• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acoustic Radiation of Cylindrical Shells Submerged in the Fluid in Presence of the Seabed or Dock

    2013-12-13 09:14:32YEWenbingLITianyunZHUXiangCHENChen
    船舶力學(xué) 2013年3期

    YE Wen-bing,LI Tian-yun,ZHU Xiang,CHEN Chen

    (Department of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

    1 Introduction

    The cylindrical shell is a typical element in the industrial fields.A significant amount of efforts has been dedicated to the study of the sound and vibration of submerged cylindrical shell[1-4].These researchers mainly focus on different types of cylindrical shells such as the shell with stiffeners and the shell with composite materials.In these papers,the fluid region surrounding the shells is assumed to be infinite and the sound field is considered as free space which means only traveling waves exist and the sound pressure can be expressed conveniently.

    In practice,when the submarine runs near the seabed or the submarine is tested in the presence of dock,the fluid domain can be seen as semi-infinite and the seabed and the dock can be processed as rigid wall[5-6].The characteristics of the acoustic and vibration of the structure in this kind of fluid domain are much different from those in infinite fluid domain.Thus,it is very important to study the characteristics of the structure located in the semi-infinite fluid domain with the boundary of rigid wall which can help us predict the acoustic radiation of the structure quickly and exactly in the case.

    For the fluid domain with the boundary of rigid wall,it is difficult to obtain the expression of the sound pressure.In some cases which include the boundary of free edge,the image method is usually used to deal with the boundary condition,which is a typical approach used in many fields such as electromagnetics,optics,acoustics,and so on.In order to impose an appropriate boundary condition on the free surface,Ergin[7]introduced a boundary integral equation method and the image method to study the free vibration of a partially liquid-filled and submerged,horizontal cylindrical shell.Hayir et al[8]presented a partially analytical study for the plate having a circular cavity subject to SH waves and proposed the image method to satisfy the boundary condition of the traction free surfaces on the plate.The dynamic stress concentration factors are analyzed in the paper.Li et al[9]studied the diffraction of sound by an impedance sphere in the vicinity of a ground surface and applied the image method to account for the effect of the ground surface.Hasheminejad et al[10]analyzed the modal vibrations of a cylindrical radiator over an impedance plane which consists of the boundary condition and the image method is adopted to solve the problem.Fang et al[11]investigated the multiple scattering of flexural waves and dynamic stress concentration from a cylindrical inclusion in a semi-infinite thin plate by using the image method to satisfy the boundary condition on the plate edge.

    By adopting the image method,the boundary condition of the rigid wall is satisfied in this paper.The structure-fluid coupling vibration equations are established and the far-field sound pressure radiating from the submerged cylindrical shell in presence of rigid wall is analyzed by employing the stationary phase method[12].

    Fig.1 A submerged cylindrical shell and the corresponding coordinate system

    2 Theoretical analysis

    As in Fig.1,an infinite thin cylindrical shell of thickness h,mean radius R,Young’s modulus E,Poisson’s ratio μ,density ρs,is considered to be submerged in a fluid of density ρfwhere the velocity of sound is cf.The fluid domain is assumed to be semi-infinite.The cylindrical coordinates system(r,φ,z)is applied in this paper to define the position of points in the region above the rigid wall.The distance between the rigid wall and the center line of the cylindrical shell is denoted by H(H>R)and the cylindrical shell is excited by a harmonic point force frat the angle φ0.The observation point,which is defined in a spherical coordinates system,is introduced to define the position in the far-field which is located at a distance Ro,a polar angle of θ from the center line of the shell.

    2.1 The motion equations of the shell

    The Flügge shell equations are used to describe the motions of the cylindrical shell(For brevity,the factor e-iωtis omitted in the following expressions).

    where[L]denotes the classical Flügge differential operator for thin shell theory:

    where u,v and w are the displacements of the shell in the z-,φ-and r-axes respectively.f0represents the load imposed by the fluid sound pressure on the surface of the cylindrical shell.

    According to the wave propagation approach,u,v,w and f0can be expanded into Fourier series as follows[2]:

    where n denotes the expansion coefficient,are the shell spectral displacement amplitudes in the z-,φ-and r-axes respectively,is the spectral load amplitude of f0and kzis the wave number in axial direction.

    The point force can be expressed as:

    where δ(·)denotes the Delta function.

    By substituting Eqs.(2)-(6)into Eq.(1)and taking the Fourier transform and the orthogonal processing,the following equations are obtained:

    where the elements of matrix[T]are

    2.2 Acoustic pressure expression

    As it is shown in Fig.2,the cylindrical shell is located above the rigid wall.According to the image method[10],the sound radiation field is superimposed by the part that is directly radiated from the real source and the other part that is reflected by the rigid wall.The reflection part can be seen as that is radiated directly from a mirror image source of the real source in respect to rigid wall.And the acoustic pressure of any point A in the fluid field can be expressed as follows:

    Fig.2 The sketch of the image method

    where pr(r,φ,z)is the sound pressure radiated from the real source and pi(r′,φ′,z)from the image source.

    The two parts also satisfy the Helmholtz equation,and then they can be expressed as follows:

    where m is the expansion coefficient,is the nth order Hankel function of the first kind,are the pressure amplitude,

    Considering the normal velocity on the rigid wall is zero,the following relationship can be obtained at certain point(Rs,φs)on the rigid wall:

    From Fig.2,the following relations can be expressed as:

    By applying the derivation processing,the following equations can be obtained:

    When the point A is located on the rigid wall with x=-H,the relation can be expressed as:

    By taking the orthogonal processing and using the identityand Eq.(14),the following equation is obtained:

    By substituting the Eqs.(10),(15)into Eq.(9),the following expression is obtained:

    According to the Graf’s addition theorem for the Bessel functions,the second term of the right part in above equation can be expressed as follows[12]:

    where Jm(·)is the mth order Bessel function.

    2.3 The structure-acoustic coupling equation

    By combining the Eqs.(17a)and(16),the sound pressure of the fluid field near the surface of the cylindrical shell(r<2H)is expressed as:

    Then the load on the surface of the cylindrical shell imposed by the sound pressure in wave-number domain is obtained:

    Considering the boundary condition at the interface between the cylindrical shell and the fluid,the following equation is obtained:

    By introducing the Eqs.(4),(18)into Eq.(20)and taking the Fourier transform,can be represented as:

    By combining the Eqs.(7),(8),(19)and Eq.(21),the structure-acoustic coupling equation can be expressed as:

    where

    where[T]-1denotes the inverse matrix of[T].

    2.4 Far-field sound pressure

    It is assumed that the far-filed is confined to the domain r>2H.By substituting the Eqs.(17b)into Eq.(16),the following equation is obtained:

    where

    By introducing the inverse Fourier Transform to the Eq.(23),then:

    After applying the stationary phase method[2]and transforming cylindrical coordinates in above equation to spherical coordinates by the identity r=Rosinθ and z=Rocosθ,the far-field sound pressure radiating from a submerged cylindrical shell at a finite distance from the rigid wall can be expressed as:

    According to the Ref.[2],the far-field sound pressure radiating from a cylindrical shell submerged in infinite fluid is expressed as:

    Finally,the following expression is introduced to calculate the sound pressure level(SPL)in far-field:

    where p0=1×10-6Pa.

    3 Numerical results and discussion

    The following parameters of the coupling system have been used in the calculations.The material of the cylindrical shell is assumed to be steel:E=2.1×1011Pa,μ=0.3,ρs=7 850 kg/m3,and h=0.05 m and R=1.0 m.The surrounding fluid is considered to be water:cf=1 500 m/s and ρf=1 000 kg/m3.The amplitude and circumferential angle of the radial harmonic point force are supposed to be F0=1N and φ0=0.The polar angle of the observation point is assumed to be θ=π/2 in all following results.To avoid possible confusion,it is necessary to make clear that the far-field observation points in following results are located in the domain above the y-z plane as depicted in Fig.1.

    Considering that the fluid domain can be processed as the infinite field when the distance from the rigid wall is large enough[5].The circumferential distribution of sound pressure(-π/2≤φ≤π/2)at the typical frequencies Ω=0.3,1.2 and 3.0[13-14]when the distance H=100 m,300 m and 600 m is investigated and compared with those when the fluid domain is considered to be infinite.The distance of the observation point is assumed to be Ro=1 500 m for satisfying the condition r>2H.The results are shown in Fig.3.It is found that the distribution of the far-field sound pressure radiated from the submerged cylindrical shell at a finite distance from the rigid wall shows differences with those from the cylindrical shell in infinite field.With the increasing of the distance,the far-field sound pressures in semi-infinite domain tend to agree with those in infinite fluid at a certain frequency.

    Fig.3 Comparison of the far-filed pressure in semi-infinite and infinite fluid(a)Ω=0.3;(b)Ω=1.2;(c)Ω=3.0

    From the Fig.3,it can also be found that when increasing the excitation frequency and decreasing the distance H,the far-field sound pressure in our work agrees well with the infinite field.In order to describe the relation clearly,the following equation is introduced to evaluate the gap of far-field sound pressures between in the cases of our work and infinite field:

    where Psemi-finitedenotes far-field sound pressure level at certain observation point when the cylindrical shell is immersed at a finite distance from the rigid wall,and Pinfinitecorresponds to that in infinite field.

    The gap is investigated at the observation point(in this case Ro=600 m,φ=π/8,θ=π/2)and the results is shown in Fig.4.It is clear that the gap becomes small with the increase of the distance H.The error curves drop more quickly while the excitation frequency is higher.

    Fig.4 The error varying with the distance:(a)Ω=0.3;(b)Ω=1.2;(c)Ω=3.0

    Fig.5 shows the circumferential distribution of far-field sound pressure when the cylindrical shell is located at a relatively small distance from the rigid wall at the frequency Ω=0.3,1.2 and 3.0 respectively.The distance of the observation point is assumed to be Ro=50 m in this case.It can be seen that the directivity of the far-field sound pressure varies with the distance H and the petal number is larger when the frequency is higher.

    Fig.5 The far-field sound pressure radiated from the submerged cylindrical shell with different distances from rigid wall:(a)Ω=0.3;(b)Ω=1.2;(c)Ω=3.0

    Fig.6 The far-field sound pressures varying with frequencies at a certain observation point

    Fig.6 illustrates the far-field sound pressure varying with frequencies when the distance H=2 m,3 m and 4 m at the observation point(Ro=50 m,θ=π/2,φ=π/8).It is found that the far-field sound pressure fluctuates with the frequency in the low and high band in the case of finite distance due to the superposition of the direct waves and the reflected waves from the rigid wall,while the sound pressure varies smoothly in the infinite field.

    The far-field sound pressure varies with the distance H at the observation point(Ro=50 m,θ=π/2,φ=π/8)when the frequency Ω=0.3,1.2 and 3.0 is given in Fig.7.It is clear that the sound pressure fluctuates with the distance H at all frequencies and this fluctuation is larger as the frequency increases.As shown in Fig.7,the distance of the adjacent peak points is as-sumed to be d and the wavelength of the wave which propagates in the fluid is denoted as λ.The ratio of the distance to the wavelength at different frequencies is shown in Tab.1.It can be found that the ratio at different frequencies tends to be the same value 0.5 which means that when the change of distance H is a multiple of 0.5λ,the peak or valley point appears.

    Fig.7 The far-field sound pressure varying with the distance H at certain observation point:(a)Ω=0.3;(b)Ω=1.2;(c)Ω=3.0

    Tab.1 The radio of the distance d and the wave length λ at different frequency

    In the presence of the rigid wall which can reflect the waves,the sound pressure at a certain point consists of two parts.One part is the sound pressure radiated by the cylindrical shell directly and the other part is the sound pressure reflected by rigid wall.The superposition of these two parts either enhances or weakens the sound pressure at a certain point which results in the fluctuations in above curves.At low frequencies,the wavelength is relatively large and the oscillations of the sound pressure with the depth are relatively slow.With the increase of the frequencies,the wavelength becomes more and more small and the pressure fluctuates with the depth more quickly which can be found from above results.

    4 Conclusions

    By adopting the image method and the stationary phase theory,the characteristics of the far-field sound pressure radiating from a submerged cylindrical shell at a finite distance from the seabed or dock are obtained and the results are compared to those from the cylindrical shell in infinite fluid.It is concluded that the results of two cases are different due to the presence of seabed or dock.The distribution of the far-filed sound pressure in the two cases becomes very close when the distance is large enough.When the cylindrical shell is immersed at a small distance from the seabed or dock,the distribution shows obviously differences.The far-field pressure exhibits oscillation with the change of the distance and the extent of the oscillation is intensified with the increase of the frequency which is decided by the ratio of depth to wavelength.

    Acknowledgements

    The authors wish to express their gratitude to National Natural Science Foundation of China(Contract No.40976058)that has supported this work.

    [1]Pathak A G,Stepanishen P R.Acoustic harmonic radiation from fluid-loaded infinite cylindrical elastic shells using elasticity theory[J].The Journal of the Acoustical Society of America,1994,96(1):573-582.

    [2]Junger M C.Sound,structure and their interaction[M].Cambridge:M.I.T.Press,1979.

    [3]Burroughs C B.Acoustics radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports[J].Journal of the Acoustic Society of America,1984,75(3):715-722.

    [4]Guo Y P.Acoustic scattering from cylindrical shells with deck-type internal plate at oblique incidence[J].Journal of the Acoustic Society of America,1994,96(1):287-293.

    [5]Zou Y J,Zhao D Y,Li S.Impact of soft surface and hard plane on structural vibration and acoustic radiation[J].Acta A-custica,2005,30(1):89-96.

    [6]Cao W W,Chen M,Guan S S,The discussion of the calculation of the acoustic radiation from the structure in presence of dock[C]//Proceeding of 12th Underwater Noise of Shipbuilding.Changsha,2009.(in Chinese)

    [7]Ergin A.Free vibration of a partially liquid-filled and submerged,horizontal cylindrical shell[J].Journal of Sound and Vibration,2002,254(5):951-965.

    [8]Hayir A,Bakirtas I.A note on a plate having a circular cavity excited by plane harmonic SH waves[J].Journal of Sound and Vibration,2004,271(1-2):241-255.

    [9]Li K M,Lui W K.Frommer G H.The diffraction of sound by an impedance sphere in the vicinity of a ground surface[J].Journal of the Acoustic Society of America,2004,115(1):42-56.

    [10]Hasheminejad S M,Azarpeyvand M.Modal vibration of a cylindrical radiator over an impedance plane[J].Journal of Sound and Vibration,2004,278(3):461-477.

    [11]Fang X Q,Wang X H.Multiple scattering of flexural waves from a cylindrical inclusion in a semi-infinite thin plate[J].Journal of Sound and Vibration,2009,320(4-5):878-892.

    [12]Lee W M,Chen J T.Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method[J].International Journal of Solids and Structures,2010,47(9):1118-1129.

    [13]Xu M B,Zhang W H.Vibrational power flow input and transmission of a circular cylindrical shell filled with fluid[J].Journal of Sound and Vibration,2000,234(3):387-403.

    [14]Yan J,Li F C,Li T Y.Vibrational power flow analysis of a submerged viscoelastic cylindrical shell with wave propagation approach[J].Journal of Sound and Vibration,2007,303(1-2):264-276.

    免费观看的影片在线观看| 欧美精品一区二区大全| av国产久精品久网站免费入址| 免费大片黄手机在线观看| 久久婷婷青草| 亚洲欧洲日产国产| 日韩一本色道免费dvd| 人妻系列 视频| 成人手机av| 日韩在线高清观看一区二区三区| 久久久精品免费免费高清| 人妻系列 视频| 一级毛片我不卡| 人人妻人人添人人爽欧美一区卜| 少妇被粗大猛烈的视频| 在线精品无人区一区二区三| 国产日韩欧美视频二区| 久久ye,这里只有精品| 日韩不卡一区二区三区视频在线| 亚洲中文av在线| 男人添女人高潮全过程视频| 久久99热6这里只有精品| 亚洲婷婷狠狠爱综合网| 欧美少妇被猛烈插入视频| 亚洲精品视频女| 久久精品人人爽人人爽视色| 国产成人午夜福利电影在线观看| 精品亚洲乱码少妇综合久久| 一级黄片播放器| 国国产精品蜜臀av免费| 精品久久久久久电影网| 亚洲精品久久久久久婷婷小说| 精品亚洲成国产av| 中文字幕最新亚洲高清| 国产成人精品久久久久久| 久久av网站| 精品人妻熟女av久视频| 97超视频在线观看视频| 22中文网久久字幕| 青春草视频在线免费观看| 99热全是精品| 制服人妻中文乱码| 成人手机av| 男的添女的下面高潮视频| 国产精品不卡视频一区二区| 精品人妻在线不人妻| 成年女人在线观看亚洲视频| 亚洲精品中文字幕在线视频| 桃花免费在线播放| 久久久亚洲精品成人影院| 人妻一区二区av| 在线免费观看不下载黄p国产| 亚洲国产最新在线播放| 中国三级夫妇交换| 伊人亚洲综合成人网| 久久久久久久久久久免费av| 久久国产精品男人的天堂亚洲 | 黑人欧美特级aaaaaa片| 亚洲综合色网址| 十分钟在线观看高清视频www| 久久精品国产自在天天线| 女性生殖器流出的白浆| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人国产av品久久久| 观看av在线不卡| 免费av不卡在线播放| 18+在线观看网站| 亚洲不卡免费看| 国产日韩欧美视频二区| 日本欧美国产在线视频| 欧美性感艳星| 日本vs欧美在线观看视频| 永久网站在线| 亚洲国产日韩一区二区| 大又大粗又爽又黄少妇毛片口| 涩涩av久久男人的天堂| videossex国产| 丰满少妇做爰视频| 久久午夜福利片| 国产片内射在线| 免费久久久久久久精品成人欧美视频 | 久久精品国产亚洲av涩爱| 十八禁高潮呻吟视频| 美女国产视频在线观看| 99热网站在线观看| 美女国产视频在线观看| 国产黄频视频在线观看| 男女边摸边吃奶| 亚洲av日韩在线播放| 久久精品人人爽人人爽视色| 一级毛片aaaaaa免费看小| 考比视频在线观看| 国产精品蜜桃在线观看| 97精品久久久久久久久久精品| 99久国产av精品国产电影| 久久影院123| 久久久久久伊人网av| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区黑人 | av免费在线看不卡| 女性被躁到高潮视频| 国产成人aa在线观看| 韩国av在线不卡| 久久99热6这里只有精品| 99热这里只有精品一区| 久久人妻熟女aⅴ| 十八禁网站网址无遮挡| 国产又色又爽无遮挡免| 人妻 亚洲 视频| 色5月婷婷丁香| 国产白丝娇喘喷水9色精品| 最近中文字幕2019免费版| 在线精品无人区一区二区三| 日韩视频在线欧美| 国产一区有黄有色的免费视频| av黄色大香蕉| 欧美xxxx性猛交bbbb| 99久久综合免费| 热re99久久国产66热| 欧美另类一区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品乱码久久久久久按摩| 国产av精品麻豆| 亚洲人成网站在线观看播放| 精品人妻熟女av久视频| 丰满迷人的少妇在线观看| 欧美国产精品一级二级三级| 亚洲怡红院男人天堂| 日本色播在线视频| 亚洲熟女精品中文字幕| 99热网站在线观看| 久久精品国产自在天天线| 欧美亚洲 丝袜 人妻 在线| www.av在线官网国产| videosex国产| 亚洲中文av在线| 两个人免费观看高清视频| 在线观看人妻少妇| 91精品国产九色| 秋霞在线观看毛片| 卡戴珊不雅视频在线播放| 少妇猛男粗大的猛烈进出视频| 97超视频在线观看视频| 国产精品国产三级国产av玫瑰| 性高湖久久久久久久久免费观看| 高清不卡的av网站| 亚洲国产欧美在线一区| 国产成人freesex在线| 伊人久久国产一区二区| 久久99热6这里只有精品| 韩国高清视频一区二区三区| 少妇 在线观看| 久久国内精品自在自线图片| 青春草亚洲视频在线观看| 高清av免费在线| 午夜av观看不卡| 日产精品乱码卡一卡2卡三| 亚洲第一区二区三区不卡| 欧美激情极品国产一区二区三区 | 国产片特级美女逼逼视频| 亚洲欧美一区二区三区国产| 97精品久久久久久久久久精品| 婷婷成人精品国产| 精品亚洲乱码少妇综合久久| 少妇的逼水好多| 伊人久久国产一区二区| 亚洲精品乱码久久久v下载方式| 国产在线一区二区三区精| 日本黄色片子视频| 伊人久久国产一区二区| 国产乱人偷精品视频| 青春草视频在线免费观看| 亚洲欧美清纯卡通| 少妇人妻 视频| 成人国语在线视频| 男女边吃奶边做爰视频| 观看美女的网站| 卡戴珊不雅视频在线播放| 99九九在线精品视频| 高清欧美精品videossex| 在线免费观看不下载黄p国产| 美女视频免费永久观看网站| 亚洲人成网站在线播| 天天影视国产精品| 热99久久久久精品小说推荐| 国产在线视频一区二区| a级片在线免费高清观看视频| 91精品三级在线观看| 色94色欧美一区二区| 欧美三级亚洲精品| av福利片在线| 多毛熟女@视频| av天堂久久9| 日本爱情动作片www.在线观看| av国产精品久久久久影院| 18禁在线无遮挡免费观看视频| 视频中文字幕在线观看| 啦啦啦中文免费视频观看日本| 免费观看无遮挡的男女| 伦理电影免费视频| 精品久久久精品久久久| 国产日韩欧美视频二区| 精品人妻一区二区三区麻豆| 在线观看一区二区三区激情| 亚洲少妇的诱惑av| 日本91视频免费播放| av在线app专区| av黄色大香蕉| 另类精品久久| 国产深夜福利视频在线观看| 老司机亚洲免费影院| 在现免费观看毛片| 看非洲黑人一级黄片| 欧美bdsm另类| 久久99精品国语久久久| 国产永久视频网站| 亚洲精品aⅴ在线观看| 天天操日日干夜夜撸| 全区人妻精品视频| 中文字幕久久专区| 亚洲不卡免费看| 韩国高清视频一区二区三区| 丝袜美足系列| av又黄又爽大尺度在线免费看| 26uuu在线亚洲综合色| 国产无遮挡羞羞视频在线观看| 99久久精品国产国产毛片| 国产欧美日韩综合在线一区二区| 国产精品无大码| av有码第一页| 国产色爽女视频免费观看| av国产久精品久网站免费入址| 9色porny在线观看| av又黄又爽大尺度在线免费看| 在线天堂最新版资源| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂| 大香蕉97超碰在线| 狂野欧美白嫩少妇大欣赏| 成年人午夜在线观看视频| 久久午夜综合久久蜜桃| 麻豆精品久久久久久蜜桃| a级毛片免费高清观看在线播放| 亚洲av成人精品一二三区| 天天操日日干夜夜撸| 国产免费一级a男人的天堂| 亚洲av国产av综合av卡| 在线看a的网站| 全区人妻精品视频| 99视频精品全部免费 在线| 久久久亚洲精品成人影院| 最新的欧美精品一区二区| 亚洲av.av天堂| 99热网站在线观看| 99热国产这里只有精品6| 少妇的逼好多水| 亚洲欧美清纯卡通| 国产乱来视频区| 久久精品国产a三级三级三级| 欧美激情 高清一区二区三区| 全区人妻精品视频| 国产极品天堂在线| 亚洲av二区三区四区| 亚洲精品美女久久av网站| 免费大片黄手机在线观看| 欧美三级亚洲精品| 国产黄频视频在线观看| 亚洲av成人精品一二三区| 少妇丰满av| 纵有疾风起免费观看全集完整版| 日韩视频在线欧美| 欧美一级a爱片免费观看看| 秋霞在线观看毛片| 亚洲精品成人av观看孕妇| 国产精品一区www在线观看| 成年人午夜在线观看视频| 男人爽女人下面视频在线观看| 黄色视频在线播放观看不卡| 亚洲欧洲精品一区二区精品久久久 | 成年av动漫网址| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 大话2 男鬼变身卡| 午夜福利网站1000一区二区三区| 国产成人精品无人区| 免费观看在线日韩| 国产免费现黄频在线看| 交换朋友夫妻互换小说| 欧美+日韩+精品| 一个人看视频在线观看www免费| 岛国毛片在线播放| 免费av不卡在线播放| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| 下体分泌物呈黄色| 国产爽快片一区二区三区| 成人综合一区亚洲| 国产精品久久久久久久电影| 亚洲美女视频黄频| 久久ye,这里只有精品| 欧美性感艳星| 91久久精品国产一区二区成人| 久久人人爽av亚洲精品天堂| 午夜免费鲁丝| 成人国产av品久久久| 人人妻人人爽人人添夜夜欢视频| 久久精品国产鲁丝片午夜精品| 亚洲不卡免费看| 国产精品蜜桃在线观看| a级片在线免费高清观看视频| 97超碰精品成人国产| 久久久精品免费免费高清| 日韩欧美一区视频在线观看| 亚洲精品久久成人aⅴ小说 | 一级爰片在线观看| 老女人水多毛片| 午夜视频国产福利| 永久免费av网站大全| av播播在线观看一区| 精品久久久久久电影网| 一级片'在线观看视频| 男女边吃奶边做爰视频| 亚州av有码| 久久精品久久久久久噜噜老黄| 各种免费的搞黄视频| 高清午夜精品一区二区三区| 交换朋友夫妻互换小说| 日本免费在线观看一区| 日韩一本色道免费dvd| 亚洲精品自拍成人| 日本黄大片高清| 久久久久久久精品精品| 国产日韩欧美视频二区| 久久精品夜色国产| 国产在视频线精品| 97精品久久久久久久久久精品| 美女cb高潮喷水在线观看| 十八禁高潮呻吟视频| 日韩视频在线欧美| 欧美激情 高清一区二区三区| 91精品一卡2卡3卡4卡| av在线观看视频网站免费| 久久国产亚洲av麻豆专区| 欧美丝袜亚洲另类| 妹子高潮喷水视频| 丝袜脚勾引网站| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜爱| 最后的刺客免费高清国语| 日韩免费高清中文字幕av| 久久久久久久大尺度免费视频| 免费人成在线观看视频色| 日韩一区二区视频免费看| 国产日韩欧美亚洲二区| 国产无遮挡羞羞视频在线观看| 麻豆乱淫一区二区| 亚洲五月色婷婷综合| 欧美日韩av久久| 精品人妻熟女毛片av久久网站| 国产一区二区三区综合在线观看 | 国产伦理片在线播放av一区| 91久久精品电影网| 国产成人freesex在线| 欧美人与性动交α欧美精品济南到 | 国产一区二区在线观看av| 黄色怎么调成土黄色| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 中文字幕久久专区| 男女边摸边吃奶| 午夜福利在线观看免费完整高清在| 2022亚洲国产成人精品| 日韩伦理黄色片| 只有这里有精品99| 女人精品久久久久毛片| 美女内射精品一级片tv| 高清毛片免费看| 一个人看视频在线观看www免费| 一本—道久久a久久精品蜜桃钙片| 18禁在线播放成人免费| 狂野欧美激情性xxxx在线观看| 亚洲av免费高清在线观看| 蜜桃国产av成人99| 99九九线精品视频在线观看视频| 2022亚洲国产成人精品| 一边亲一边摸免费视频| 亚洲综合精品二区| 免费观看的影片在线观看| 欧美日韩在线观看h| 超色免费av| 亚洲欧美一区二区三区黑人 | 最近的中文字幕免费完整| 高清欧美精品videossex| 国模一区二区三区四区视频| 中文字幕制服av| 一区二区三区四区激情视频| 国产成人91sexporn| 午夜视频国产福利| 国产精品久久久久成人av| 亚洲精品日本国产第一区| 视频中文字幕在线观看| 美女福利国产在线| 午夜av观看不卡| 亚洲综合色惰| 大码成人一级视频| 高清不卡的av网站| 少妇熟女欧美另类| 国产精品久久久久久久久免| 欧美变态另类bdsm刘玥| 亚洲中文av在线| 久久热精品热| 国产午夜精品一二区理论片| 91精品国产九色| 99热这里只有精品一区| av黄色大香蕉| h视频一区二区三区| 欧美精品一区二区免费开放| 女性生殖器流出的白浆| 亚洲第一区二区三区不卡| 国产高清不卡午夜福利| 国产成人午夜福利电影在线观看| 黄色欧美视频在线观看| 你懂的网址亚洲精品在线观看| 国产白丝娇喘喷水9色精品| 国产欧美亚洲国产| 一区二区av电影网| 欧美xxxx性猛交bbbb| 岛国毛片在线播放| 亚洲精品乱码久久久久久按摩| 午夜免费鲁丝| 国产爽快片一区二区三区| 大陆偷拍与自拍| 国产欧美另类精品又又久久亚洲欧美| 人妻少妇偷人精品九色| 国产在线免费精品| 极品人妻少妇av视频| 精品卡一卡二卡四卡免费| 国产免费又黄又爽又色| 中文字幕人妻丝袜制服| 啦啦啦视频在线资源免费观看| 热99久久久久精品小说推荐| 日本色播在线视频| 大香蕉97超碰在线| 色网站视频免费| 中文字幕av电影在线播放| 国产毛片在线视频| 黑人欧美特级aaaaaa片| 丝袜喷水一区| 色婷婷av一区二区三区视频| 欧美xxxx性猛交bbbb| 人成视频在线观看免费观看| 夫妻午夜视频| 国产乱来视频区| 国产免费现黄频在线看| 国产精品国产三级国产av玫瑰| 如何舔出高潮| 国产精品国产三级专区第一集| 国产亚洲最大av| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 欧美精品一区二区免费开放| 国产亚洲精品第一综合不卡 | 啦啦啦中文免费视频观看日本| 久久久久网色| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 亚洲欧美日韩另类电影网站| 最近中文字幕2019免费版| 少妇丰满av| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 亚洲国产精品成人久久小说| 久久久精品免费免费高清| 久久99一区二区三区| 人人澡人人妻人| 亚洲四区av| 久久国产精品男人的天堂亚洲 | 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲 | 久久精品久久精品一区二区三区| 久久久久久久国产电影| 国产av精品麻豆| 国国产精品蜜臀av免费| 亚洲精品乱码久久久v下载方式| 久久99一区二区三区| 大码成人一级视频| 午夜影院在线不卡| 成人手机av| 丰满少妇做爰视频| 亚洲性久久影院| 亚洲综合色惰| 99久久精品国产国产毛片| 亚洲性久久影院| av在线观看视频网站免费| 成人影院久久| 校园人妻丝袜中文字幕| 久久午夜福利片| 丝袜在线中文字幕| 亚洲人成网站在线观看播放| 亚洲精品aⅴ在线观看| 一级毛片电影观看| 国语对白做爰xxxⅹ性视频网站| 欧美亚洲日本最大视频资源| 国产白丝娇喘喷水9色精品| 免费高清在线观看日韩| 男女边吃奶边做爰视频| 美女国产高潮福利片在线看| 在线观看人妻少妇| 91国产中文字幕| 王馨瑶露胸无遮挡在线观看| 麻豆乱淫一区二区| 成年av动漫网址| 两个人的视频大全免费| 午夜免费鲁丝| 秋霞伦理黄片| 日本vs欧美在线观看视频| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 黄色欧美视频在线观看| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 在线播放无遮挡| 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 少妇的逼水好多| 午夜av观看不卡| 国产精品一区www在线观看| 午夜视频国产福利| 九草在线视频观看| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 久久久欧美国产精品| 五月伊人婷婷丁香| 亚洲成人手机| 成年女人在线观看亚洲视频| 亚洲av欧美aⅴ国产| 97超视频在线观看视频| 精品一区二区三区视频在线| 一区二区日韩欧美中文字幕 | 久久婷婷青草| 亚洲成人av在线免费| 十分钟在线观看高清视频www| 国产精品久久久久久av不卡| 99热这里只有是精品在线观看| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看日韩| videossex国产| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 国产片内射在线| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看 | 青春草视频在线免费观看| 尾随美女入室| 男女免费视频国产| 一区二区av电影网| 免费观看性生交大片5| 欧美亚洲日本最大视频资源| 熟女电影av网| 精品久久蜜臀av无| 国产亚洲精品久久久com| 久久婷婷青草| 国产成人精品久久久久久| 久久久国产一区二区| 精品久久久精品久久久| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 亚洲第一av免费看| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 亚洲久久久国产精品| 一级毛片电影观看| 国产欧美日韩一区二区三区在线 | 国产精品女同一区二区软件| 久久婷婷青草| 极品人妻少妇av视频| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩卡通动漫| a级片在线免费高清观看视频| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 人人妻人人添人人爽欧美一区卜| 日韩成人伦理影院| 黑人高潮一二区| 久久久久久久国产电影| 欧美日韩综合久久久久久| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区www在线观看| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 欧美丝袜亚洲另类| 肉色欧美久久久久久久蜜桃| 多毛熟女@视频| 日本欧美视频一区| 国产永久视频网站| 国产av国产精品国产| 只有这里有精品99| 国产成人a∨麻豆精品| 精品一品国产午夜福利视频| 人妻夜夜爽99麻豆av| 男男h啪啪无遮挡| 伦精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 中国国产av一级| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看 |