• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Analysis of Some Fatigue Crack Propagation Models

    2013-12-13 02:57:18YANGPengGUXuekang
    船舶力學 2013年3期

    YANG Peng,GU Xue-kang

    (China Ship Scientific Research Center,Wuxi 214082,China)

    1 Introduction

    Based on linear elastic mechanics,Irwin[1]has studied the fracture property of plate with central through crack under tensile loading and initially defined the multiply of the square root of semi-length of crack and stress as stress intensity factor.Paris[2]has firstly supposed that fatigue crack propagation rate has close relationship with stress intensity factor range ΔK after investigating fatigue phenomenon under constant amplitude loading in which he has taken ΔK as controlling parameter and given one linear fatigue crack propagation model to describe the stable propagation phase of fatigue crack.Elber[3]has initially presented crack closure theory which supposes the real controlling factor of fatigue crack propagation is effective stress intensity factor range ΔKeff.After that,many researchers have proposed some fatigue crack propagation models by consistent endeavor and lots of tests.Then,people mainly recognize that there are three driving forces in fatigue crack propagation,such as ΔK,ΔKeffand maximum stress intensity factor Kmax.These models are mainly split into one-parameter and two-parameter models by number of driving forces.The two-parameter model considers that there are two driving forces ΔK and Kmaxin fatigue crack propagation.Sadananda and Vasudevan[4]have presented a classical two-parameter model not containing unstable phase of fatigue crack propagation,which Cui et al[5]have extended to totally describe the three phases of crack propagation.Some one-parameter models consider effective stress intensity factor range ΔKeffas driving force,such as the famous McEvily model.McEvily and Ishihara[6]have improved this one-parameter model,but the improved model could only be applied to near-threshold and stable phases not containing unstable phase of crack growth.For overcoming the restriction,Cui and Huang[7]have extended McEcily model in which condition controlling parameter of unstable propagation for fatigue crack has been introduced and yield strength has been replaced by virtual strength,thereby the application range has been expanded into the whole phase of fatigue crack propagation and the model is suitable for smooth specimens without initial crack.Furthermore,for strengthening the description ability to fatigue crack propagation and more accurately considering the influence factors,Wang and Cui[8]have further modified McEvily model with more than ten parameters which recognizes maximum stress intensity opening factor Kopmaxhas a fuzzy definition and is not given an explicit general expression in McEvily model.So Kopmaxhas been abandoned in Wang’s model,meanwhile,a parameter called crack opening function has been brought in.At the same time,Wang’s model supposes that:(1)Crack fracture toughness Kc has close relation to stress ratio and stress-strain state at crack tip;(2)When maximum stress intensity factor is equal to Kc,the unstable fracture happens;(3)Carck opening function is relative to stress ratio,crack length,and so on.For describing the three phases of crack propagation with a continuous expression,the authors of this paper have supposed a new one-parameter fatigue crack propagation model called Tangential model[9]which could properly represent fatigue crack growth of aluminum alloy and steel.

    Due to the complexity of fatigue crack propagation mechanism,such as crack propagation driving force,mean stress,loading sequence,initial crack,welding technology,joint form,plate thickness,temperature,and so on,though researchers have presented many models for fatigue crack propagation,it is doubtful whether these models could properly describe fatigue crack propagation or accurately predict structural fatigue life which needs plenty of tests and engineering applications to validate and more definite theoretical explanation.Based on the experimental data of the fatigue crack propagation of aluminum alloy,the paper investigated the accuracies and differences of these models for fatigue crack propagation,and verified these models whether they could effectively assess and predict structural fatigue life.

    2 One-parameter models

    One-parameter model takes stress intensity factor range ΔK or effective stress intensity factor range ΔKeffas driving force.At present,a series of one-parameter models such as McEvily model and its improvements take effective stress intensity factor range ΔKeffas driving force.The other classical one-parameter model called Paris model is generally applied in engineering,whose essence is linear assumption of stable phase of fatigue crack propagation.The authors of the paper have proposed a new one-parameter model called Tangential model taking stress intensity factor range ΔK as driving force,whose essence is using the property of tangential function to describe the three phases of fatigue crack propagation.

    2.1 The original McEvily model

    McEvily et al[10]have presented the following fatigue crack propagation model considering short crack elastic-plastic behavior,crack closure level and Kitagawa effect.

    where a is semi-length of crack,Δa is crack growth length,R is stress ratio,A is material property parameter,Kmaxis maximum stress intensity factor,k is the parameter to describe the change of crack closure level along with crack semi-length,Kopmaxis the maximum stress intensity factor at crack opening level,ΔKeffthis the threshold of effective stress intensity factor range,reis scanting of material intrinsic property,σmaxis maximum stress of loading cycle,σYis yield stress,and Y(a)is geometric correction coefficient.This model could only describe near-threshold and stable propagation not containing unstable propagation.

    2.2 The extended McEvily model

    2.2.1 First extension

    For extending McEvily model to describe the whole process of fatigue crack propagation,Cui and Huang[7]have modified McEvily model as follows:

    where Kcis material fracture toughness,n is the parameter presenting the effect of Kmax/Kc,Kop,max0and ΔKeff,th0respectively are maximum opening factor and threshold of effective stress strength range factor under R=0,γ is the parameter reflecting the effect of stress ratio,σuis real ultimate strength,σVis virtual strength without defect in ideal material.For there are nine parameters in this model,such as A,n,k,γ,Kc,re,σV,Kop,max0and ΔKeff,th0,so the model is called‘Nine-parameters model’.

    2.2.2 Second extension

    During the study of McEvily model,Wang et al[11]have found that fixing the slope of crack stable propagation at 2.0 could not properly fit many test results.Thus,they have supposed that:(1)The slope parameter controlling crack growth changes from 2 to m,(2)Assuming ΔKeffthand Kop,maxare the function of R,McEvily model is improved as follows:

    2.2.3 Third extension

    Wang and Cui[8]have improved McEvily model as follows after considering the variation of fracture toughness Kcand the stress intensity factor at crack opening level.

    where the new symbols are explained as:KICis the fracture toughness of plane strain,fopis crack opening function,σfland σVare flow stress and‘virtual strength’of material,respectively,ν is Poisson’s ratio,n′is hardening exponent of the power-law material;α′is the plane stress/strain constraint factor;α is a parameter used to calculate the‘virtual strength’of the material,t is the thickness of plate.The above model is also called‘Unified fatigue model’.

    2.4 Tangential model

    The authors of the paper have presented the new crack propagation model[9]as:

    where a1,a2,k1and k2are material properties respectively in which k1and k2only depend on ΔKthand ΔKf,a1and a2are relative to material property,stress ratio and loading environment.For ΔKthand ΔKfare relative to R,k1and k2are the function of R.Then the model considers the influence of R by a1,a2,k1and k2which could be obtained by fitting the test data of crack growth under various stress ratios,such as for aluminum alloy 6013-T651[12],the expressions are:

    3 Two-parameter models

    Sadananda and Vasudevan[4]have supposed a two-parameter model which takes stress intensity factor range ΔK and maximum stress intensity factor Kmaxas driving forces.

    Based on the above model,Cui et al[5]have given an improved model to describe the whole process of fatigue crack propagation.

    4 Comparative analysis of fatigue crack propagation models

    Paris et al[12]have given test data of fatigue crack propagation of aluminum alloy 6013-T651 under various stress ratios.The paper used the above models to analyze the process of fatigue crack propagation for aluminum alloy 6013-T651 under stress ratio of 0.1,then,it needs to establish the values of k,and A.In this test,Y(a)=0.65,σmax=100 MPa and σY=400 MPa.On the basis of some Refs.[13-16],it is obtained that re=1×10-6m,k=13 000,meanwhile,the unit of crack propagation rate ΔKeffth=2.43 MPa·after using McEvily model to fit the test data of fatigue crack propagation of aluminum alloy 6013-T651.Because of adding parameters Kcand m in Cui’s model,it is supposed thatand n=1.5 could be more appropriate on the basis of the is m/cycle.

    It is obtained that A=2.26×10-9and parameters of McEvily model.Based on the parameters of Cui’s model,the parameters of A,m,and ΔKeffthare obtained by nonlinear fitting of fatigue test data in Wang YF’s model.Thus,the parameters of these one-parameter models could be obtained and shown in Tab.1 in which the parameter determining process of Wang’s model refers Ref.[17]and the parameters of Tangential model refers Ref.[9].According to Tab.1,each fatigue crack propagation curve is shown in Fig.1 which reveals McEvily model,Cui’s model and Wang’s model are more accurate than Wang YF’s model and Tangential model near threshold,but Wang YF’s model and Tangential model are more exact than the former three at stable phase;meanwhile,the Cui’s model,Wang YF’s model and tangential model closely match the test data at unstable phase.

    Tab.1 Fatigue crack propagation parameters of one-parameter models

    In addition,it is found that McEvily model has larger error at unstable phase because of McEvily model not considering correction at unstable phase.Thus,it could not describe unstable phase of crack propagation,while using the correction method supposed by Cui et al[7],both Cui’s model and Wang YF’s model match test data at unstable phase.Thought Wang’s model has taken the same correction method,there still are differences with test data.The reason is the value of parameter n given by Chen[17]has a certain problem.

    Kcis a material parameter with physical meaning,generally,the crack appears unstable growth when maximum stress intensity factor at crack tip is equal to fatigue fracture toughness Kc.Schijve[18]has pointed out Kcis relative to loading sequence,stress ratio,temperature and stress-stain state at crack tip which causes the determination work of Kcvery complex.Kcin engineering practice is between plane stress and plane strain state.Generally the fracture toughness Kcvaries from 42 toDuring the fitting analysis process of fatigue crack propagation,the fatigue crack propagation at unstable phase is mainly determined by Kcand n,proper choice of Kcand n could make the model closely match the test data.Nevertheless,the choosing course should not only obey physical meaning,but also consider the test data of crack growth,which needs to adjust n.In addition,the unstable phase of crack growth only occupies a little part in the whole life,thus the fracture toughness Kchas little effect on fatigue life assessment.

    Fig.1 Comparisons among different one-parameter models

    Fig.2 Model of Wang

    According to instability criterion of fatigue crack growth and the fatigue test data of aluminum alloy 6013-T651,the Ref.[17]sets Kcaboutand n 6.0 in Wang’s model.Due to improper choice of n,the Wang’s model has obvious deviation from test data at unstable phase in Fig.1.Adjusting n to 2.5 gets a satisfied result shown in Fig.2.

    Tab.2 Fatigue crack propagation parameters of two-parameter models

    In the two-parameter model improved by Cui,Bian et al[19]have obtained the fatigue crack propagation parameters shown as Tab.2 by nonlinear fitting using Eq.(27)for aluminum alloy 6013-T651 under R=0.1.Based on the data in Tab.1 and Tab.2,the fatigue crack propagation curves of typical one-parameter models and two-parameter models are shown in Fig.3 from which it is concluded that all of these models could closely describe the whole phase of fatigue crack growth.But,Cui’s two-parameter model and Tangential model are poorer than McEvily model and Wang’s model near threshold,while the former two are better at stable phase.The reason is the curvature varies very rapidly from near-threshold to stable phase that cause its difficulty to have the same precision at the two phases.So the existing models remain to be further modified.

    Fig.3 Comparisons among various fatigue models

    Setting Y(a)and stress range respectively equal to 1.12 and 68 MPa while calculating stress intensity factor range.For different initial crack lengths,the a-N relationships of the former McEvily model,Wang’s model,Cui’s two-parameter model and Tangential model have been calculated shown in Fig.4 for aluminum alloy 6013-T651 under R=0.1.When crack semi-length grows from 2 mm to 50 mm,the loading cycle number is 3.9×105by test data.Cui’s two-parameter model most closely matches the test data;meanwhile,the value of Cui’s oneparameter model is 1.4×105,which worst matches the test data and is 0.36 times of test result.When crack semi-length grows from 5 mm to 50 mm,the loading cycle number is 9.2×104by test data.McEvily model and Tangential model most closely match the test data;meanwhile,the value of Cui’s two-parameter model is 1.4×105,which worst matches the test data and is 1.52 times of test result.This means while the crack growth processes(or initial crack lengths)are different,the coincidence degrees of the fatigue life assessing the result of these model to test result are varying,but maximum result of these models is not more than three times of minimum result.

    Fig.4 a-N curve

    5 Conclusions

    Initial McEvily model and two-parameter model mainly described the near-threshold and stable phases of fatigue crack propagation.The improved models and Tangential model could describe the whole phase of crack propagation.It is concluded that all of these models could closely describe the whole phase of fatigue crack growth.But,Cui’s two-parameter model and Tangential model are poorer than McEvily model and Wang’s model near threshold,while the former two are better at stable phase.The reason is the curvature varies very rapidly from near-threshold to stable phase which causes it is difficult to have the same precision at two phases.So the existing models remain to be further modified.In addition,while the crack growth processes(or initial crack lengths)are different,the coincidence degrees of the fatigue life assessing result of these model to test result are varying,but maximum result of these models is not more than three times of minimum result.

    [1]Irwin G.Analysis of stresses and strains near the end of a crack traversing a plate[J].Journal of Applied Mechanics,ASME,1957,24.

    [2]Paris P C,Gomez M P,Anderson W P.A rational analytical theory of fatigue[J].Trends Eng,1961,13:9-14.

    [3]Elber W.The significance of fatigue crack closure[M].In Damage Tolerance in Aircraft Structures,Special Technical Publication,1971:230-242.

    [4]Sadananda K,Vasudevan A K.Short crack growth and internal stresses[J].International Journal of Fatigue,1997,19:99-108.

    [5]Cui W C,Bian R G,Liu X C.Application of the two-parameter unified approach for fatigue life prediction of marine structures[C].Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures,2007,2:1064-1070.

    [6]Mcevily A J,Ishihara S.On the dependence of the rate of the fatigue crack growth on the σna(2a)parameter[J].International Journal of Fatigue,2001,23:115-120.

    [7]Cui W C,Huang X P.A general constitutive relation for fatigue crack growth analysis of metal structures[J].Acta.Metall.Sinica.,2003,16:342-54.

    [8]Wang F,Cui W C.On the engineering approach to estimate the parameters in an improved crack growth rate model for fatigue life prediction[J].Ship and Offshore Structures,2010,3(8):227-241.

    [9]Yang P,Gu X K.A tangential model for fatigue crack growth rules[J].Shipbuilding of China,2012,53(1):53-61.

    [10]Mcevily A J,Bao H,Ishihara S.A modified constitutive relation for fatigue crack growth[C]//In Proceedings of the Seventh International Fatigue Congress(Fatigue’99).Beijing:Higher Education Press:1999:329-336.

    [11]Wang Y F,Cui W C,Wu X Y,et al.The extended McEvily model for fatigue crack growth analysis of metal structures[J].Int.J Fatigue,2008,30:1851-1860.

    [12]Paris P C,Tada H,Donald J K.Service load fatigue damage-a historical perspective[J].International Journal of Fatigue,1999,21:35-46.

    [13]Bao H.Ph.D.Thesis[D].University of Connecticut,1994.

    [14]Ishihar S,Mcevily A J.Analysis of short fatigue crack growth in cast aluminum alloys[J].International Journal of Fatigue,2002,24:1169-1174.

    [15]Mcevily A J,Ishihara S,Endo M,Sakai H.On one-and two-parameter analyses of short fatigue crack growth[J].International Journal of Fatigue,2007,29:2237-2245.

    [16]Wang Y F,Yi G J,Huang X P,Cui W C.Determination of the parameter reflecting crack closure development in the fatigue crack propagation model[J].Shipbuilding of China,2008,49(4):45-51.

    [17]Chen F L.Study on load sequence effect in the unified fatigue life prediction method[D].CSSRC,Wuxi,China,2011.

    [18]Schijve J.Fatigue of structures and materials in the 20th century and the state of the art[J].International Journal of Fatigue,2003,25:679-702.

    [19]Bian R G,Cui W C,Wan Z Q.A method for the evaluation of the two fatigue thresholds based on the two-parameter unified approach[J].Journal of Ship Mechanics,2010,14(1-2):94-100.

    91国产中文字幕| 欧美又色又爽又黄视频| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 久久久久久国产a免费观看| 日本免费a在线| 精品欧美国产一区二区三| 亚洲第一欧美日韩一区二区三区| 91在线观看av| 在线视频色国产色| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美98| 一级毛片高清免费大全| 成人国产一区最新在线观看| 亚洲av电影在线进入| 国产真实乱freesex| 九色国产91popny在线| 国产乱人伦免费视频| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 成人亚洲精品av一区二区| 一本综合久久免费| 女人高潮潮喷娇喘18禁视频| 午夜亚洲福利在线播放| 精品日产1卡2卡| 午夜免费鲁丝| 欧美日韩瑟瑟在线播放| 每晚都被弄得嗷嗷叫到高潮| 精品国产亚洲在线| 精品国产亚洲在线| 亚洲精品一区av在线观看| 午夜福利免费观看在线| 久久亚洲精品不卡| 在线天堂中文资源库| 国产高清有码在线观看视频 | 悠悠久久av| 波多野结衣av一区二区av| 亚洲国产看品久久| 亚洲av成人av| 19禁男女啪啪无遮挡网站| 亚洲七黄色美女视频| 两性夫妻黄色片| 亚洲欧美激情综合另类| 亚洲男人的天堂狠狠| 怎么达到女性高潮| 一本综合久久免费| 亚洲成人免费电影在线观看| 自线自在国产av| 婷婷六月久久综合丁香| 国产午夜精品久久久久久| 亚洲七黄色美女视频| 国产熟女午夜一区二区三区| 特大巨黑吊av在线直播 | 婷婷精品国产亚洲av在线| 12—13女人毛片做爰片一| 国产精品影院久久| 2021天堂中文幕一二区在线观 | 高清在线国产一区| 亚洲av成人一区二区三| 午夜激情av网站| 婷婷精品国产亚洲av在线| 亚洲片人在线观看| 在线天堂中文资源库| 国产成人精品无人区| 久9热在线精品视频| 精品午夜福利视频在线观看一区| 亚洲在线自拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 无人区码免费观看不卡| 国产成人精品久久二区二区免费| 一级a爱片免费观看的视频| 欧美成人性av电影在线观看| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 长腿黑丝高跟| xxxwww97欧美| 欧美国产精品va在线观看不卡| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 国内精品久久久久久久电影| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩无卡精品| 极品教师在线免费播放| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| www日本黄色视频网| 国产成人精品无人区| 亚洲国产中文字幕在线视频| 亚洲 欧美 日韩 在线 免费| 欧美性猛交黑人性爽| 很黄的视频免费| 人人妻人人看人人澡| 999久久久精品免费观看国产| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区三区四区久久 | 亚洲第一青青草原| 国产一区二区激情短视频| 日本免费a在线| 久久久久国内视频| bbb黄色大片| 中文字幕最新亚洲高清| 中文字幕精品免费在线观看视频| 国产99白浆流出| 久久精品人妻少妇| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 色综合站精品国产| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 久久久久久久久免费视频了| 色播在线永久视频| 少妇粗大呻吟视频| 久久天堂一区二区三区四区| 欧美黄色片欧美黄色片| a级毛片a级免费在线| 桃红色精品国产亚洲av| 久久久国产成人免费| 久久草成人影院| 日日夜夜操网爽| 久久香蕉精品热| 免费看a级黄色片| 精品乱码久久久久久99久播| а√天堂www在线а√下载| 日韩有码中文字幕| 黄片播放在线免费| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 精品一区二区三区四区五区乱码| 婷婷亚洲欧美| 国产黄a三级三级三级人| 精品一区二区三区四区五区乱码| 婷婷亚洲欧美| 美女高潮到喷水免费观看| 两人在一起打扑克的视频| 在线十欧美十亚洲十日本专区| 美女大奶头视频| 久久天躁狠狠躁夜夜2o2o| 午夜免费鲁丝| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 两个人看的免费小视频| 不卡av一区二区三区| 久久婷婷人人爽人人干人人爱| tocl精华| 亚洲午夜精品一区,二区,三区| 免费在线观看完整版高清| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 在线永久观看黄色视频| 国产亚洲av嫩草精品影院| 一级毛片精品| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 国产精品野战在线观看| 欧美黑人精品巨大| 精品一区二区三区四区五区乱码| 午夜两性在线视频| 嫩草影院精品99| 99热这里只有精品一区 | 欧美中文综合在线视频| 国产一区二区三区视频了| 岛国视频午夜一区免费看| 精品免费久久久久久久清纯| 啦啦啦观看免费观看视频高清| 99久久久亚洲精品蜜臀av| 老熟妇乱子伦视频在线观看| 亚洲成人国产一区在线观看| 女人被狂操c到高潮| 亚洲专区字幕在线| 妹子高潮喷水视频| 成人18禁在线播放| 午夜激情av网站| 亚洲激情在线av| 久久久久久久精品吃奶| 特大巨黑吊av在线直播 | 在线免费观看的www视频| 这个男人来自地球电影免费观看| 国产激情久久老熟女| 超碰成人久久| 精品国产美女av久久久久小说| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 婷婷精品国产亚洲av在线| 黑丝袜美女国产一区| 精品久久久久久成人av| 亚洲五月色婷婷综合| 婷婷六月久久综合丁香| 亚洲成av人片免费观看| 久久人妻av系列| 在线观看www视频免费| 欧美激情极品国产一区二区三区| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 日本黄色视频三级网站网址| av有码第一页| 最新在线观看一区二区三区| 欧美 亚洲 国产 日韩一| 精华霜和精华液先用哪个| 黄频高清免费视频| 国产区一区二久久| 女性被躁到高潮视频| 免费av毛片视频| 色精品久久人妻99蜜桃| 女警被强在线播放| 夜夜躁狠狠躁天天躁| 国产亚洲精品久久久久久毛片| 日本 av在线| 老鸭窝网址在线观看| 特大巨黑吊av在线直播 | 日日干狠狠操夜夜爽| 91麻豆av在线| 亚洲国产欧美日韩在线播放| 99国产精品一区二区蜜桃av| 在线观看舔阴道视频| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 国产视频一区二区在线看| 亚洲无线在线观看| 精品久久久久久久久久久久久 | 亚洲精品美女久久av网站| 18禁裸乳无遮挡免费网站照片 | 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区视频在线观看| 一个人观看的视频www高清免费观看 | 中文字幕高清在线视频| 国产高清激情床上av| 女警被强在线播放| 国产一级毛片七仙女欲春2 | 国内少妇人妻偷人精品xxx网站 | 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 亚洲国产欧美日韩在线播放| 成在线人永久免费视频| 免费在线观看亚洲国产| 欧美最黄视频在线播放免费| 久久久久久免费高清国产稀缺| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 午夜精品在线福利| 人妻丰满熟妇av一区二区三区| 91字幕亚洲| 久久久国产精品麻豆| 日韩有码中文字幕| 中文字幕高清在线视频| 午夜免费成人在线视频| 亚洲成av人片免费观看| 国产精品国产高清国产av| 女性生殖器流出的白浆| 免费观看精品视频网站| 18禁国产床啪视频网站| 久久伊人香网站| 99国产极品粉嫩在线观看| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 日韩精品免费视频一区二区三区| 国产视频内射| 伊人久久大香线蕉亚洲五| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 白带黄色成豆腐渣| 亚洲精品色激情综合| 夜夜夜夜夜久久久久| 久久国产精品影院| 亚洲人成77777在线视频| 国产激情久久老熟女| 亚洲 欧美 日韩 在线 免费| or卡值多少钱| 性欧美人与动物交配| 日韩国内少妇激情av| 久久久国产欧美日韩av| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 露出奶头的视频| 人妻久久中文字幕网| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区91| bbb黄色大片| 成熟少妇高潮喷水视频| 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 亚洲精品在线美女| 亚洲第一av免费看| 嫁个100分男人电影在线观看| 怎么达到女性高潮| 成人国产综合亚洲| 男女床上黄色一级片免费看| 国产亚洲欧美98| 精品不卡国产一区二区三区| 欧美黑人精品巨大| 18禁美女被吸乳视频| 色av中文字幕| 久久久久久免费高清国产稀缺| 久久中文字幕一级| 成人三级做爰电影| 中文亚洲av片在线观看爽| 国产又色又爽无遮挡免费看| 啦啦啦 在线观看视频| 国产精品 欧美亚洲| 亚洲中文字幕日韩| www.999成人在线观看| 精品无人区乱码1区二区| 日韩国内少妇激情av| 99热只有精品国产| 国产精品美女特级片免费视频播放器 | 亚洲成人精品中文字幕电影| 俺也久久电影网| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 久久九九热精品免费| 欧美日本视频| 婷婷六月久久综合丁香| 高清毛片免费观看视频网站| 欧美中文日本在线观看视频| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 精品高清国产在线一区| 国产一区二区三区视频了| 欧美日韩亚洲综合一区二区三区_| 婷婷丁香在线五月| 悠悠久久av| 久久精品国产亚洲av高清一级| 高潮久久久久久久久久久不卡| 成人国产一区最新在线观看| 亚洲精品国产精品久久久不卡| 午夜久久久在线观看| 国产亚洲精品久久久久久毛片| 免费电影在线观看免费观看| 两性夫妻黄色片| 超碰成人久久| 亚洲国产看品久久| 久久性视频一级片| netflix在线观看网站| 99re在线观看精品视频| 1024手机看黄色片| 搞女人的毛片| 亚洲精品粉嫩美女一区| 99久久综合精品五月天人人| 老熟妇仑乱视频hdxx| videosex国产| 观看免费一级毛片| 欧美日本亚洲视频在线播放| 免费观看人在逋| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻丝袜一区二区| 精品日产1卡2卡| 久热爱精品视频在线9| 搡老妇女老女人老熟妇| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 黄频高清免费视频| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 级片在线观看| 丝袜在线中文字幕| 中文字幕人妻丝袜一区二区| 特大巨黑吊av在线直播 | 欧美人与性动交α欧美精品济南到| 岛国在线观看网站| 国产一区二区三区在线臀色熟女| 伦理电影免费视频| 欧美一区二区精品小视频在线| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 成人国产综合亚洲| 一个人免费在线观看的高清视频| 淫妇啪啪啪对白视频| 波多野结衣高清无吗| 在线观看免费日韩欧美大片| 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 女人被狂操c到高潮| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 日韩欧美在线二视频| 搡老岳熟女国产| 国产真实乱freesex| 女同久久另类99精品国产91| 国产黄色小视频在线观看| 精品国产乱子伦一区二区三区| 亚洲成人精品中文字幕电影| 欧美日韩一级在线毛片| 99国产精品一区二区三区| 国产av不卡久久| 久久热在线av| 久久国产精品男人的天堂亚洲| 国产97色在线日韩免费| 欧美三级亚洲精品| 最近最新免费中文字幕在线| 亚洲国产欧美网| АⅤ资源中文在线天堂| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av在线| 精品熟女少妇八av免费久了| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 成人永久免费在线观看视频| 成人免费观看视频高清| 久久久久国产一级毛片高清牌| 亚洲精品一区av在线观看| 99久久国产精品久久久| 亚洲一区二区三区色噜噜| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 欧美色欧美亚洲另类二区| 国产av在哪里看| 美女 人体艺术 gogo| 欧美日韩精品网址| 性色av乱码一区二区三区2| 中文在线观看免费www的网站 | 国产亚洲精品久久久久5区| 国产在线精品亚洲第一网站| 精品少妇一区二区三区视频日本电影| 免费搜索国产男女视频| 看免费av毛片| 老汉色av国产亚洲站长工具| 欧美大码av| 午夜福利欧美成人| 成年人黄色毛片网站| 国产99久久九九免费精品| 久久亚洲精品不卡| 国产成人欧美在线观看| 亚洲成人精品中文字幕电影| 国产成人一区二区三区免费视频网站| 午夜视频精品福利| 大香蕉久久成人网| 麻豆一二三区av精品| 天堂√8在线中文| 欧美中文综合在线视频| 一a级毛片在线观看| 免费在线观看亚洲国产| 韩国精品一区二区三区| 亚洲国产精品999在线| 黄片小视频在线播放| 日韩欧美在线二视频| 亚洲成人精品中文字幕电影| 一级作爱视频免费观看| 久久国产精品影院| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 精品福利观看| 欧美zozozo另类| 国产精品98久久久久久宅男小说| videosex国产| 久久 成人 亚洲| 88av欧美| 高清在线国产一区| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区 | 黑丝袜美女国产一区| 亚洲av片天天在线观看| 国产免费av片在线观看野外av| xxxwww97欧美| 婷婷精品国产亚洲av在线| 日本一区二区免费在线视频| 妹子高潮喷水视频| 国产色视频综合| 一区二区三区激情视频| 99riav亚洲国产免费| 亚洲最大成人中文| 日韩欧美三级三区| 成人18禁高潮啪啪吃奶动态图| 在线永久观看黄色视频| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观 | 亚洲精品一区av在线观看| 国产成人影院久久av| 国产亚洲精品av在线| 欧美激情高清一区二区三区| 免费一级毛片在线播放高清视频| 国产欧美日韩一区二区三| 丰满人妻熟妇乱又伦精品不卡| 久久精品夜夜夜夜夜久久蜜豆 | e午夜精品久久久久久久| av中文乱码字幕在线| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 国产成人av教育| 动漫黄色视频在线观看| 高清毛片免费观看视频网站| 日韩中文字幕欧美一区二区| 后天国语完整版免费观看| 亚洲一区二区三区色噜噜| 青草久久国产| 日韩欧美 国产精品| 老鸭窝网址在线观看| 一边摸一边做爽爽视频免费| 久久亚洲真实| 精品福利观看| 国产高清有码在线观看视频 | 欧美乱色亚洲激情| 免费观看人在逋| 色播在线永久视频| 久久中文字幕一级| 热re99久久国产66热| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看 | 亚洲精华国产精华精| 亚洲中文字幕日韩| 免费搜索国产男女视频| 亚洲五月色婷婷综合| 桃红色精品国产亚洲av| 精品少妇一区二区三区视频日本电影| 18禁裸乳无遮挡免费网站照片 | 草草在线视频免费看| 亚洲男人的天堂狠狠| 少妇被粗大的猛进出69影院| 黄片播放在线免费| АⅤ资源中文在线天堂| 午夜日韩欧美国产| 久久精品国产亚洲av高清一级| netflix在线观看网站| 欧美激情高清一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 夜夜爽天天搞| 变态另类成人亚洲欧美熟女| 两性夫妻黄色片| 男人舔奶头视频| 性欧美人与动物交配| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 美女午夜性视频免费| 成年女人毛片免费观看观看9| 一级a爱片免费观看的视频| 久久久久国产一级毛片高清牌| 午夜福利一区二区在线看| 精品第一国产精品| 国产一区二区在线av高清观看| 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 精品卡一卡二卡四卡免费| 51午夜福利影视在线观看| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久视频播放| 精品国产亚洲在线| 美女 人体艺术 gogo| 丁香欧美五月| 伦理电影免费视频| 免费高清视频大片| 一级毛片高清免费大全| 免费高清在线观看日韩| 不卡av一区二区三区| 亚洲国产欧美一区二区综合| 白带黄色成豆腐渣| 禁无遮挡网站| 色哟哟哟哟哟哟| 人人妻人人澡人人看| 波多野结衣av一区二区av| 精品日产1卡2卡| 岛国视频午夜一区免费看| 精品久久久久久久人妻蜜臀av| 丝袜美腿诱惑在线| 欧美精品啪啪一区二区三区| 免费女性裸体啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 日本免费a在线| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 国产乱人伦免费视频| 中文字幕人妻熟女乱码| 日本五十路高清| 成人三级做爰电影| 88av欧美| 日日摸夜夜添夜夜添小说| а√天堂www在线а√下载| 国产精品免费视频内射| 在线观看日韩欧美| 国产真人三级小视频在线观看| 亚洲男人的天堂狠狠| АⅤ资源中文在线天堂| 一区二区三区高清视频在线| 亚洲欧美激情综合另类| 亚洲片人在线观看| 精品国内亚洲2022精品成人| 午夜亚洲福利在线播放| 超碰成人久久| 一本久久中文字幕| 免费看a级黄色片| 国产av一区在线观看免费| 黄色视频不卡| 超碰成人久久| 禁无遮挡网站| 亚洲精品一区av在线观看| 中文字幕最新亚洲高清| 淫秽高清视频在线观看| 真人一进一出gif抽搐免费| 免费看a级黄色片| 久久伊人香网站| 国产成年人精品一区二区| 女人爽到高潮嗷嗷叫在线视频| 久久天躁狠狠躁夜夜2o2o| 12—13女人毛片做爰片一| 久久草成人影院| 午夜免费观看网址| 午夜日韩欧美国产| 99久久无色码亚洲精品果冻| 身体一侧抽搐| 欧美色欧美亚洲另类二区| 巨乳人妻的诱惑在线观看|