楊少華,于海芳,華志強(qiáng)
(1.阜陽(yáng)師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,安徽 阜陽(yáng) 236037;2.朝陽(yáng)師范高等??茖W(xué)校 數(shù)學(xué)計(jì)算機(jī)系,遼寧 朝陽(yáng) 122000;3.內(nèi)蒙古民族大學(xué) 數(shù)學(xué)學(xué)院,內(nèi)蒙古 通遼 028043)
定義2[4]稱隨機(jī)變量序列{ξn,n ≥1} 為二元相依的,如果對(duì)任意的i,j=1,2,…,i ≠j,有
定理1 設(shè){ξk,k ≥1} 為一個(gè)二元相依的隨機(jī)變量序列,其分布為Gi∈L,存在有限的數(shù)學(xué)期望μ,且Gi(i=1,2,… )滿足假設(shè)條件1:對(duì)某個(gè)T >0,存在x ≥T ,一致地有
則對(duì)任意常數(shù)γ >0 ,當(dāng)n →∞時(shí),對(duì)x ≥γn ,一致地有
證明 由于
由定義2 知,當(dāng)x 充分大時(shí),存在ε1=ε1( x ),使得
又由假設(shè)條件1 知,當(dāng)n 充分大時(shí),存在充分小的ε2=ε2( n )和ε3=ε3( n ),使得
從而有
當(dāng)固定n 時(shí),令ε1→0,ε2→0,可得
故當(dāng)n →∞時(shí),對(duì)x ≥γn,一致地有
由文獻(xiàn)[2],給出假設(shè)條件2:當(dāng)t →∞時(shí),對(duì)于任意的δ >0 和任意小的ε >0,有
定理2 設(shè){ξk,k ≥1} 為一個(gè)滿足定理1 的隨機(jī)變量序列,且獨(dú)立于取非負(fù)整數(shù)值的隨機(jī)過(guò)程{Nt,t ≥0} 。假設(shè){Nt,t ≥0} 滿足假設(shè)條件2,則對(duì)任意常數(shù)γ >0 ,當(dāng)t →∞時(shí),對(duì)x ≥γλt,一致地有
且當(dāng)t →∞時(shí),對(duì)x ≥γλt,一致地有
證明 對(duì)任意的0 <δ <1,有
以下計(jì)算I2:
由假設(shè)條件1,得到如下的漸近關(guān)系:
又由定理1 可得
由(1)式可導(dǎo)出
故對(duì)任意常數(shù)γ >0 ,當(dāng)t →∞時(shí),對(duì)x ≥γ λt,一致地有
并且當(dāng)t →∞時(shí),對(duì)x ≥γ λt,一致地有
[1] Klüppelberg C,Mikosch T. Large deviations of heavy-tailed random sums with applications in insurance and finance[J]. Journal of Applied Probability,1997,34(2):293-308.
[2] Ng K W,Tang Q,Yang J A,et al. Precise large deviations for sums of random variables with consistently varying tails[J]. Journal of Applied Probability,2004,41(1):93-107.
[3] Liu L. Precise large deviation for dependent random variables with heavy tails[J]. Statistics & Probability Letters,2009,79(9):1290-1298.
[4] Yang Y,Wang K. Uniform asymptotics for the finite-time and infinite-time ruin probabilities in a dependent risk model with constant interest rate and heavy-tailed claims[J]. Lithuanian Mathematical Journal,2012,52(1):111-121.
[5] Konstantinides D G,Loukissas F. Precise large deviations for sums of negatively dependent random variables with common long-tailed distributions[J]. Communications in Statistics-Theory and Methods,2011,40(19):3663-3671.
[6] 華志強(qiáng),姜曉威.帶延拓負(fù)上限相關(guān)的隨機(jī)變量和的精確大偏差[J]. 北華大學(xué)學(xué)報(bào):自然科學(xué)版,2012,13(4):398-400.