王荔霞,謝維信,李利勇,裴繼紅
深圳大學(xué)信息工程學(xué)院,深圳518060
遙感多光譜圖像具有豐富的光譜特征,是遙感圖像目標(biāo)檢測(cè)和提取的重要數(shù)據(jù).然而,云霧干擾對(duì)遙感多光譜圖像的分析和應(yīng)用會(huì)產(chǎn)生較大的影響.因此,對(duì)其進(jìn)行云霧去除具有重要意義.目前,圖像去云霧方法主要包括同態(tài)濾波法[1-3]、直方圖均衡化法[4-5]、基于 retinex理論方法[6-7]和小波變換方法[8]等.這些方法將云霧看作低頻噪聲,通過(guò)提取高頻信息、抑制低頻信息達(dá)到云霧去除目的.但它們同樣也會(huì)帶來(lái)非云霧低頻成分的損失,從而造成圖像部分內(nèi)容和細(xì)節(jié)模糊不清.
近年來(lái),由于暗通道先驗(yàn)綜合利用了多通道信息[9],被廣泛應(yīng)用于圖像云霧去除中.現(xiàn)有的暗通道先驗(yàn)方法大多數(shù)適用于三通道彩色圖像云霧去除[9-12].對(duì)于遙感圖像,文獻(xiàn)[13]利用簡(jiǎn)化了的暗通道先驗(yàn)進(jìn)行云霧去除;文獻(xiàn)[14]利用大尺度高斯濾波器修正大氣成分值,并對(duì)全色遙感圖像進(jìn)行云霧去除;文獻(xiàn)[15]則用高斯低通濾波器粗略估算大氣值,并重新定義大氣透射率.這些方法均能在一定程度上去除云霧干擾,但對(duì)于具有3個(gè)以上波段的遙感圖像,只選擇其中3個(gè)波段進(jìn)行處理,其他波段信息則被丟棄掉,從而造成信息丟失.本研究將暗通道先驗(yàn)方法進(jìn)行推廣,使其適用于任意多波段的遙感多光譜圖像云霧去除,并在有效去除云霧的同時(shí)盡可能地保留原始圖像信息.
暗通道先驗(yàn)源自對(duì)室外無(wú)干擾清晰圖像庫(kù)的統(tǒng)計(jì)[9].該統(tǒng)計(jì)發(fā)現(xiàn)在絕大多數(shù)非天空局部區(qū)域里,
某些像素總是存在至少一個(gè)通道具有很低的值.對(duì)于圖像J(x,y)可描述為其中,Jdc為圖像J的暗通道圖像;c為彩色圖像中的通道標(biāo)志,其取值為 {r,g,b}中的一個(gè),r、g、b分別為彩色圖像中紅、綠、藍(lán)通道標(biāo)志.Jc為J的某一個(gè)顏色通道;Ωr(x,y)表示以點(diǎn)(x,y)為中心,以r為半徑的鄰域.(u,v)為鄰域中的任意一個(gè)點(diǎn).
根據(jù)光傳輸特性,圖像云霧退化模型可表示為Ⅰ(x,y)=t(x,y)J(x,y)+(1-t(x,y))A (2)其中,Ⅰ(x,y)為含有云霧干擾的輸入圖像;t(x,y)為大氣光透射率;A是大氣光成分值;J(x,y)為不含云霧干擾的圖像.若已知A和t(x,y),通過(guò)Ⅰ(x,y)就可還原得到J(x,y),從而達(dá)到云霧去除目的.
設(shè)A已知,且全局恒定,其取值為暗通道圖像中亮度最大值[9],
則t(x,y)的估算值為
其中,ω(0<ω≤1)是用來(lái)增加圖像真實(shí)感的常數(shù),通常取0.95.這樣,A和t(x,y)都已知,代入式(2)可得復(fù)原后的各通道圖像為
其中,t0為透射率 t(x,y)的閾值,用于減少圖像噪聲,通常情況下取值為0.01.
對(duì)圖像云霧退化模型進(jìn)行推廣,得到遙感多光譜圖像的暗通道先驗(yàn)知識(shí),進(jìn)而綜合各波段信息進(jìn)行云霧去除.
設(shè)大小為m×n的遙感多光譜圖像具有s個(gè)波段,可表示為 s維矢量矩陣 F(x,y)=[f(x,y)]m×n,其第q個(gè)波段對(duì)應(yīng)的灰度圖像為Fq(x,y)=[qq(x,y)]m×n,其中 qq(x,y)為像元(x,y)在第q波段的灰度值.將圖像云霧退化模型從三通道圖像推廣到多通道遙感多光譜圖像,可得
其中,F(xiàn)(x,y)表示含有云霧干擾的遙感多光譜圖像;tF(x,y)表示遙感多光譜圖像大氣光透射率;AF是遙感多光譜圖像大氣光成分值;JF(x,y)表示不含云霧干擾的遙感多光譜圖像.進(jìn)而,可計(jì)得遙感多光譜圖像的暗通道圖像為
其中,q指的是遙感多光譜的第q個(gè)波段;Ωh(x,y)表示以像元(x,y)為中心,半徑為h的鄰域.進(jìn)而,可得遙感多光譜圖像大氣成分值為
若在鄰域Ωh(x,y)內(nèi)對(duì)式(6)兩邊取s個(gè)波段中的最小值,并將等式兩邊同時(shí)除以AF,可得
其中,JFq(x,y)表示不含云霧遙感多光譜圖像JF(x,y)的第q個(gè)波段圖像.將暗通道先驗(yàn)知識(shí)推廣到遙感多光譜圖像,可得某些像元總是存在至少一個(gè)波段的灰度值具有很低的值,即
這樣可得式(9)右邊第1項(xiàng)趨于0,式(9)可為
因此,遙感多光譜圖像的大氣透光率為
其中,ωF為遙感多光譜圖像深度信息保留常數(shù).最后可得去除云霧干擾后的遙感多光譜各波段圖像為
圖1為本算法暗通道先驗(yàn)遙感多光譜圖像去云霧流程圖.
圖1 本算法流程圖Fig.1 The flow diagram for this paper
本研究采用具有5個(gè)波段的中巴資源衛(wèi)星CBERS-02 CCD多光譜圖像作為實(shí)驗(yàn)數(shù)據(jù),如圖2和圖3,分別為2組遙感多光譜圖像實(shí)驗(yàn)數(shù)據(jù).本算法參數(shù)設(shè)置式(7)中鄰域半徑取值為h=15,常數(shù) ωF=0.95.
圖4~圖7分別為采用文獻(xiàn)[13]、文獻(xiàn)[15]和本算法對(duì)兩組實(shí)驗(yàn)數(shù)據(jù)進(jìn)行云霧去除前后,不同波段組成的偽彩色圖像.從視覺(jué)上觀察,文獻(xiàn)[13]和文獻(xiàn)[15]的方法由于只考慮了其中的3個(gè)波段信息,把其他波段的信息完全丟棄掉,還原后得到的圖像信息失真較明顯.本研究方法綜合考慮了遙感多光譜圖像各個(gè)波段信息,在云霧去除的同時(shí),盡可能地保證了圖像信息的完整性.
同時(shí),本研究還通過(guò)標(biāo)準(zhǔn)差(S)、對(duì)比度(C)、化平均梯度(gav)及信息熵(H)等對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析評(píng)價(jià).這些指標(biāo)值越大,說(shuō)明圖像質(zhì)量越好.表1和表2分別給出兩組實(shí)驗(yàn)數(shù)據(jù)云霧去除前后的指標(biāo)值.可見(jiàn)利用文獻(xiàn)[13]、文獻(xiàn)[15]和本算法處理后,圖像各指標(biāo)值都有一定程度上的提高.而在大多數(shù)指標(biāo)上,本研究方法都比文獻(xiàn)[13]和文獻(xiàn)[15]的方法要高,尤其是在平均梯度和信息熵兩個(gè)指標(biāo)上.因此,利用本研究方法進(jìn)行云霧后的各波段圖像內(nèi)容信息更豐富,可分辨性更強(qiáng).
圖2 遙感多光譜圖像實(shí)驗(yàn)數(shù)據(jù)1 Fig.2 Experimental images data 1
圖3 遙感多光譜圖像實(shí)驗(yàn)數(shù)據(jù)2 Fig.3 Experimental images 2
圖4 實(shí)驗(yàn)數(shù)據(jù)1去云霧前后波段431合成的RGB偽彩色圖像Fig.4 False-color images combined by bands 431 of experimental images data 1 and its recovered results
圖5 實(shí)驗(yàn)數(shù)據(jù)1去云霧前后波段452合成的RGB偽彩色圖像Fig.5 False-color images combined by bands 452 of experimental images data 1 and its recovered results
圖6 實(shí)驗(yàn)數(shù)據(jù)2去云霧前后波段431合成的RGB偽彩色圖像Fig.6 False-color images combined by bands 431 of experimental images data 2 and its recovered results
圖7 實(shí)驗(yàn)數(shù)據(jù)2去云霧前后波段452合成的RGB偽彩色圖像Fig.7 False-color images combined by bands 452 of experimental images 2 and its recovered results
表1 實(shí)驗(yàn)數(shù)據(jù)1云霧去除前后客觀評(píng)定指標(biāo)值Table1 The values of quality evaluations for experimental images 1 and its recovered results
表2 實(shí)驗(yàn)數(shù)據(jù)2云霧去除前后客觀評(píng)定指標(biāo)值Table2 The values of quality evaluations for experimental images 2 and its recovered results
針對(duì)基于暗通道先驗(yàn)知識(shí)的云霧去除法僅適用3個(gè)通道可見(jiàn)光RGB彩色圖像的局限,對(duì)霧天圖像退化模型和暗通道先驗(yàn)知識(shí)進(jìn)行推廣,提出一種可用于多通道遙感多光譜圖像云霧去除的暗通道先驗(yàn)方法.該方法充分融合了遙感多光譜圖像各個(gè)波段的信息,適于任意多個(gè)波段遙感多光譜圖像的云霧去除.實(shí)驗(yàn)證明,本算法能在有效去除遙感多光譜圖像薄云薄霧干擾的同時(shí),盡可能地保留了更多的圖像灰度信息和細(xì)節(jié)信息,還原后的各波段圖像內(nèi)容更清晰可辨.
/References:
[1]Li Hongli,Shen Huanfeng,Du Bo,et al.A high-fidelity method of removing thin cloud from remote sensing digital images based on homomorphic filtering[J].Remote Sensing Application,2011,10(1):41-44.(in Chinese).李洪利,沈煥鋒,杜 博,等.一種高保真同態(tài)濾波遙感影像薄云去除方法 [J].遙感應(yīng)用,2011,10(1):41-44.
[2]Cai Wenting,Liu Yongxue,Li Manchun,et al.A selfadaptive homomorphic filter method for removing thin cloud[C]//Proceedings of the 19th IEEE International Conference on Geoinformatics.Shanghai(China):IEEE Press,2011:1-4.
[3]Ren Huan,Li Liangchao,Jin Lanhai,et al.Study on cloud processing with MODIS data and application[C]//Proceedings of the 10th IEEE International Symposium on Antennas,Propagation & EM Theory(ISAPE).Xi'an(China):IEEE Press,2012:583-586.
[4]Kim T K,Paik J K,Kang B S.Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering[J].IEEE Transactions on Consumer Electronics,1998,44(1):82-86.
[5]Inampud R B,Purimetla T N,Satyanarayana P G.Contrast degradation for improving quality of an image[J].Geoscience and Remote Sensing Symposium,2002,6:3408-3410.
[6]Shi Wenxuan,Li Jie.Research on algorithms in defog of remote sensing image[J].Spacecraft Recovery& Remote Sensing,2010,31(6):46-51.(in Chinese)石文軒,李 婕.遙感圖像去霧算法研究 [J].航天返回與遙感,2010,31(6):46-51.
[7]Parthasarathy S,Sankaran P.A retinex based haze removal method[C]//Proceedings of the 7th IEEE International Conference on Industrial and Information Systems(ICIIS).Chennai(India):IEEE Press,2012:1-6.
[8]Ma Yunfei,He Wenzhang.Foggy day image enhancement method based on wavelet transform[J].Computer Applications and Software,2011,28(2):71-73.(in Chinese).馬云飛,何文章.基于小波變換的霧天圖像增強(qiáng)方法[J].計(jì)算機(jī)應(yīng)用與軟件,2011,28(2):71-73.
[9]He Kaiming,Sun Jian,Tang Xiao'ou.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353.
[10]He Renjie,Wang Zhiyong,Xiong Hao,et al.Single image dehazing with white balance correction and image decomposition[C]//Proceedings of the International Conference on Digital Image Computing Techniques and Applications(DICTA).Fremantle(Australia):IEEE Press,2012:1-7.
[11]Yang Hungyu,Chen Peiyin,Shiau Yeuhorng,et al.Low complexity underwater image enhancement based on dark channel prior[C]//Proceedings of the Second International Conference on Innovations in Bio-inspired Computing and Applications. Shenzhen(China):IEEE Press,2011:17-20.
[12]Jin Wenbo,Mi Zengyuan,Wu Xiaotian,et al.Single image de-haze based on a new dark channel estimation method[C]//Proceedings of the IEEE International Conference on Computer Science and Automation Engineering(CSAE).Zhangjiajie(China):IEEE Press,2012,2:791-795.
[13]Wang Shizhen,Shi Huiqiong,Zeng Lingsha,et al.Haze removal methods of remote sensing image using dark channel prior[J].Journal of Geomatics Science and Technology,2011,28(3):182-186.(in Chinese)王時(shí)震,石惠瓊,曾令沙,等.應(yīng)用暗通道先驗(yàn)規(guī)律的遙感影像去霧技術(shù) [J].測(cè)繪科學(xué)技術(shù)學(xué)報(bào),2011,28(3):182-186.
[14]Zhou Liya,Qin Zhiyuan.Uneven cloud and fog removing for satellite remote sensing image[C]//Proceedings of the 2nd International Conference on Mechanic Automation and Control Engineering(MACE).Hohhot(China):IEEE Press,2011:5485-5488.
[15]Long Jiao,Shi Zhenwei,Tang Wei,et al.Single remote sensing image dehazing[J].IEEE Geoscience and Remote Sensing Letters,2013,11(1):59-63.