• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Realization of a Novel Compact Electromagnetic Band-Gap Structure

    2013-11-26 10:47:54LiYeFangJianHuaZhangandFengGeHu

    Li-Ye Fang, Jian-Hua Zhang, and Feng-Ge Hu

    1.Introduction

    The electromagnetic band-gap (EBG) structure is a kind of artificial material composed of periodical metallic or dielectric cells[1], which has the particular characteristic of bandgap in suppressing the propagation of surface-wave and in-phase reflection coefficient[2].This unique feature makes it an excellent candidate in microwave circuit and antenna community, such as increasing the patch antenna gain and reducing the back radiation, suppressing the mutual coupling between antenna elements, and eliminating scan blindness in phased array antenna system[3]–[6].However, due to the constraint of its periodical structure and electric property, the EBG structure has the disadvantage of relatively large size, which restrains practical applications in integration with compact patch antenna array.Therefore, how to minimize the unit size of the EBG structure has become a hot issue in the research area of EBG.

    Many researchers make steps towards the miniaturization of EBG structure and the work of structure miniaturization has achieved practically by modifying the shape of the patch in recent years.For example, the interdigital structure[7]contributes to the miniaturization of EBG structure.The configuration of fork-like EBG structure has an extremely compact size, and its area is less than 40% of the conventional mushroom-like EBG(CML-EBG) structure[8].The period of the CSRR(complementary split ring resonator)-based EBG structure demonstrated in [9]presents a 28% size reduction.The period of the EBG lattice demonstrated in [10]is 3.86%and 7.3% of the two free space wavelengths, respectively.In addition, other methods like using edge-located vias are also effective[11],[12].

    In this paper, a novel EBG structure with both of the RSRs (reverse split rings) and IE (inserting interleaving edge) configurations has been proposed, achieving a 13.6%size reduction in the center frequency of the bandgap,compared with the CML-EBG structure.The RSRs and IE were integrated, respectively, into the CML-EBG structure to investigate their contribution to compactness.A 5×5 sample was constructed and measured.The measured data show a proper agreement with the simulated results.

    2.Structure Analysis and Design

    The CML-EBG consisting of metal patch cells and vias is shown in Fig.1 (a).The stopband property of this structure can be described as an equivalent parallel LC resonator.The equivalent capacitance C is introduced by the gap electric field between the edges of adjacent cells,and the equivalent inductance L is engendered by the current flowing from upper patches to ground plane through vias.Therefore, the bandgap frequency and bandwidth (BW)can be calculated as

    respectively, where the equivalent capacitance C is a gap structure, defined asthe periodic equivalent inductance L can be written as L=μ0h, w is the patch size, g is the distance between cells,εris the dielectric permittivity, h is the thickness of the substrate, d is the diameter of the via, and a is the size of the period.Thus, the bandgap frequency can be decreased by increasing the equivalent capacitance and inductance.

    Fig.1.Geometry of the EBG structure: (a) CML EBG and (b)proposed RSRs-IE based EBG.

    For the purpose of reducing the bandgap frequency without increasing the patch cell size, the RSRs and IE configuration are introduced in the patch of the CML-EBG to construct the RSRs-IE structure based EBG, as shown in Fig.1 (b).Comparing with the CML-EBG structure, the interleaving edge in the rectangle patch can be considered as interdigital capacitance, and the reverse split rings etched on the EBG structure are equivalent to additional inductance.Because of the extension of the current flowing path, which contributes to the increasing of equivalent inductance and capacitance, the RSRs-IE structure based EBG gains the feature of compactness.

    3.Results and Discussions

    The CML-EBG structure configuration has the chosen parameters as following: relative permittivity εr=2.65,substrate thickness h=1 mm, patch size w=6.2 mm, and distance between cells g=0.3 mm.In order to compare the RSRs-IE EBG structure with the CML-EBG structure, the width of the cell is w′=5.0mm, the length and the width of the IE cell are b=0.6 mm and c=0.4 mm, the parameters of the RSRs are w0=0.2 mm, w1=w2=0.2 mm, and r0=1.6 mm, other parameters are the same.The dispersion diagram method[13]is used to analyze the bandgap feature of the EBG structure.All the simulated results are calculated by Ansoft HFSS v10.

    The simulated dispersion diagram of the CML-EBG and RSRs-IE based EBG are shown in Fig.2 (a) and Fig.2(b), respectively.Only two modes are plotted to cut down the calculation time.As is shown, a complete bandgap between 6.5 GHz and 11.4 GHz is clearly observed for the CML-EBG, with a bandwidth of 27.4%, at the center frequency of 8.95 GHz.As to the RSRs-IE based EBG, the bandgap is from 3.9 GHz to 9.3 GHz, with a bandwidth of 41% at the center frequency of 6.6 GHz.Compared with the CML-EBG, the bandwidth of the RSRs-IE based EBG structure increases, however, the center bandgap occurs at a much lower frequency, thus, the RSRs-IE based EBG obtains compactness in size accompany with a broad bandwidth.

    Fig.2.Dispersion diagram for the EBG structure: (a) CML EBG and (b) proposed RSRs-IE based EBG.

    Table 1: Bandgap feature of different IE lengths

    From the previous analysis, we could come to the conclusion that the RSRs and IE configurations play a significant role in the performance of the CML-EBG structure.To study the effect of structure and dimension of the RSRs and IE, two simulation cases have been carried out.

    3.1 Case 1

    The model of CML-EBG integrating with different interleaving edge is established and the dimensions of the IE and patch agree with those in the previous part.Fig.3 depicts the bandgap frequency of the IE-based EBG:6.2 GHz to 7.8 GHz (a bandwidth of 11.4% at 7 GHz).Note that the IE configuration inserting in the EBG makes a decline of 1.95 GHz at the center frequency with a drop of 16% in the bandwidth.Furthermore, the IE-based EBG with different IE lengths was simulated.It is observed in Table 1 that the center bandgap frequency tends to decrease with the increase of IE length b, moreover, the bandwidth gains an effective improvement when length b becomes smaller.

    Fig.3.Dispersion diagram for the IE-based EBG structure.

    Fig.4.Dispersion diagram for the RSR-based EBG structure.

    Table 2: Bandgap feature of different RSRS radius

    Fig.5.Figures of the constructed RSRs-IE EBG.

    3.2 Case 2

    Model of CML-EBG etched RSRs was built.The parameters of the RSRs and patch are the same as previous.Learning from Fig.4, RSRs-based EBG shows a bandgap of 3.5 GHz to 8.8 GHz (a bandwidth of 43% at 6.15 GHz).Note that the RSRs etched on the EBG bring about a decrease of 2.8 GHz at the center frequency, with an enlargement of 15.6% in the bandwidth.As shown in Table 2, when the radius of the inner ring increases, the middle bandgap frequency moves to the lower ends, while the bandwidth drops slowly.

    Fig.6.Measured results: (a) mushroom-like EBG and (b)proposed EBG.

    To further validate the bandgap performance of the RSRs-IE based EBG structure, a 5×5 lattice of the Mushroom-like EBG and the presented EBG structure were fabricated on printed circuit boards (PCBs) and measured by Agilent N5230 vector network analyzer, as shown in Fig.5.

    The suspended microstrip method[14],[15]was applied to verify the bandgap property of the novel EBG in which a 50 Ω microstrip line was placed above upper substrate(εr=2.65, h=0.5 mm) and soldered with SMA connectors to measure the S-parameters.As a strong coupling measurement method, the bandgap is defined in the range with S21below –10 dB.The measured results are depicted in Fig.6:the bandgap is from 4.1 GHz to 6.7 GHz.Though it is narrower than the simulated result (Fig.2(b)), it is much lower than that of the CML-EBG (7.6 GHz to 11.8 GHz) as measured.

    The measured results agree well with the simulated results, however, there is some error between them.The discrepancy is probably due to the following three reasons:1) ideal infinite periodic cells used in simulations, 2)manufacturing tolerances, and 3) interference from the surrounding environment.

    4.Conclusions

    A novel compact RSRs and IE embedded conventional mushroom-like EBG structure is studied and tested.The measure results confirm the location of the bandgap calculated by Ansoft HFSS.Compared with the conventional mushroom-like EBG structure, the combination of RSRs and IE results in decreasing the center frequency of the band-gap by 13.6%, therefore, the proposed RSRs-IE based EBG can be effectively applied in compact microstrip patch array.

    Acknowledgment

    The authors would like to thank Zhongyang Xingye Corporation and W.S.Zhan for fabrication of the prototypes.They also would like to thank Y.Huang for technical guidance in measurement.

    [1]D.Sievenpiper, L.J.Zhang, R.F.J.Broas, N.G.Alexopolous, and E.Yabiomovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans.on Microw.Theory Tech., vol.47, no.11, pp.2059–2074, 1999.

    [2]F.Yang and Y.Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering, Cambridge: Cambridge Univ.Press, 2008.

    [3]F.Yang and Y.Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures:A low mutual coupling design for array applications,” IEEE Trans.on Antenna Propag., vol.51, no.10, pp.2936–2946,2003.

    [4]Z.Iluz, R.Shavit, and R.Bauer, “Microstrip antenna phased array with electromagnetic bandgap substrate,” IEEE Trans.on Antenna Propag., vol.52, no.6, pp.1446–1453, 2004.

    [5]J.Liang and H.Y.D.Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,”IEEE Trans.on Antenna Propag., vol.55, no.6, pp.1691–1697, 2007.

    [6]M.Coulombe, S.F.Koodian, and C.Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans.on Antenna Propag., vol.58, no.4, pp.1076–1086, 2010.

    [7]Y.-Q.Fu, N.-C.Yuan, and G.-H.Zhang, “Compact high-impedance surfaces incorporated with interdigital structure,” Electron.Lett., vol.40, no.5, pp.310–311, 2004.

    [8]L.Yang, M.-Y.Fan, F.-L.Chen, J.-Z.She, and Z.-H.Feng,“A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits,” IEEE Trans.on Microw.Theory Tech., vol.53, no.1, pp.183–190, 2005.

    [9]L.Peng, C.-L.Ruan, and Z.-Q.Li, “A novel compact and polarization-dependent mushroom-type EBG structure using CSRR for dual/triple-band application,” IEEE Microw.Wireless Compon.Lett., vol.20, no.9, pp.489–491, 2010.

    [10]Y.Yao, X.Wang, and Z-H.Feng, “A novel dual-band compact electromagnetic bandgap (EBG) structure and its application in multiantennas,” in Proc.of IEEE Antennas and Propagation Society International Symposium, Albuquerque,2006, pp.1943–1946.

    [11]P.Jiang and K.Xie, “Design of novel compact electromagnetic bandgap structure with enhanced bandwidth,” J.Electron.Science Tech., vol.8, no.3, pp.262–266, Sep.2010.

    [12]E.Rajo-Iglesias, L.Inclan-Sanchez, J.L.Vazquez-Roy, and E.Garcia-Muoz, “Size reduction of mushroom-type EBG surfaces by using edge located vias,” IEEE Microw.Wireless.Compon.Lett., vol.17, no.9, pp.670–672, Sep.2007.

    [13]R.Remski, “Analysis of PBG surfaces using Ansoft HFSS,”Microwave Journal, vol.43, no.9, pp.190–198, Sep.2000.

    [14]M.-Y.Fan, R.Hu, Z.-H.Feng, X.-X.Zhang, and Q.Hao,“New method for 2D-EBG structures’ research,” J.Infrared Millim.Waves, vol.22, no.2, pp.127–131, Oct.2003.

    [15]Y.Ning, Z.-N.Chen, and Y.-Y.Wang, “A novel two-layer compact electromagnetic band-gap (EBG) structure and its applications in microwave circuits,” Science in China (Series E), vol.46, no.4, pp.439–447, 2003.

    人人妻人人爽人人添夜夜欢视频| 高清毛片免费观看视频网站| 色在线成人网| 午夜激情av网站| 欧美性长视频在线观看| 久久国产亚洲av麻豆专区| 中文字幕久久专区| 女人精品久久久久毛片| 免费高清在线观看日韩| 99re在线观看精品视频| 人妻久久中文字幕网| 国产精品精品国产色婷婷| 亚洲激情在线av| 91精品三级在线观看| 亚洲av美国av| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品第一综合不卡| 亚洲 国产 在线| 国产真人三级小视频在线观看| 日本欧美视频一区| 女人高潮潮喷娇喘18禁视频| 搡老熟女国产l中国老女人| 国产精品电影一区二区三区| 麻豆av在线久日| 99精品欧美一区二区三区四区| 久久人人97超碰香蕉20202| 老司机靠b影院| 亚洲av五月六月丁香网| 国产aⅴ精品一区二区三区波| 国产成人欧美在线观看| e午夜精品久久久久久久| 波多野结衣一区麻豆| 国产av精品麻豆| 精品国产美女av久久久久小说| 女同久久另类99精品国产91| 9191精品国产免费久久| 91麻豆av在线| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕色久视频| av片东京热男人的天堂| 琪琪午夜伦伦电影理论片6080| 国产精品久久久av美女十八| 在线观看66精品国产| 国产99久久九九免费精品| 三级毛片av免费| 欧美在线一区亚洲| 亚洲,欧美精品.| 丝袜在线中文字幕| netflix在线观看网站| 色尼玛亚洲综合影院| 老司机福利观看| 国产97色在线日韩免费| 女人被狂操c到高潮| 久久久久久亚洲精品国产蜜桃av| 久久亚洲精品不卡| 精品国产亚洲在线| 日本免费一区二区三区高清不卡 | 日韩欧美一区视频在线观看| 色婷婷久久久亚洲欧美| 国产成人欧美在线观看| 好男人在线观看高清免费视频 | 久久香蕉国产精品| 免费看a级黄色片| 老司机靠b影院| 老司机靠b影院| 成年版毛片免费区| 脱女人内裤的视频| 国产aⅴ精品一区二区三区波| 国产极品粉嫩免费观看在线| 亚洲aⅴ乱码一区二区在线播放 | 亚洲人成电影免费在线| 日韩欧美三级三区| 人人妻人人澡欧美一区二区 | 久久中文字幕人妻熟女| 久久精品国产亚洲av香蕉五月| 一区二区三区高清视频在线| 欧美激情久久久久久爽电影 | 少妇被粗大的猛进出69影院| 黄色 视频免费看| 超碰成人久久| 亚洲天堂国产精品一区在线| 欧美中文日本在线观看视频| 国产精品秋霞免费鲁丝片| 日韩一卡2卡3卡4卡2021年| 非洲黑人性xxxx精品又粗又长| 桃色一区二区三区在线观看| 在线观看免费午夜福利视频| 日韩欧美三级三区| 国产亚洲精品第一综合不卡| 精品国产一区二区三区四区第35| 日韩精品免费视频一区二区三区| 久久人人精品亚洲av| 淫妇啪啪啪对白视频| e午夜精品久久久久久久| 久9热在线精品视频| 这个男人来自地球电影免费观看| 人妻久久中文字幕网| 欧美丝袜亚洲另类 | 日本三级黄在线观看| 久久久国产成人精品二区| 亚洲avbb在线观看| 午夜精品久久久久久毛片777| 男女下面插进去视频免费观看| 最近最新中文字幕大全免费视频| 国产高清有码在线观看视频 | 久久精品人人爽人人爽视色| 午夜福利欧美成人| 一区二区三区高清视频在线| 精品不卡国产一区二区三区| 欧美乱码精品一区二区三区| 日韩大尺度精品在线看网址 | 国产野战对白在线观看| 老汉色∧v一级毛片| 精品福利观看| av电影中文网址| 免费观看精品视频网站| 国产精品永久免费网站| 两人在一起打扑克的视频| 中文字幕人妻熟女乱码| a在线观看视频网站| 狠狠狠狠99中文字幕| 性色av乱码一区二区三区2| 亚洲专区国产一区二区| 一级毛片女人18水好多| 一区二区三区国产精品乱码| 人人妻,人人澡人人爽秒播| 日本在线视频免费播放| 久久性视频一级片| 叶爱在线成人免费视频播放| 国产精品免费一区二区三区在线| 中文字幕精品免费在线观看视频| 国产成人av激情在线播放| 欧美丝袜亚洲另类 | 日韩 欧美 亚洲 中文字幕| 一级a爱视频在线免费观看| 亚洲精品国产色婷婷电影| 一边摸一边抽搐一进一小说| 久久中文字幕人妻熟女| 波多野结衣av一区二区av| 国产精品一区二区精品视频观看| 久久伊人香网站| 人人妻人人爽人人添夜夜欢视频| 天堂影院成人在线观看| av中文乱码字幕在线| www.www免费av| 999精品在线视频| 国产熟女午夜一区二区三区| 日韩成人在线观看一区二区三区| 久热这里只有精品99| 9191精品国产免费久久| 国产单亲对白刺激| 又大又爽又粗| 午夜影院日韩av| 亚洲色图综合在线观看| 亚洲av第一区精品v没综合| 高清在线国产一区| 国产精品免费一区二区三区在线| 窝窝影院91人妻| 天天添夜夜摸| 欧美一区二区精品小视频在线| 熟女少妇亚洲综合色aaa.| 亚洲av第一区精品v没综合| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女| 自拍欧美九色日韩亚洲蝌蚪91| 成人国产综合亚洲| 午夜福利,免费看| 国产熟女午夜一区二区三区| 好看av亚洲va欧美ⅴa在| 久久国产乱子伦精品免费另类| av在线天堂中文字幕| 欧美色欧美亚洲另类二区 | 99精品欧美一区二区三区四区| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 一区二区三区高清视频在线| 亚洲九九香蕉| 国产精品永久免费网站| 亚洲一区二区三区色噜噜| 亚洲精品美女久久av网站| 国产麻豆成人av免费视频| 在线国产一区二区在线| 中文字幕人成人乱码亚洲影| 嫁个100分男人电影在线观看| 人人澡人人妻人| 国产成人欧美| 亚洲欧美激情综合另类| 韩国av一区二区三区四区| 美女大奶头视频| 色播亚洲综合网| 97人妻天天添夜夜摸| 999精品在线视频| 丁香六月欧美| 久久午夜综合久久蜜桃| 我的亚洲天堂| 亚洲欧洲精品一区二区精品久久久| av片东京热男人的天堂| 女警被强在线播放| 国产熟女午夜一区二区三区| 国产97色在线日韩免费| 亚洲成国产人片在线观看| 亚洲男人的天堂狠狠| 国产日韩一区二区三区精品不卡| 老司机福利观看| 久久影院123| 老熟妇仑乱视频hdxx| 国产av精品麻豆| 亚洲av电影不卡..在线观看| ponron亚洲| 免费观看人在逋| 亚洲精品国产色婷婷电影| 日韩免费av在线播放| 国产伦人伦偷精品视频| 免费在线观看日本一区| 在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 搡老熟女国产l中国老女人| 男女下面进入的视频免费午夜 | 精品国产乱码久久久久久男人| 欧美国产日韩亚洲一区| 午夜免费成人在线视频| 丝袜人妻中文字幕| 中文字幕色久视频| a在线观看视频网站| 精品久久久精品久久久| 亚洲av片天天在线观看| 亚洲五月色婷婷综合| 一进一出抽搐gif免费好疼| 日韩欧美国产一区二区入口| 亚洲av成人av| 亚洲性夜色夜夜综合| 国产精品久久久久久精品电影 | 看片在线看免费视频| 国产激情欧美一区二区| 成人精品一区二区免费| 久久精品国产综合久久久| 国产精品99久久99久久久不卡| 黄色 视频免费看| 女人被躁到高潮嗷嗷叫费观| 日韩 欧美 亚洲 中文字幕| 亚洲激情在线av| 成人免费观看视频高清| 国产精品 国内视频| 国产99久久九九免费精品| 国产精品影院久久| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 最新美女视频免费是黄的| 久久精品影院6| 日本a在线网址| 日韩av在线大香蕉| 最近最新免费中文字幕在线| 免费看美女性在线毛片视频| 久久精品人人爽人人爽视色| 黄片小视频在线播放| 人人妻人人爽人人添夜夜欢视频| 日韩欧美免费精品| 久久久久久久久久久久大奶| 国产极品粉嫩免费观看在线| 丰满人妻熟妇乱又伦精品不卡| www.熟女人妻精品国产| 黄色毛片三级朝国网站| 日韩国内少妇激情av| 女人被躁到高潮嗷嗷叫费观| 成人三级黄色视频| 黄片小视频在线播放| 欧美乱妇无乱码| 美国免费a级毛片| 日本精品一区二区三区蜜桃| 国产成人啪精品午夜网站| 亚洲全国av大片| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 午夜福利一区二区在线看| 女警被强在线播放| 久久婷婷成人综合色麻豆| 日本a在线网址| 黄色毛片三级朝国网站| 国产精品一区二区三区四区久久 | 美女大奶头视频| 亚洲熟女毛片儿| 最近最新免费中文字幕在线| 午夜老司机福利片| 中文字幕最新亚洲高清| 手机成人av网站| 中文亚洲av片在线观看爽| 日本黄色视频三级网站网址| 婷婷精品国产亚洲av在线| 久久欧美精品欧美久久欧美| 欧美国产精品va在线观看不卡| 亚洲三区欧美一区| 亚洲成人精品中文字幕电影| 日韩三级视频一区二区三区| 亚洲av第一区精品v没综合| 很黄的视频免费| 日韩欧美国产在线观看| 亚洲成av人片免费观看| 欧美成人一区二区免费高清观看 | 伊人久久大香线蕉亚洲五| 在线观看66精品国产| 久久欧美精品欧美久久欧美| 亚洲精品国产区一区二| 精品人妻在线不人妻| 99精品欧美一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久人妻蜜臀av | 色av中文字幕| 精品卡一卡二卡四卡免费| 亚洲伊人色综图| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美日韩综合在线一区二区| 久久久久精品国产欧美久久久| 精品一区二区三区视频在线观看免费| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| av片东京热男人的天堂| 国产男靠女视频免费网站| 后天国语完整版免费观看| 一级a爱视频在线免费观看| 国产高清有码在线观看视频 | 久久久国产成人免费| 女同久久另类99精品国产91| 日本 欧美在线| 中文字幕精品免费在线观看视频| 制服丝袜大香蕉在线| 精品高清国产在线一区| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 久久精品人人爽人人爽视色| 可以在线观看毛片的网站| 18禁国产床啪视频网站| 天堂影院成人在线观看| 国产欧美日韩一区二区三| 人妻久久中文字幕网| 亚洲美女黄片视频| 欧美丝袜亚洲另类 | 99久久国产精品久久久| ponron亚洲| 久9热在线精品视频| 一区二区三区激情视频| 91国产中文字幕| 久热爱精品视频在线9| 51午夜福利影视在线观看| 精品久久久精品久久久| 亚洲人成77777在线视频| 久久 成人 亚洲| 天堂√8在线中文| 久久人妻av系列| 国产一卡二卡三卡精品| 亚洲情色 制服丝袜| 久久天堂一区二区三区四区| 国产人伦9x9x在线观看| 亚洲视频免费观看视频| 最新美女视频免费是黄的| 国产精品久久久人人做人人爽| 午夜久久久在线观看| 日韩 欧美 亚洲 中文字幕| 老司机午夜福利在线观看视频| 久久人人精品亚洲av| 亚洲欧美激情综合另类| 午夜福利18| 国产亚洲欧美98| 婷婷精品国产亚洲av在线| 很黄的视频免费| 久久欧美精品欧美久久欧美| 国产区一区二久久| 村上凉子中文字幕在线| 可以免费在线观看a视频的电影网站| 村上凉子中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| e午夜精品久久久久久久| 男女午夜视频在线观看| 久久久久国产一级毛片高清牌| 亚洲美女黄片视频| 成人三级做爰电影| 国产高清激情床上av| 免费久久久久久久精品成人欧美视频| 日韩精品免费视频一区二区三区| 国产精品久久电影中文字幕| 欧美午夜高清在线| 两个人看的免费小视频| 在线天堂中文资源库| 中文字幕av电影在线播放| 国产黄a三级三级三级人| 国产激情欧美一区二区| 久久香蕉国产精品| 在线观看舔阴道视频| 成在线人永久免费视频| 欧美国产精品va在线观看不卡| 两个人视频免费观看高清| 岛国在线观看网站| 久久久久久久久久久久大奶| 中文亚洲av片在线观看爽| 国产精华一区二区三区| 老司机靠b影院| 波多野结衣一区麻豆| 久久久久久人人人人人| 操美女的视频在线观看| 亚洲国产毛片av蜜桃av| 亚洲男人的天堂狠狠| 久久婷婷人人爽人人干人人爱 | www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 精品久久久久久久人妻蜜臀av | 黄色a级毛片大全视频| 久久精品影院6| 国产1区2区3区精品| 亚洲人成77777在线视频| 美国免费a级毛片| 一夜夜www| 亚洲国产精品合色在线| 亚洲精品久久国产高清桃花| 久久婷婷成人综合色麻豆| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网| 两个人视频免费观看高清| 国产精品,欧美在线| 国产极品粉嫩免费观看在线| 黄色成人免费大全| 亚洲性夜色夜夜综合| 黄色a级毛片大全视频| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 大型av网站在线播放| 香蕉久久夜色| 啦啦啦 在线观看视频| 久久人人爽av亚洲精品天堂| 在线观看免费视频日本深夜| 日本五十路高清| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 91麻豆精品激情在线观看国产| 国产97色在线日韩免费| 国产高清视频在线播放一区| 视频在线观看一区二区三区| 无限看片的www在线观看| 天堂√8在线中文| 日韩欧美国产在线观看| 99re在线观看精品视频| 精品国产一区二区久久| 精品国产超薄肉色丝袜足j| 满18在线观看网站| 一级毛片高清免费大全| 99精品欧美一区二区三区四区| 色尼玛亚洲综合影院| 日本欧美视频一区| 亚洲欧美激情综合另类| 一区二区三区高清视频在线| 99riav亚洲国产免费| 国产精品国产高清国产av| 亚洲九九香蕉| av电影中文网址| 狠狠狠狠99中文字幕| 精品少妇一区二区三区视频日本电影| 久久久国产成人免费| 国产男靠女视频免费网站| 午夜福利成人在线免费观看| 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 亚洲av熟女| 中文亚洲av片在线观看爽| 在线观看免费午夜福利视频| 国产亚洲精品第一综合不卡| 久久伊人香网站| 免费高清视频大片| 久久精品亚洲精品国产色婷小说| 一边摸一边抽搐一进一小说| 男人舔女人的私密视频| 中文字幕色久视频| 亚洲,欧美精品.| 一级毛片精品| 日日干狠狠操夜夜爽| 在线观看66精品国产| 久久香蕉激情| 无遮挡黄片免费观看| 国产高清videossex| 国产一区二区在线av高清观看| 美国免费a级毛片| 亚洲精华国产精华精| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区高清亚洲精品| 91麻豆精品激情在线观看国产| 免费一级毛片在线播放高清视频 | 男男h啪啪无遮挡| 精品免费久久久久久久清纯| 黑人巨大精品欧美一区二区mp4| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 熟女少妇亚洲综合色aaa.| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| 免费人成视频x8x8入口观看| 麻豆久久精品国产亚洲av| 免费在线观看亚洲国产| av欧美777| 91老司机精品| 日韩视频一区二区在线观看| 久久国产精品影院| 美女 人体艺术 gogo| 亚洲国产看品久久| 国产成人av激情在线播放| 国产精品av久久久久免费| 又紧又爽又黄一区二区| 午夜老司机福利片| 婷婷六月久久综合丁香| 黄色毛片三级朝国网站| 日韩av在线大香蕉| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| 日韩欧美三级三区| 亚洲一区二区三区不卡视频| 久久久久九九精品影院| 黑人巨大精品欧美一区二区蜜桃| 日本三级黄在线观看| 欧美日本中文国产一区发布| 不卡av一区二区三区| 高清毛片免费观看视频网站| 最好的美女福利视频网| 国产日韩一区二区三区精品不卡| 俄罗斯特黄特色一大片| 黑人巨大精品欧美一区二区mp4| 国产成人一区二区三区免费视频网站| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 免费人成视频x8x8入口观看| 午夜精品国产一区二区电影| 欧美日韩亚洲国产一区二区在线观看| 在线天堂中文资源库| 又黄又爽又免费观看的视频| 久9热在线精品视频| 久久国产精品男人的天堂亚洲| 欧美久久黑人一区二区| 欧美日韩亚洲综合一区二区三区_| 麻豆成人av在线观看| 久久久精品国产亚洲av高清涩受| 在线永久观看黄色视频| 午夜日韩欧美国产| 日韩大码丰满熟妇| 精品人妻1区二区| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 成人特级黄色片久久久久久久| 女人精品久久久久毛片| 男女床上黄色一级片免费看| 欧美国产精品va在线观看不卡| 欧美色视频一区免费| 亚洲国产精品sss在线观看| 亚洲情色 制服丝袜| 一夜夜www| 12—13女人毛片做爰片一| 欧美另类亚洲清纯唯美| 国产三级黄色录像| 老司机在亚洲福利影院| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| 91在线观看av| 成人手机av| 美女大奶头视频| 中文字幕久久专区| 一个人观看的视频www高清免费观看 | 国产乱人伦免费视频| 99精品久久久久人妻精品| 中文字幕人成人乱码亚洲影| 久久国产亚洲av麻豆专区| 1024视频免费在线观看| 午夜免费成人在线视频| 人人澡人人妻人| av视频在线观看入口| 亚洲专区中文字幕在线| 级片在线观看| 国产av精品麻豆| 亚洲中文字幕一区二区三区有码在线看 | 国产精品乱码一区二三区的特点 | 村上凉子中文字幕在线| 日韩大尺度精品在线看网址 | 丝袜在线中文字幕| 亚洲国产中文字幕在线视频| 露出奶头的视频| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 欧美黄色片欧美黄色片| 欧美激情久久久久久爽电影 | 美女午夜性视频免费| 窝窝影院91人妻| 中国美女看黄片| 涩涩av久久男人的天堂| 国产成人av激情在线播放| 亚洲黑人精品在线| 久久久久亚洲av毛片大全| 国产精品一区二区免费欧美| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 国产精品一区二区在线不卡| 51午夜福利影视在线观看| 18禁观看日本| 正在播放国产对白刺激| 一夜夜www| 自线自在国产av| 最近最新中文字幕大全电影3 | 又大又爽又粗| 搡老岳熟女国产| 男男h啪啪无遮挡| 给我免费播放毛片高清在线观看|