn

    猜你喜歡
    富集區(qū)鱗翅目蛺蝶
    上海嘉定區(qū)蠶豆新記錄蟲害——豆小卷蛾
    低階煤煤層氣富集區(qū)預(yù)測(cè)方法研究與應(yīng)用
    貓蛺蝶和黑脈蛺蝶
    幼兒100(2020年25期)2020-10-22 05:25:20
    礦床富集區(qū)的控礦規(guī)律與找礦勘查實(shí)踐
    金堇蛺蝶
    寶清東升自然保護(hù)區(qū)鱗翅目昆蟲資源及蝶類多樣性分析
    括蒼山自然保護(hù)區(qū)鱗翅目昆蟲數(shù)據(jù)庫(kù)的構(gòu)建
    鱗翅目昆蟲觸角感器研究進(jìn)展
    孔雀蛺蝶
    能源富集區(qū)資源紅利與民生問題——以晉、陜、蒙為例
    国产淫语在线视频| 男女啪啪激烈高潮av片| 99热网站在线观看| 国产av国产精品国产| 精品一区二区三区视频在线| 免费观看精品视频网站| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看| 国产av码专区亚洲av| 欧美区成人在线视频| 国产在线男女| 久久久a久久爽久久v久久| 久久精品久久久久久久性| 亚洲高清免费不卡视频| 舔av片在线| 精品一区二区免费观看| av国产免费在线观看| 国产永久视频网站| 亚洲国产高清在线一区二区三| 久久久久久久久中文| 亚洲三级黄色毛片| 人妻制服诱惑在线中文字幕| 日韩欧美 国产精品| 亚洲精品aⅴ在线观看| 久久久午夜欧美精品| av在线蜜桃| 高清日韩中文字幕在线| 激情 狠狠 欧美| 男人和女人高潮做爰伦理| 最近2019中文字幕mv第一页| 日韩av在线大香蕉| 午夜精品在线福利| 精品久久久久久成人av| 国产又色又爽无遮挡免| 夜夜看夜夜爽夜夜摸| 国产 一区精品| 亚洲国产精品sss在线观看| 亚洲伊人久久精品综合| 97超视频在线观看视频| 午夜日本视频在线| 人人妻人人澡欧美一区二区| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 天堂中文最新版在线下载 | 国产激情偷乱视频一区二区| 亚洲不卡免费看| 伊人久久国产一区二区| 丝瓜视频免费看黄片| 欧美丝袜亚洲另类| 国产麻豆成人av免费视频| 男人爽女人下面视频在线观看| 日本av手机在线免费观看| 狂野欧美激情性xxxx在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产一区亚洲一区在线观看| 天美传媒精品一区二区| 男人和女人高潮做爰伦理| 波野结衣二区三区在线| 国产久久久一区二区三区| 在线免费观看不下载黄p国产| 国产单亲对白刺激| 在现免费观看毛片| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品成人综合色| 欧美日韩视频高清一区二区三区二| 亚洲国产精品专区欧美| 精品久久久久久电影网| 在线免费观看的www视频| 久久精品久久久久久噜噜老黄| 国产黄频视频在线观看| freevideosex欧美| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久亚洲| 亚洲精品乱久久久久久| 卡戴珊不雅视频在线播放| 插阴视频在线观看视频| 99热这里只有是精品在线观看| 成年免费大片在线观看| 在现免费观看毛片| 久99久视频精品免费| 亚洲久久久久久中文字幕| 国产精品不卡视频一区二区| 精品熟女少妇av免费看| 久久99热这里只有精品18| 亚洲国产欧美人成| 一个人免费在线观看电影| 精品久久久精品久久久| 成人无遮挡网站| 色播亚洲综合网| 一个人观看的视频www高清免费观看| 日韩三级伦理在线观看| 国产男人的电影天堂91| 国产 亚洲一区二区三区 | 大陆偷拍与自拍| 伦理电影大哥的女人| 午夜福利在线观看免费完整高清在| 午夜福利在线在线| 综合色丁香网| 亚洲国产成人一精品久久久| 国产有黄有色有爽视频| 久久久国产一区二区| 99久国产av精品国产电影| 欧美97在线视频| 欧美精品一区二区大全| 日韩成人av中文字幕在线观看| 国产精品伦人一区二区| 看免费成人av毛片| 亚洲欧美日韩东京热| 久久国内精品自在自线图片| 久久久久精品性色| 内地一区二区视频在线| 色尼玛亚洲综合影院| 亚洲av成人精品一区久久| 国产又色又爽无遮挡免| 大香蕉久久网| 国产高潮美女av| 少妇被粗大猛烈的视频| 国产亚洲91精品色在线| 日本爱情动作片www.在线观看| 日本免费a在线| 精品一区二区三区视频在线| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 99久久精品热视频| 亚洲欧美一区二区三区国产| 国产精品.久久久| 七月丁香在线播放| 在线免费观看不下载黄p国产| 国产亚洲精品av在线| 日本午夜av视频| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| 久久久久精品久久久久真实原创| 一区二区三区乱码不卡18| 国产色婷婷99| 国产一区二区在线观看日韩| 国产老妇伦熟女老妇高清| kizo精华| 久久久久久久久大av| 麻豆成人午夜福利视频| 久久精品国产亚洲av涩爱| 搡女人真爽免费视频火全软件| 性色avwww在线观看| 国产探花在线观看一区二区| 日韩欧美精品v在线| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 国产午夜福利久久久久久| 国产亚洲午夜精品一区二区久久 | 熟妇人妻不卡中文字幕| 中文天堂在线官网| 大片免费播放器 马上看| 精品久久久噜噜| 只有这里有精品99| 丰满少妇做爰视频| 欧美潮喷喷水| 亚洲欧洲国产日韩| 免费在线观看成人毛片| 国产男女超爽视频在线观看| 国产高清国产精品国产三级 | 久久久久九九精品影院| 久久亚洲国产成人精品v| 日韩伦理黄色片| 毛片一级片免费看久久久久| 国产美女午夜福利| 丰满乱子伦码专区| 国产亚洲av嫩草精品影院| 成年av动漫网址| 免费无遮挡裸体视频| 亚洲综合色惰| 精品欧美国产一区二区三| 中文字幕av在线有码专区| 只有这里有精品99| 最近中文字幕高清免费大全6| 一本久久精品| 五月天丁香电影| 亚洲欧美清纯卡通| 成人美女网站在线观看视频| 丝瓜视频免费看黄片| 午夜视频国产福利| 一个人看的www免费观看视频| 国产精品福利在线免费观看| 国产亚洲最大av| 熟女人妻精品中文字幕| 丝袜喷水一区| 亚洲电影在线观看av| 久久久久久久久久黄片| 亚洲精品影视一区二区三区av| 国产乱来视频区| 特级一级黄色大片| 国产午夜精品久久久久久一区二区三区| 精品午夜福利在线看| 国精品久久久久久国模美| 国产一级毛片在线| 中国美白少妇内射xxxbb| 亚洲美女搞黄在线观看| 十八禁网站网址无遮挡 | 国产成人一区二区在线| 国产乱人视频| 久久久精品94久久精品| 午夜激情欧美在线| 国产成人午夜福利电影在线观看| 国产女主播在线喷水免费视频网站 | 日韩大片免费观看网站| 日韩欧美三级三区| 深爱激情五月婷婷| 最近的中文字幕免费完整| 久久久a久久爽久久v久久| 精品一区二区三区人妻视频| 高清日韩中文字幕在线| 能在线免费观看的黄片| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 日本av手机在线免费观看| 少妇人妻精品综合一区二区| 老女人水多毛片| 欧美三级亚洲精品| 国产精品一区二区三区四区久久| 亚洲va在线va天堂va国产| 在线观看人妻少妇| 人人妻人人澡人人爽人人夜夜 | 亚洲av男天堂| 日产精品乱码卡一卡2卡三| av福利片在线观看| 看非洲黑人一级黄片| 婷婷色综合www| 80岁老熟妇乱子伦牲交| 日韩中字成人| 大片免费播放器 马上看| 欧美bdsm另类| 搡女人真爽免费视频火全软件| 国产精品一及| 欧美成人a在线观看| 青春草国产在线视频| 国产男女超爽视频在线观看| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说 | 精品久久久久久成人av| 内射极品少妇av片p| 少妇被粗大猛烈的视频| 一本久久精品| 精品国内亚洲2022精品成人| 日韩一本色道免费dvd| 亚洲欧洲日产国产| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩东京热| 国产精品国产三级国产av玫瑰| 国产av国产精品国产| 成人漫画全彩无遮挡| 精品久久久久久久久亚洲| 日韩不卡一区二区三区视频在线| 国产成年人精品一区二区| 免费观看性生交大片5| 少妇熟女欧美另类| 精品99又大又爽又粗少妇毛片| 国产午夜精品一二区理论片| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 春色校园在线视频观看| 久久久a久久爽久久v久久| 国产有黄有色有爽视频| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 亚洲图色成人| 色5月婷婷丁香| 国产高潮美女av| 国产成人精品婷婷| 久久久久精品性色| 久久久久久久久中文| 成人毛片60女人毛片免费| 中国国产av一级| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| av福利片在线观看| 国产精品久久久久久av不卡| 伦精品一区二区三区| 色哟哟·www| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 婷婷色av中文字幕| 免费看a级黄色片| 国产老妇伦熟女老妇高清| av福利片在线观看| 国产成人a∨麻豆精品| 国产伦理片在线播放av一区| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 黄片wwwwww| 国产淫片久久久久久久久| 老司机影院毛片| 两个人视频免费观看高清| 91精品一卡2卡3卡4卡| 床上黄色一级片| 男女那种视频在线观看| 日韩欧美三级三区| 十八禁国产超污无遮挡网站| 在线免费观看的www视频| 内地一区二区视频在线| 美女大奶头视频| 久久人人爽人人片av| 1000部很黄的大片| 欧美日韩国产mv在线观看视频 | 麻豆av噜噜一区二区三区| 男的添女的下面高潮视频| 禁无遮挡网站| 你懂的网址亚洲精品在线观看| 搡老妇女老女人老熟妇| av在线亚洲专区| a级毛片免费高清观看在线播放| 日日啪夜夜爽| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类| 蜜臀久久99精品久久宅男| 人妻少妇偷人精品九色| 国产女主播在线喷水免费视频网站 | 久久这里有精品视频免费| 亚洲怡红院男人天堂| 中文字幕制服av| 亚洲自拍偷在线| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 午夜福利视频精品| 夫妻性生交免费视频一级片| 99久国产av精品国产电影| 久久久久久久久久成人| 亚洲精品国产成人久久av| 可以在线观看毛片的网站| 亚州av有码| 日韩欧美国产在线观看| 在线免费观看的www视频| 精品久久久久久久久久久久久| 哪个播放器可以免费观看大片| 人妻少妇偷人精品九色| 男女边摸边吃奶| 亚洲国产最新在线播放| av天堂中文字幕网| av国产久精品久网站免费入址| 特级一级黄色大片| 搡老妇女老女人老熟妇| www.av在线官网国产| 视频中文字幕在线观看| 少妇的逼水好多| 99久久精品热视频| 亚洲国产最新在线播放| 深爱激情五月婷婷| 人妻系列 视频| 不卡视频在线观看欧美| 精品国产三级普通话版| 丰满少妇做爰视频| 国产日韩欧美在线精品| 午夜福利在线在线| 大片免费播放器 马上看| 天堂av国产一区二区熟女人妻| 欧美精品一区二区大全| av在线播放精品| 中文字幕久久专区| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放| 国产91av在线免费观看| 91久久精品电影网| 日韩av在线大香蕉| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄| 美女cb高潮喷水在线观看| 亚洲国产日韩欧美精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩亚洲欧美综合| 国内精品一区二区在线观看| 亚洲内射少妇av| 水蜜桃什么品种好| 免费观看无遮挡的男女| 久久久久久久久久久丰满| 日韩av在线免费看完整版不卡| 噜噜噜噜噜久久久久久91| 老女人水多毛片| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 国产成人freesex在线| 九色成人免费人妻av| 欧美成人午夜免费资源| 久久热精品热| 一区二区三区免费毛片| 久久久精品免费免费高清| 精品久久久久久电影网| 日韩一区二区三区影片| 国内精品美女久久久久久| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 日韩欧美国产在线观看| 天堂√8在线中文| av专区在线播放| 激情五月婷婷亚洲| av在线亚洲专区| 一个人免费在线观看电影| 成人高潮视频无遮挡免费网站| a级毛片免费高清观看在线播放| 中文字幕亚洲精品专区| 国产黄频视频在线观看| 在线免费十八禁| 全区人妻精品视频| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频 | 精品一区二区三区人妻视频| 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 日韩欧美三级三区| 亚洲人成网站在线播| 成人亚洲欧美一区二区av| 精品国产露脸久久av麻豆 | 亚洲精品久久久久久婷婷小说| 亚洲婷婷狠狠爱综合网| 91精品一卡2卡3卡4卡| av一本久久久久| 一级爰片在线观看| 免费电影在线观看免费观看| 51国产日韩欧美| 大话2 男鬼变身卡| 春色校园在线视频观看| 欧美日韩综合久久久久久| 亚洲国产精品成人综合色| 色5月婷婷丁香| 一级a做视频免费观看| 欧美一级a爱片免费观看看| 菩萨蛮人人尽说江南好唐韦庄| 一级av片app| 亚洲欧美日韩无卡精品| 五月天丁香电影| 欧美区成人在线视频| 97热精品久久久久久| 白带黄色成豆腐渣| 一区二区三区四区激情视频| 久久久久久久久久成人| av一本久久久久| 欧美97在线视频| av免费在线看不卡| 亚洲久久久久久中文字幕| 黄片无遮挡物在线观看| 好男人在线观看高清免费视频| 三级男女做爰猛烈吃奶摸视频| 日韩成人av中文字幕在线观看| 欧美潮喷喷水| 一级片'在线观看视频| 日韩欧美国产在线观看| 精品国产三级普通话版| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 久久这里有精品视频免费| 2021天堂中文幕一二区在线观| 免费av不卡在线播放| 天堂√8在线中文| 国内精品宾馆在线| 色5月婷婷丁香| 日本色播在线视频| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 亚洲在线观看片| 日日撸夜夜添| 亚洲精品一区蜜桃| 亚洲精品成人久久久久久| 青春草国产在线视频| 亚洲欧美一区二区三区黑人 | 中文欧美无线码| 少妇猛男粗大的猛烈进出视频 | 色视频www国产| 午夜福利网站1000一区二区三区| 国精品久久久久久国模美| 国产在线男女| 国产精品一区二区三区四区久久| 婷婷色av中文字幕| 国产永久视频网站| 国产亚洲av嫩草精品影院| 日本熟妇午夜| 激情 狠狠 欧美| 国产欧美日韩精品一区二区| 一级毛片 在线播放| videos熟女内射| 久久人人爽人人爽人人片va| 少妇的逼水好多| 视频中文字幕在线观看| 一个人看的www免费观看视频| 欧美激情在线99| 人体艺术视频欧美日本| 国产淫片久久久久久久久| 婷婷色麻豆天堂久久| 欧美3d第一页| 日韩精品有码人妻一区| 欧美成人午夜免费资源| xxx大片免费视频| 97超碰精品成人国产| 亚洲精品影视一区二区三区av| 插逼视频在线观看| 亚洲精品成人av观看孕妇| 日韩中字成人| 青春草视频在线免费观看| 一个人免费在线观看电影| 国产有黄有色有爽视频| 久久99热6这里只有精品| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 美女大奶头视频| 日韩亚洲欧美综合| 久久精品久久久久久久性| 男的添女的下面高潮视频| 国产精品熟女久久久久浪| 全区人妻精品视频| 99久久精品国产国产毛片| 欧美xxⅹ黑人| 日本一二三区视频观看| av.在线天堂| 高清欧美精品videossex| 国产免费一级a男人的天堂| 精品一区二区三区视频在线| 国产精品综合久久久久久久免费| 丰满少妇做爰视频| 你懂的网址亚洲精品在线观看| 男女视频在线观看网站免费| 三级经典国产精品| 国产精品久久视频播放| 亚洲成色77777| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 简卡轻食公司| 日韩精品青青久久久久久| 非洲黑人性xxxx精品又粗又长| 日本免费在线观看一区| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 成年免费大片在线观看| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 欧美成人a在线观看| 欧美三级亚洲精品| 成人午夜高清在线视频| 网址你懂的国产日韩在线| 床上黄色一级片| 成人美女网站在线观看视频| 久久久国产一区二区| 国产探花在线观看一区二区| 亚洲av中文av极速乱| 午夜福利在线观看吧| 国产精品一区二区在线观看99 | 亚洲成人中文字幕在线播放| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 国产在视频线精品| 中文字幕av成人在线电影| 建设人人有责人人尽责人人享有的 | 全区人妻精品视频| 亚洲综合精品二区| 纵有疾风起免费观看全集完整版 | 久久午夜福利片| 看十八女毛片水多多多| 色播亚洲综合网| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 最近2019中文字幕mv第一页| 国产三级在线视频| 女的被弄到高潮叫床怎么办| 热99在线观看视频| 丝袜喷水一区| 视频中文字幕在线观看| 91久久精品电影网| 色尼玛亚洲综合影院| 欧美性感艳星| 亚洲av日韩在线播放| 晚上一个人看的免费电影| 床上黄色一级片| av天堂中文字幕网| 久久精品国产亚洲网站| 七月丁香在线播放| 内射极品少妇av片p| 国产人妻一区二区三区在| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人看人人澡| 国语对白做爰xxxⅹ性视频网站| 人人妻人人澡欧美一区二区| 精品久久久噜噜| 久久韩国三级中文字幕| 免费看a级黄色片| 欧美97在线视频| 亚洲婷婷狠狠爱综合网| 亚洲自拍偷在线| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区人妻视频| 午夜精品国产一区二区电影 | 99九九线精品视频在线观看视频| 国产老妇女一区| 久久草成人影院| 国产精品三级大全| 插逼视频在线观看| 免费看av在线观看网站| 午夜激情久久久久久久| 国产男女超爽视频在线观看| 免费看日本二区| 国产精品三级大全| 一级毛片黄色毛片免费观看视频| 色视频www国产| 精品久久国产蜜桃|