• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of the Loading Inherent Subspace Scaling Method on the Whipping Responses Test of a Surface Ship to Underwater Explosions

    2013-12-13 02:57:12LIUJianhuWUYoushengWANGHaikunPANJianqiang
    船舶力學(xué) 2013年3期

    LIU Jian-hu,WU You-sheng,WANG Hai-kun,PAN Jian-qiang

    (China Ship Scientific Research Center,Wuxi 214082,China)

    1 Introduction

    It is well known that a nearby underwater explosion to a ship can cause the onboard equipments damage,hull rapture and whipping damage.Since 1950s,many naval architects had investigated the hull whipping effects of a ship induced by underwater explosion.Chertock[1]had set up a method for predicting the whipping responses of surface ship to underwater explosion based on mode superposition.Ma[2]had also used the similar method to investigate the whipping responses of a surface ship to underwater shockwave.Hicks[3]had developed Chertock’s method to use FEM modeling the ship structure.Li[4]had conducted an elastic scaled model of a surface ship to investigate the whipping responses to underwater explosion,and the experimental results are not suitable to convert directly to that of the prototype because the scale law are not clear.

    Because the dynamics of underwater explosion bubble is strongly related to the gravity but the shock wave is not,there are some difficulties to achieve a complete similarity both in structural dynamics and in that of underwater explosion loadings in scaled model test.Lua[5]had proposed a‘big cover’method for modeling the hydraulic pressure of the ship bottom and the detonation position.This method is not easy to execute in reality.Schmidt[6]had used a geotechnic centrifuge to amplify the gravity of the model and the surrounding water for a subscale model to underwater explosion.Normally,if the pressure of the detonating position of the charge is not simulated,the geometric scale method can still be used to conduct the experiment to investigate the shock environment and local hull damage due to underwater explosion shock wave,and it is not suitable for modeling the whipping responses,as it is strongly relevant to the bubble loads that are seriously affected by the initial pressure of the detonation position.

    The Froude scale method which is based on a dynamic similarity of the ratio between inertia and gravity force,is widely used in whipping model experiment caused by surface wave.In underwater explosion case,the shock wave energy must be balanced with the structural strain energy and the bubble dynamics must be balanced with the beamlike dynamic responses,and the Froude scale method can be used for whipping response modeling to underwater explosion with a scaled air pressure condition.Therefore,it is not easy to execute such an experiment for relative large model.In order to simulate the whipping responses of ship structure to underwater explosion in subscale,a scaled model test method has previously been proposed by Liu et al[7].This method does not like the geometric or Froude scale method that need to pressurize or decompress for free surface and have similar law in all mechanical space,and there is similarity between prototype and scaled model only in a load inherent subspace.This method is called Loading Inherent Subspace(LIS)scale method.The LIS scale method satisfies the subscale requirement by keeping the same ratios of the lower vibration mode periods to the pulsation periods of the bubble,and of the maximum radius to the detonation distance as the real ship situation to underwater explosion.And the method ignores the effects of the differences of the rising height of the bubble between scaled model test and the real ship situation.

    In this paper,the LIS scale method is applied to a surface ship-like model,and both the prototype and the subscale model to underwater explosion were experimented.The whipping responses are measured respectively and compared to each other.It was also found that the damping coefficient varies with the amplitude of the responses and has important effects to the maximum bending moments.

    2 Scale law and the experimental model

    2.1 Scale Law

    As usual for the low frequency modes of hull vibration,a simple beam model has been used to represent the elastic character of hull and the structure details of each section are not simulated.The mass distribution and the wet surface are simulated in scale method.If we design a model test with a scaled factor λl,we can get the relationship of the whipping response between the prototype ship and the model to underwater explosion from the LIS scale method.Results of main scale factors from the Ref.[7]are summarized in Tab.1.

    Tab.1 The summarized scale factors of model tests[7]

    In Tab.1,the index n is a key value in the LIS scale method,as n constrains the similar space and it can be expressed as follows:

    In above equation,d is the detonation depth of the charge.In usual condition,it can be seen that:0<n<1.This Loading Inherent Subspace(LIS)scaling method is different from the traditional existing scale methods.Every scale model has an unique scale index n that is relevant to the underwater explosion situation and it can only model some special load cases and not suitable for all cases.The geometric scale law requires n=0.The traditional whipping model test requires Froude numbers invariant and then n=1.In traditional scaling cases,the scaled model is only determined by the geometric scale factor λland is not inherent with the loadings of the prototype.

    2.2 Experimental models

    In order to validate the scale law,two models of ship whipping responses to underwater explosion are developed,where the big one acts as the prototype and the small one as the subscale model.Three-dimensional rendering of two models is shown in Fig.1.The main structure and half breadth plan of the prototype and the scale model are shown in Fig.2.It consists of 8 segments that are connected by 7 elastic cylinders.The 8 segments consist of the shiplike outlines and the main weight,and the 7 cylinders supply the bending stiffness of the beam that also act as the bending moment measuring meter by measuring the strain.There are 7 sealing rubber strips between segments.Ship lines of models are the same and satisfy geometry scale.

    The subscale model is designed to simulate the prototype with a scaled factor of 0.3 and a scaled index n=0.244 3,and both the main structure stiffness and the mass distribution are similar with those of the prototype,and their manufacture techniques are the same.The main parameters of the prototype and the subscale model are listed in Tab.2.The inertia moment and segments mass both of the prototype and the subscale model are listed in Tab.3.The first vibration mode frequency is almost similar to the prototype,and there are some bias between the required and the real frequency of the second and third mode.However,the critical damping ratios are difficult to keep the same even if the technique of making the model is the same.The critical damping ratio of the first vibration mode initially is 0.3%that is much lower than that of the prototype.After damping treatment,the relevant ratio becomes 3%that is near to the value of 1.5%of the prototype.

    Fig.1 Three-dimensional longitudinal cutaway view and fitting partial view of models

    Fig.2 Structure and half breadth plan both of prototype and model

    Tab.2 The key parameters of the prototype and the subscale model

    Fig.3 shows the first and second vibration mode shapes of the subscale model and the prototype,where curves obtained from vibration mode test are all normalized by the maximum to 1.Fig.4 shows the comparison of the normalized mode moment which was also obtained from vibration mode test between the model and the prototype.It can be seen that a good consistency is achieved on the mode parameters between the subscale model and the prototype,which is the base of getting good simulation results by scaled model test.Fig.5 shows the test scene of the prototype and 0.3 scale model to the underwater explosion,and it shows that the whipping responses had caused the water splashing in the aft and the stern.

    Cylinders No.proto Itny ep re t i a moment(m m 4o)d elSegments No.protot Sy ep ge ment mass(k m g)odel 1234567 3.25E-03 4.96E-03 6.65E-03 6.72E-03 5.80E-03 4.76E-03 3.12E-03 1.967E-05 2.975E-05 4.016E-05 4.078E-05 3.543E-05 2.885E-05 1.876E-05 12345678 4 296 3 527 3 685 4 507 3 742 3 061 2 732 4 394 155 102 99 116 97 86 83 168

    Fig.3 Comparison of test mode shapes between model and prototype

    Tab.3 Inertia moments and segment mass of the prototype and the subscale model

    Fig.4 Comparison of test mode moments of the model and the prototype

    Fig.5 Test scene of the prototype and model to underwater explosion in CSSRC

    3 Experimental results

    3.1 Experiment cases

    Experiment cases are designed in different keel shock factors SFkldefined by(1+sinα)W0.5/2R,different attack angles α,various frequency ratios of the first vibration mode to the first pulsation of the bubble ξ,and different positions in longitude.Cases are then all experimented not in the simulated subspace but near the boundary.All experimental cases are listed in Tab.4 in detail.The experiment scheme is shown in Fig.6.In all cases,the charge weights are scaled bythe distances from the detonation charge to the keel of the model are strictly scaled by λl,thus the keel shock factors are scaled byIn cases 10 and 11,the detonation position of the subscale model experiment is not within the similar subspace,just keeping the charge weight W,the ratios ξ of the frequencies and the keel shock factor SFklsatisfy the scaling law introduced in Tab.1.From case 12 to case 16,the SFklare close and the ξ values become large.Strains of each cylinder are measured by strain gauges which are affixed to upside and downside of the cylinder,which are converted to the bending moment and deflection by test calibration.The disposing diagram of strain is also shown in Fig.6.

    Tab.4 The experiment cases

    Fig.6 The schematic diagram of experiment case and strain gauges disposing

    3.2 Results of subscale model

    The deflection measure results at S4 position of subscale model in different cases with the same ξ=0.961 and different SFklare shown in Fig.7.The deflection is defined of vertical distance from any position of beam model to the straight line connected bow to stern.Fig.8 shows the responses are linearly increased by the keel shock factors,and the relation between maximal deflection ymaxand SFklis obtained:

    Fig.7 Comparisons of measure deflection in different cases

    Fig.8 The relation between maximal deflection and SFkl

    Fig.9 Comparisons of measure results in same SFkland different ξ

    The measured results of subscale model are shown in Fig.9 of different cases that are all normalized to SFkl=0.195 of different frequency ratio ξ.From Fig.9(a),in the first period of the bubble pulsation,t<T,two deflection curves are consistent well on the amplitude.In case of ξ=0.961,the maximal deflection is in the second period of the first vibration mode.However when ξ=1.04,the maximal deflection value is achieved half period of the first vibration mode later than in case of ξ=0.961.There is some phase difference between the two load cases.Even if the test model is the same,the responses by bubble are delayed by the bubble pulsations when ξ becomes greater.Fig.9(b)also shows the maximal response increases with ξ increasing when its value is less than 1.124,and the maximal response decreases when its value is more than 1.124,and the whipping response reaches the maximal value when ξ=1.124.

    Fig.10 shows the measured deflections at S2 position in different test cases that are in the same keel shock factor SFkl,ξ and γ.It shows the maximal response appears in the middle section when charge is located at L/2,while the maximal response appears in the L/4 or 3L/4 section when charge is located at L/4.It shows the component of 2nd mode whipping responses becomes larger when charge is at L/4,but the maximal responses with charge at L/2 are always about 2 times larger than charge at L/4 position.

    Fig.10 Comparisons of deflection with different charge longitudinal position

    Fig.11 shows the measured deflections at S4 strain gauge in different test cases that are just in the same keel shock factor SFkl=0.179 and ξ=0.961.The differences of the maximal whipping responses among each case are within 10%when both SFkland ξ are the same.

    Fig.11 Comparisons of the measured results in same SFkland same ξ

    Fig.12 Comparisons of the deflection response with different critical damping ratios

    It is found that the damping can seriously affect the maximal whipping responses.Fig.12 shows the comparison of the responses with different critical damping ratios.When the damp-ing ratio increases 10 times,the maximum responses will decrease about 20%.We also found that the damping varies with the amplitude of response.Fig.13 shows the damping ratio change along with time in case 7.The damping ratio decreases from 1.3%to 0.3%with the strain from 500 με to 50 με.The characteristics of damping may introduce difficulty to whipping response prediction and simulation.So it is worthy of further study.

    Fig.13 Curve of damping ratio changed along with strain response of subscale model

    3.3 Comparing with results of prototype

    Fig.14 to Fig.16 show the comparisons of moment measure results between prototype and 0.3 scale model.The test results of 0.3 scale model are converted by the scale law in Tab.1.It shows that the responses are consistent well between the prototype and the subscale model.

    Fig.14 Comparisons of moment measure curves in case 2 with η=3%subscale model

    Fig.15 Comparisons of moment measure curves in case 7 with η=0.3%subscale model

    Fig.16 Comparisons of moment measure curves in case 8 with η=0.3%subscale model

    Fig.17 shows the comparisons of test results between prototype and 0.3 subscale model in case 10 in which the detonation condition of subscale model is not in the similar subspace of LIS scale law,just keeping the charge weight W,the ratios of the frequencies ξ and the keel shock factor SFklsatisfy the scaling law.The comparisons results show that the simulation precise is still accepted.

    Fig.17 Comparisons of moment measure curves in case 10 with η=0.3%subscale model

    4 Conclusions

    Two model tests are executed by applying the LIS scaling method to investigate the whipping responses of a surface ship to underwater explosions.Some relations between the whipping responses and the explosion parameters are investigated.The predicted responses by subscale model test are compared with those of the prototype and a good consistence is achieved.And an upward displacement compensating method is proposed for decreasing the bias from the subscale model test.Some meaningful results are achieved as follows:

    (1)The most important parameters to the whipping responses are the keel shock factor and the ratio of the frequency of the first beam vibration mode to the first bubble pulsation,ξ.The maximum response was obtained with a similar keel shock factor when ξ=1.12.

    (2)The whipping response increases linearly with the SFkl.

    (3)Damping has obvious effects on the whipping responses.The critical damping ratios are relevant to the amplitude of the responses,and it decreases to the measurement value obtained from vibration test as the response decreases to small amplitude.

    (4)The LIS scaling method has a good precise in modeling the responses of surface ship to underwater explosion.

    Acknowledgements

    Authors would like to thank He Bin,Yang Yunchuan,Cai Rongkun,Chen Hui,Zhang Keming,Mao Haibin and all colleagues in the explosion and shock division of China Ship Scientific Research Center for their high quality work on designing models,executing underwater experiments and measuring the responses.We also thank Dr.Wang Weibo for his advices on the paper.

    [1]Chertock G.Transient flexural vibrations of ship-like structures exposed to underwater explosions[J].J Acoust.Soc.Am.,1970,48(1):170-180.

    [2]Ma J,Zhang Q.The estimation of dynamic bending moment for a ship subjected to underwater noncontact explosions[C]//Proc.Int.Symp.On Mine Warfare Vessels and Systems.Rina,London,1984.

    [3]Hicks A N.Explosion induced hull whipping[M].Advances in Marine Structures,edited by Smith C S,Clark J D,Elsevier Applied Science Publishers,1986:390-410.

    [4]Li Y J,Pan J Q,Li G H,Zhang X C.Experimental study of ship whipping by underwater explosive bubble[J].Journal of Ship Mechanics,2001,5(6):75-83.

    [5]Lua J,Godino V,Littlewood T,Miller R,Martini K.Dynamic response analysis of scaled steel hulls under direct shock wave and bubble loadings[C]//Proc.of 68th Shock&Vibration Symp.Hunt Valley,Maryland,1997:643-651.

    [6]Schmidt R M,Voss M E,Housen K R,Holsapple K A.Subscale experiments to measure shock and bubble loading on responding structures[M].ASME Publication PVP-Vol.272,Sloshing,Fluid-structure Interaction and Structural Response Due to Shock and Impact Loads,1994:175-182.

    [7]Liu J H,Wu Y S,Pan J Q,Wang H K.The scaling method for the whipping responses of a ship structure to underwater explosion[M]//Proceedings of Sixth International Conference of Navy and Shipbuilding Nowadays.St.Peterburg,Russia,June 30-July 1,2011,Section B-11,2011.

    [8]Cole R H.Underwater explosion[M].Princeton University Press,1948.

    成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 大陆偷拍与自拍| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 久久久久精品性色| 欧美在线黄色| 国产女主播在线喷水免费视频网站| 国产熟女午夜一区二区三区| 制服人妻中文乱码| 国产精品国产三级国产专区5o| 午夜福利视频在线观看免费| 免费在线观看完整版高清| 国产成人精品无人区| 亚洲精品,欧美精品| 激情五月婷婷亚洲| 日韩中文字幕欧美一区二区 | 永久免费av网站大全| 色吧在线观看| 中文乱码字字幕精品一区二区三区| 丁香六月天网| 老司机影院毛片| 操出白浆在线播放| 9191精品国产免费久久| 人人妻,人人澡人人爽秒播 | 十八禁人妻一区二区| 欧美国产精品一级二级三级| 黄色视频在线播放观看不卡| 宅男免费午夜| 日本午夜av视频| 人人澡人人妻人| 青春草国产在线视频| 热99久久久久精品小说推荐| 日韩av不卡免费在线播放| 国产成人啪精品午夜网站| 在线 av 中文字幕| 久久久精品免费免费高清| 国产女主播在线喷水免费视频网站| 久久久久国产一级毛片高清牌| 丰满少妇做爰视频| 欧美97在线视频| 亚洲七黄色美女视频| 各种免费的搞黄视频| 一本大道久久a久久精品| 国产乱人偷精品视频| 老司机影院毛片| 精品一区二区免费观看| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 国产 精品1| avwww免费| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 国产精品99久久99久久久不卡 | 最近中文字幕高清免费大全6| 丝袜脚勾引网站| 精品一区二区三卡| av在线观看视频网站免费| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 别揉我奶头~嗯~啊~动态视频 | 中文字幕色久视频| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 两性夫妻黄色片| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 两性夫妻黄色片| 久久99热这里只频精品6学生| 蜜桃国产av成人99| 90打野战视频偷拍视频| 18禁裸乳无遮挡动漫免费视频| 日韩免费高清中文字幕av| 男女午夜视频在线观看| 午夜福利网站1000一区二区三区| 黄片播放在线免费| 999精品在线视频| 九草在线视频观看| 亚洲伊人久久精品综合| 亚洲精品日本国产第一区| 精品亚洲成国产av| 人人妻人人爽人人添夜夜欢视频| 看十八女毛片水多多多| 免费观看人在逋| 91国产中文字幕| 久久久久久久久免费视频了| 婷婷成人精品国产| 午夜福利在线免费观看网站| 国产男人的电影天堂91| 激情视频va一区二区三区| 国产精品二区激情视频| 亚洲伊人久久精品综合| 亚洲精品日本国产第一区| 午夜免费观看性视频| 一级,二级,三级黄色视频| av天堂久久9| 亚洲成人一二三区av| 黄色一级大片看看| 亚洲国产欧美在线一区| 九色亚洲精品在线播放| 亚洲成av片中文字幕在线观看| 日本午夜av视频| 大片免费播放器 马上看| 国产乱人偷精品视频| 51午夜福利影视在线观看| 大片电影免费在线观看免费| 亚洲精品在线美女| 丝袜美腿诱惑在线| 啦啦啦在线观看免费高清www| 亚洲国产精品成人久久小说| 亚洲成av片中文字幕在线观看| 免费在线观看黄色视频的| netflix在线观看网站| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品| 国精品久久久久久国模美| www.自偷自拍.com| 高清黄色对白视频在线免费看| 国产精品三级大全| 999久久久国产精品视频| 老司机影院毛片| 精品午夜福利在线看| av女优亚洲男人天堂| 亚洲视频免费观看视频| 极品人妻少妇av视频| 国产精品久久久久成人av| 在线观看一区二区三区激情| 亚洲精品视频女| 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 精品酒店卫生间| 最新在线观看一区二区三区 | 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| 欧美久久黑人一区二区| 久久久久久久国产电影| 国产伦人伦偷精品视频| 日韩成人av中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 国产爽快片一区二区三区| 香蕉丝袜av| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 亚洲欧美精品自产自拍| 日本爱情动作片www.在线观看| 国产深夜福利视频在线观看| 丝袜人妻中文字幕| 欧美乱码精品一区二区三区| 久久亚洲国产成人精品v| 看非洲黑人一级黄片| 最近手机中文字幕大全| 久久精品国产a三级三级三级| 成年动漫av网址| 又黄又粗又硬又大视频| 国产亚洲av高清不卡| 午夜影院在线不卡| 久久精品熟女亚洲av麻豆精品| 日韩熟女老妇一区二区性免费视频| 国产精品 国内视频| 精品一区二区免费观看| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 久久国产精品男人的天堂亚洲| 天天添夜夜摸| 最黄视频免费看| 久久综合国产亚洲精品| 亚洲三区欧美一区| 国产又色又爽无遮挡免| 中文天堂在线官网| 各种免费的搞黄视频| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 波野结衣二区三区在线| 日韩中文字幕视频在线看片| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久av网站| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av高清不卡| 久久精品人人爽人人爽视色| 精品第一国产精品| 免费少妇av软件| 两性夫妻黄色片| 午夜福利影视在线免费观看| 久久久欧美国产精品| bbb黄色大片| 水蜜桃什么品种好| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费鲁丝| 精品视频人人做人人爽| 国产精品99久久99久久久不卡 | av一本久久久久| 老司机在亚洲福利影院| 纯流量卡能插随身wifi吗| 啦啦啦中文免费视频观看日本| a级毛片黄视频| 婷婷色av中文字幕| 尾随美女入室| 久久天躁狠狠躁夜夜2o2o | av不卡在线播放| 赤兔流量卡办理| 国产欧美日韩综合在线一区二区| 韩国av在线不卡| 国产精品一区二区在线观看99| 欧美少妇被猛烈插入视频| 久久久久久人妻| 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 男人添女人高潮全过程视频| e午夜精品久久久久久久| 国产亚洲av高清不卡| 天天添夜夜摸| av国产精品久久久久影院| 精品一品国产午夜福利视频| 国产成人91sexporn| 麻豆乱淫一区二区| 最近最新中文字幕大全免费视频 | 爱豆传媒免费全集在线观看| 一级片免费观看大全| av福利片在线| 91老司机精品| 超碰97精品在线观看| 99国产精品免费福利视频| 国产一区二区三区av在线| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 在线精品无人区一区二区三| 日本午夜av视频| 在线观看免费高清a一片| 18禁观看日本| 女性生殖器流出的白浆| 亚洲国产av影院在线观看| 99久久99久久久精品蜜桃| 日韩精品免费视频一区二区三区| 精品久久久久久电影网| 如何舔出高潮| 青草久久国产| 久久久久网色| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 精品一区二区三卡| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 成年动漫av网址| 亚洲伊人久久精品综合| 飞空精品影院首页| 街头女战士在线观看网站| 欧美国产精品va在线观看不卡| 国产精品二区激情视频| 久久久久精品国产欧美久久久 | 亚洲国产精品一区三区| 精品视频人人做人人爽| 国产成人欧美在线观看 | 亚洲国产日韩一区二区| 中国国产av一级| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频 | 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 我的亚洲天堂| 亚洲第一青青草原| 高清av免费在线| 国产深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到| 国产黄色视频一区二区在线观看| 欧美激情高清一区二区三区 | 一级毛片黄色毛片免费观看视频| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 麻豆av在线久日| 亚洲熟女精品中文字幕| 日韩大码丰满熟妇| 美女扒开内裤让男人捅视频| 99久国产av精品国产电影| 亚洲第一av免费看| 欧美xxⅹ黑人| 一级毛片电影观看| 超碰97精品在线观看| www.av在线官网国产| 极品人妻少妇av视频| 国产精品嫩草影院av在线观看| 午夜福利乱码中文字幕| 麻豆av在线久日| 天美传媒精品一区二区| 男人舔女人的私密视频| 在线天堂最新版资源| 一级片'在线观看视频| 国产精品嫩草影院av在线观看| 一级爰片在线观看| 成人免费观看视频高清| 亚洲国产av影院在线观看| 丝袜脚勾引网站| 午夜福利在线免费观看网站| 一二三四中文在线观看免费高清| 不卡视频在线观看欧美| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 欧美日韩成人在线一区二区| 国产日韩欧美视频二区| 永久免费av网站大全| av卡一久久| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 国产乱人偷精品视频| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 久久久亚洲精品成人影院| 亚洲综合精品二区| 岛国毛片在线播放| 黄片播放在线免费| 热99久久久久精品小说推荐| 夫妻午夜视频| 丝袜喷水一区| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 美女主播在线视频| 亚洲av综合色区一区| 一级,二级,三级黄色视频| 男人爽女人下面视频在线观看| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 亚洲国产精品999| 欧美中文综合在线视频| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 丝袜喷水一区| 亚洲一级一片aⅴ在线观看| 久久精品国产a三级三级三级| 日本午夜av视频| 免费看av在线观看网站| 中文欧美无线码| 午夜激情av网站| 欧美在线一区亚洲| 欧美人与善性xxx| 亚洲美女视频黄频| 免费看av在线观看网站| 一区二区三区精品91| 国产精品熟女久久久久浪| 国产av精品麻豆| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 国产1区2区3区精品| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 亚洲,欧美精品.| svipshipincom国产片| 国产免费又黄又爽又色| 免费久久久久久久精品成人欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 可以免费在线观看a视频的电影网站 | 少妇被粗大猛烈的视频| 亚洲精品国产av蜜桃| av免费观看日本| 如何舔出高潮| 久久久久精品久久久久真实原创| 韩国精品一区二区三区| 操美女的视频在线观看| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 精品亚洲成a人片在线观看| bbb黄色大片| 日韩制服丝袜自拍偷拍| 免费观看av网站的网址| 我的亚洲天堂| 国产成人av激情在线播放| 国产黄色视频一区二区在线观看| 国产在线免费精品| av网站在线播放免费| 啦啦啦啦在线视频资源| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 最近最新中文字幕大全免费视频 | 妹子高潮喷水视频| 制服诱惑二区| 在线观看www视频免费| 久久免费观看电影| 一边摸一边做爽爽视频免费| 一区二区三区精品91| 亚洲五月色婷婷综合| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 国产一区二区三区av在线| 亚洲精品国产区一区二| av免费观看日本| 如何舔出高潮| 日韩精品有码人妻一区| 国产日韩欧美亚洲二区| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| xxx大片免费视频| 久久婷婷青草| 激情五月婷婷亚洲| 深夜精品福利| 91精品伊人久久大香线蕉| 伦理电影大哥的女人| 嫩草影院入口| 久久精品国产亚洲av高清一级| 亚洲精品日本国产第一区| 欧美在线一区亚洲| 国产精品一二三区在线看| 国产精品无大码| 激情视频va一区二区三区| 国产黄频视频在线观看| 亚洲成人一二三区av| 午夜av观看不卡| 蜜桃国产av成人99| 亚洲美女视频黄频| 亚洲av综合色区一区| 美女高潮到喷水免费观看| 精品一品国产午夜福利视频| 亚洲精品自拍成人| 两个人看的免费小视频| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 欧美 亚洲 国产 日韩一| 在线天堂中文资源库| 久久久国产一区二区| 国产无遮挡羞羞视频在线观看| 国产高清不卡午夜福利| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 大香蕉久久成人网| 热re99久久国产66热| 欧美黑人精品巨大| av网站在线播放免费| 日韩 欧美 亚洲 中文字幕| 高清av免费在线| 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| 亚洲,一卡二卡三卡| 最近中文字幕2019免费版| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠久久av| 亚洲精品第二区| 只有这里有精品99| 黄色 视频免费看| 少妇被粗大猛烈的视频| 黑人巨大精品欧美一区二区蜜桃| 色吧在线观看| 另类亚洲欧美激情| 久久久久人妻精品一区果冻| 亚洲成人国产一区在线观看 | 国产成人a∨麻豆精品| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲熟妇少妇任你| 男的添女的下面高潮视频| 男人爽女人下面视频在线观看| 麻豆av在线久日| 老司机靠b影院| 成人国产麻豆网| 少妇精品久久久久久久| 久久久精品94久久精品| 欧美黑人欧美精品刺激| 久久国产亚洲av麻豆专区| 精品国产一区二区三区久久久樱花| 无限看片的www在线观看| 伊人亚洲综合成人网| 蜜桃国产av成人99| 99久久精品国产亚洲精品| avwww免费| 欧美精品av麻豆av| 国产成人精品福利久久| 国产老妇伦熟女老妇高清| 亚洲av中文av极速乱| 亚洲国产成人一精品久久久| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 国产精品成人在线| av在线app专区| 一区二区av电影网| 中文字幕制服av| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 97人妻天天添夜夜摸| 大香蕉久久成人网| 亚洲精品一区蜜桃| 久久久精品94久久精品| 精品人妻熟女毛片av久久网站| 久久韩国三级中文字幕| 母亲3免费完整高清在线观看| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 日韩制服丝袜自拍偷拍| 亚洲国产欧美一区二区综合| 午夜福利视频精品| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 久久人人爽人人片av| 最近中文字幕2019免费版| 咕卡用的链子| 午夜福利网站1000一区二区三区| 超碰成人久久| av有码第一页| 黄色毛片三级朝国网站| 欧美少妇被猛烈插入视频| 成人午夜精彩视频在线观看| 男女国产视频网站| 亚洲成av片中文字幕在线观看| 久久国产亚洲av麻豆专区| videosex国产| 最近手机中文字幕大全| 黄频高清免费视频| 夜夜骑夜夜射夜夜干| 精品福利永久在线观看| 麻豆乱淫一区二区| 街头女战士在线观看网站| 丰满饥渴人妻一区二区三| 制服诱惑二区| 国产精品久久久久久久久免| 成人国产麻豆网| 国产亚洲精品第一综合不卡| 2018国产大陆天天弄谢| 国产又爽黄色视频| 可以免费在线观看a视频的电影网站 | 国产成人系列免费观看| 午夜久久久在线观看| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 午夜免费男女啪啪视频观看| 国产精品女同一区二区软件| 国产精品久久久人人做人人爽| 一级片'在线观看视频| 蜜桃在线观看..| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 啦啦啦在线免费观看视频4| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 90打野战视频偷拍视频| 超碰成人久久| 亚洲av国产av综合av卡| 黄色视频在线播放观看不卡| 午夜福利网站1000一区二区三区| 亚洲精品第二区| 欧美日韩视频精品一区| 丝瓜视频免费看黄片| 久久久精品国产亚洲av高清涩受| 老熟女久久久| 亚洲综合色网址| 国产精品香港三级国产av潘金莲 | 亚洲av电影在线观看一区二区三区| 日本黄色日本黄色录像| 久久 成人 亚洲| 99re6热这里在线精品视频| 丁香六月欧美| 久久人妻熟女aⅴ| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 精品视频人人做人人爽| 我的亚洲天堂| 色网站视频免费| 下体分泌物呈黄色| 国产精品 国内视频| 欧美日韩av久久| 日本av免费视频播放| 自线自在国产av| 成年女人毛片免费观看观看9 | 国产精品蜜桃在线观看| 大码成人一级视频| 亚洲精品美女久久av网站| 97人妻天天添夜夜摸| 一区二区av电影网| 国产伦理片在线播放av一区| 欧美 亚洲 国产 日韩一| 99精品久久久久人妻精品| h视频一区二区三区| 亚洲国产最新在线播放| 久久性视频一级片| 久久久国产欧美日韩av| 久久97久久精品| 国产精品 国内视频| videos熟女内射| 国产成人av激情在线播放| 天天操日日干夜夜撸| 国产欧美日韩一区二区三区在线| 免费久久久久久久精品成人欧美视频| 国产精品一区二区在线观看99| 亚洲精品成人av观看孕妇| 色吧在线观看| 不卡视频在线观看欧美| 丝袜脚勾引网站| 七月丁香在线播放| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 午夜老司机福利片| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美软件| 欧美人与性动交α欧美精品济南到| 午夜福利一区二区在线看| 国产成人a∨麻豆精品| 最新的欧美精品一区二区| 国产免费又黄又爽又色| 国产成人a∨麻豆精品| 黄片无遮挡物在线观看| 国产又爽黄色视频| 亚洲国产欧美网|