徐俊彥,苗 壯,劉慶懷
(長(zhǎng)春工業(yè)大學(xué) 基礎(chǔ)科學(xué)學(xué)院,長(zhǎng)春 130012)
考慮優(yōu)化問(wèn)題:
(1)
其中:f(x),gi(x)(i=1,2,….m):n→,并且有二階連續(xù)偏導(dǎo)數(shù).
通常用求解問(wèn)題(1)的外逼近或分支定界算法求出一個(gè)不可行的解序列xk,使得xk→x*(k→∞),x*為最優(yōu)解,而f(xk)→f*(k→∞),f*為最優(yōu)值.但在實(shí)際應(yīng)用中,算法必須在有限步內(nèi)終止于某個(gè)xk,將xk作為x*的近似值,此時(shí)的xk可能是不可行的,甚至遠(yuǎn)離真正的最優(yōu)解.為了克服這些問(wèn)題,文獻(xiàn)[1-7]提出了非孤立最優(yōu)解的概念.本文將其推廣到一般D.C.優(yōu)化問(wèn)題中.
引理1[8]二階偏導(dǎo)數(shù)處處連續(xù)的函數(shù)是D.C.函數(shù).
引理2[8]對(duì)于集合
M={(x,xn+1)∈n+1|di(x,xn+1)≤0(i=1,2,…,m)},
存在一個(gè)D.C.集:
F={(x,xn+1,xn+2)∈n+2|φ(x,xn+1,xn+2)≤0,ψ(x,xn+1,xn+2)≥0},
使得
(x,xn+1,xn+2)∈F? (x,xn+1)∈M,
其中:di(x,xn+1)(i=1,2,…,m)為D.C.函數(shù);φ(x,xn+1,xn+2)和ψ(x,xn+1,xn+2)是凸函數(shù).
由引理1可知,問(wèn)題(1)中的函數(shù)是D.C.函數(shù),該問(wèn)題為一般D.C.規(guī)劃.問(wèn)題(1)等價(jià)于:
(2)
記
M={(x,xn+1)∈n+1|gi(x)≤0,f(x)-xn+1,i=1,2,…,m},
d(x,xn+1)=max{gi(x),f(x)-xn+1,i=1,2,…,m}.
根據(jù)D.C.函數(shù)的性質(zhì),d(x,xn+1)是D.C.函數(shù).
設(shè)d(x,xn+1)=p(x,xn+1)-q(x,xn+1),p,q均為凸函數(shù),則
M={(x,xn+1)∈n+1|d(x,xn+1)≤0}.
令
φ(x,xn+1,xn+2)=p(x,xn+1)-xn+2,ψ(x,xn+1,xn+2)=q(x,xn+1)-xn+2.
顯然φ,ψ都是凸函數(shù).
記
F={(x,xn+1,xn+2)∈n+2|φ(x,xn+1,xn+2)≤0,ψ(x,xn+1,xn+2)≥0},
(3)
則由引理2知,問(wèn)題(2)等價(jià)于:
min{xn+1|(x,xn+1,xn+2)∈F},
(4)
其中F由式(3)定義.易見(jiàn)問(wèn)題(4)是典范D.C.規(guī)劃.
因此,求解問(wèn)題(1)的最優(yōu)解等價(jià)于求解一個(gè)典范D.C.規(guī)劃的最優(yōu)解.記D={(x,xn+1,xn+2)∈n+2|φ(x,xn+1,xn+2)≤0},則D為凸集.問(wèn)題(4)可寫(xiě)為
min{xn+1|(x,xn+1,xn+2)∈D,ψ(x,xn+1,xn+2)≥0}.
(5)
在實(shí)際應(yīng)用中,孤立最優(yōu)解是不可用的,因?yàn)楣铝⒆顑?yōu)解極不穩(wěn)定,當(dāng)約束條件稍有擾動(dòng)時(shí),孤立最優(yōu)解就可能是不可行的.因此非孤立最優(yōu)解更有應(yīng)用價(jià)值.
假設(shè):
(H1)D={(x,xn+1,xn+2)∈n+2|φ(x,xn+1,xn+2)≤0}是緊集,并且intD≠?;
(H2) 存在滿足ψ(a,an+1,an+2)<0和an+1 (H3)F=cl intF,其中F由式(3)定義; (H4) {(x,xn+1,xn+2)∈D|xn+1≤γ}=cl{(x,xn+1,xn+2)∈intD|xn+1≤γ},γ∈; (H5) 存在(ω,ωn+1,ωn+2)∈n+2,使得對(duì)任意的(x,xn+1,xn+2)∈D,有ωn+1-ε>xn+1成立. 如果(x,xn+1,xn+2)為問(wèn)題(5)的可行解,存在點(diǎn)(x,xn+1,xn+2)的某個(gè)領(lǐng)域,使得在該領(lǐng)域內(nèi)除點(diǎn)(x,xn+1,xn+2)外,其他點(diǎn)均為不可行的,則稱點(diǎn)(x,xn+1,xn+2)為問(wèn)題(5)的孤立可行解.若最優(yōu)解在孤立可行解處得到,則稱其為孤立最優(yōu)解. 其中 s*=cl{(x,xn+1,xn+2)|(x,xn+1,xn+2)∈intD,ψ(x,xn+1,xn+2)>0}, 設(shè) {(x,xn+1,xn+2)∈n+2|(x,xn+1,xn+2)∈intD,ψ(x,xn+1,xn+2)>0}≠?. 對(duì)于給定的ε≥0,若 (x,xn+1,xn+2)∈{(x,xn+1,xn+2)∈n+2|(x,xn+1,xn+2)∈D,ψ(x,xn+1,xn+2)>ε}, 則稱問(wèn)題(5)是正則的. 考慮如下輔助問(wèn)題(p/γ): max{ψ(x,xn+1,xn+2)|(x,xn+1,xn+2)∈D,xn+1≤γ,γ∈}. 由于函數(shù)ψ(x,xn+1,xn+2)連續(xù),所以在條件(H4)成立時(shí),問(wèn)題(p/γ)是正則的.下面證明當(dāng)條件(H4)成立時(shí),求問(wèn)題(5)的ε-非孤立最優(yōu)解等價(jià)于求問(wèn)題(p/γ)的最優(yōu)解. 令min(問(wèn)題(5))和max(p/γ)分別表示問(wèn)題(5)和問(wèn)題(p/γ)的最優(yōu)值. 定理1設(shè)條件(H4) 成立. {(x,xn+1,xn+2)∈n+2|(x,xn+1,xn+2)∈D,ψ(x,xn+1,xn+2)≥ε}=?. 因而,對(duì)使得ψ(x,xn+1,xn+2)>ε的每個(gè)(x,xn+1,xn+2)∈D,都有xn+1≥γ成立,即 (6) {(x,xn+1,xn+2)∈n+2|(x,xn+1,xn+2)∈D,ψ(x,xn+1,xn+2)≥ε}=?, 即問(wèn)題(5)沒(méi)有ε-非孤立可行解. 算法1在假設(shè)(H1)~(H5)成立的條件下,算法步驟如下: 3) 計(jì)算 5) 若xn+1-γ=0,則令nk=(0,…,0,1,0)∈n+2;若則令 定理2算法1在有限步迭代后終止,或產(chǎn)生問(wèn)題(5)的一個(gè)ε-非孤立最優(yōu)解或證明問(wèn)題(5)沒(méi)有ε-非孤立可行解. 例1 其輔助問(wèn)題(p/γ)為 當(dāng)ε=0.000 1時(shí),計(jì)算所得數(shù)值結(jié)果列于表1,其最優(yōu)解為(6.000 1,0.764 0),最優(yōu)值為-3.127 4. 表1 例1的計(jì)算結(jié)果Table 1 Computational results of example 1 例2 其輔助問(wèn)題(p/γ)為 當(dāng)ε=0.000 1時(shí),計(jì)算所得數(shù)值結(jié)果列于表2,其最優(yōu)解為(-0.988 6,3.100 1),最優(yōu)值為57.325 7. 表2 例2的計(jì)算結(jié)果Table 2 Computational results of example 2 由表1和表2可見(jiàn),算法1是有效的,收斂于非孤立全局最優(yōu)解. [1] Tuy H.Robust Solution of Non-convex Global Optimization Problems [J].J Glob Optim,2005,32(2):307-323. [2] Tuy H.Polynomial Optimization:A Robust Approach [J].Pac J Optim,2005,1:357-374. [3] Tuy H,Hoai Phuong.A Robust Algorithm for Quadratic Optimization under Quadratic Constraints [J].J Glob Optim,2007,37(4):557-569. [4] SHEN Pei-ping,MA Yuan,CHEN Yong-qiang.A Robust Algorithm for Generalized Geometric Programming [J].J Glob Optim,2008,41(4):593-612. [5] Tuy H.D(c)-Optimization and Robust Global Optimization [J].J Glob Optim,2010,47(3):485-501. [6] SHEN Pei-ping,MA Yuan,CHEN Yong-qiang.Global Optimization for the Generalized Polynomial Sum of Ratios Problem [J].J Glob Optim,2011,50(3):439-455. [7] Tuy H,Thach P T,Konno H.Optimization of Polynomial Fractional Functions [J].J Glob Optim,2004,29(1):19-44. [8] Horst R,Pardalos P M,Thoai N M.Introduction to Global Optimization [M].Dordrecht:Kluwer Academic Publishers,2000.3 算法及數(shù)值實(shí)例