• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Realization of a Novel Compact Electromagnetic Band-Gap Structure

    2013-11-26 10:47:54LiYeFangJianHuaZhangandFengGeHu

    Li-Ye Fang, Jian-Hua Zhang, and Feng-Ge Hu

    1.Introduction

    The electromagnetic band-gap (EBG) structure is a kind of artificial material composed of periodical metallic or dielectric cells[1], which has the particular characteristic of bandgap in suppressing the propagation of surface-wave and in-phase reflection coefficient[2].This unique feature makes it an excellent candidate in microwave circuit and antenna community, such as increasing the patch antenna gain and reducing the back radiation, suppressing the mutual coupling between antenna elements, and eliminating scan blindness in phased array antenna system[3]–[6].However, due to the constraint of its periodical structure and electric property, the EBG structure has the disadvantage of relatively large size, which restrains practical applications in integration with compact patch antenna array.Therefore, how to minimize the unit size of the EBG structure has become a hot issue in the research area of EBG.

    Many researchers make steps towards the miniaturization of EBG structure and the work of structure miniaturization has achieved practically by modifying the shape of the patch in recent years.For example, the interdigital structure[7]contributes to the miniaturization of EBG structure.The configuration of fork-like EBG structure has an extremely compact size, and its area is less than 40% of the conventional mushroom-like EBG(CML-EBG) structure[8].The period of the CSRR(complementary split ring resonator)-based EBG structure demonstrated in [9]presents a 28% size reduction.The period of the EBG lattice demonstrated in [10]is 3.86%and 7.3% of the two free space wavelengths, respectively.In addition, other methods like using edge-located vias are also effective[11],[12].

    In this paper, a novel EBG structure with both of the RSRs (reverse split rings) and IE (inserting interleaving edge) configurations has been proposed, achieving a 13.6%size reduction in the center frequency of the bandgap,compared with the CML-EBG structure.The RSRs and IE were integrated, respectively, into the CML-EBG structure to investigate their contribution to compactness.A 5×5 sample was constructed and measured.The measured data show a proper agreement with the simulated results.

    2.Structure Analysis and Design

    The CML-EBG consisting of metal patch cells and vias is shown in Fig.1 (a).The stopband property of this structure can be described as an equivalent parallel LC resonator.The equivalent capacitance C is introduced by the gap electric field between the edges of adjacent cells,and the equivalent inductance L is engendered by the current flowing from upper patches to ground plane through vias.Therefore, the bandgap frequency and bandwidth (BW)can be calculated as

    respectively, where the equivalent capacitance C is a gap structure, defined asthe periodic equivalent inductance L can be written as L=μ0h, w is the patch size, g is the distance between cells,εris the dielectric permittivity, h is the thickness of the substrate, d is the diameter of the via, and a is the size of the period.Thus, the bandgap frequency can be decreased by increasing the equivalent capacitance and inductance.

    Fig.1.Geometry of the EBG structure: (a) CML EBG and (b)proposed RSRs-IE based EBG.

    For the purpose of reducing the bandgap frequency without increasing the patch cell size, the RSRs and IE configuration are introduced in the patch of the CML-EBG to construct the RSRs-IE structure based EBG, as shown in Fig.1 (b).Comparing with the CML-EBG structure, the interleaving edge in the rectangle patch can be considered as interdigital capacitance, and the reverse split rings etched on the EBG structure are equivalent to additional inductance.Because of the extension of the current flowing path, which contributes to the increasing of equivalent inductance and capacitance, the RSRs-IE structure based EBG gains the feature of compactness.

    3.Results and Discussions

    The CML-EBG structure configuration has the chosen parameters as following: relative permittivity εr=2.65,substrate thickness h=1 mm, patch size w=6.2 mm, and distance between cells g=0.3 mm.In order to compare the RSRs-IE EBG structure with the CML-EBG structure, the width of the cell is w′=5.0mm, the length and the width of the IE cell are b=0.6 mm and c=0.4 mm, the parameters of the RSRs are w0=0.2 mm, w1=w2=0.2 mm, and r0=1.6 mm, other parameters are the same.The dispersion diagram method[13]is used to analyze the bandgap feature of the EBG structure.All the simulated results are calculated by Ansoft HFSS v10.

    The simulated dispersion diagram of the CML-EBG and RSRs-IE based EBG are shown in Fig.2 (a) and Fig.2(b), respectively.Only two modes are plotted to cut down the calculation time.As is shown, a complete bandgap between 6.5 GHz and 11.4 GHz is clearly observed for the CML-EBG, with a bandwidth of 27.4%, at the center frequency of 8.95 GHz.As to the RSRs-IE based EBG, the bandgap is from 3.9 GHz to 9.3 GHz, with a bandwidth of 41% at the center frequency of 6.6 GHz.Compared with the CML-EBG, the bandwidth of the RSRs-IE based EBG structure increases, however, the center bandgap occurs at a much lower frequency, thus, the RSRs-IE based EBG obtains compactness in size accompany with a broad bandwidth.

    Fig.2.Dispersion diagram for the EBG structure: (a) CML EBG and (b) proposed RSRs-IE based EBG.

    Table 1: Bandgap feature of different IE lengths

    From the previous analysis, we could come to the conclusion that the RSRs and IE configurations play a significant role in the performance of the CML-EBG structure.To study the effect of structure and dimension of the RSRs and IE, two simulation cases have been carried out.

    3.1 Case 1

    The model of CML-EBG integrating with different interleaving edge is established and the dimensions of the IE and patch agree with those in the previous part.Fig.3 depicts the bandgap frequency of the IE-based EBG:6.2 GHz to 7.8 GHz (a bandwidth of 11.4% at 7 GHz).Note that the IE configuration inserting in the EBG makes a decline of 1.95 GHz at the center frequency with a drop of 16% in the bandwidth.Furthermore, the IE-based EBG with different IE lengths was simulated.It is observed in Table 1 that the center bandgap frequency tends to decrease with the increase of IE length b, moreover, the bandwidth gains an effective improvement when length b becomes smaller.

    Fig.3.Dispersion diagram for the IE-based EBG structure.

    Fig.4.Dispersion diagram for the RSR-based EBG structure.

    Table 2: Bandgap feature of different RSRS radius

    Fig.5.Figures of the constructed RSRs-IE EBG.

    3.2 Case 2

    Model of CML-EBG etched RSRs was built.The parameters of the RSRs and patch are the same as previous.Learning from Fig.4, RSRs-based EBG shows a bandgap of 3.5 GHz to 8.8 GHz (a bandwidth of 43% at 6.15 GHz).Note that the RSRs etched on the EBG bring about a decrease of 2.8 GHz at the center frequency, with an enlargement of 15.6% in the bandwidth.As shown in Table 2, when the radius of the inner ring increases, the middle bandgap frequency moves to the lower ends, while the bandwidth drops slowly.

    Fig.6.Measured results: (a) mushroom-like EBG and (b)proposed EBG.

    To further validate the bandgap performance of the RSRs-IE based EBG structure, a 5×5 lattice of the Mushroom-like EBG and the presented EBG structure were fabricated on printed circuit boards (PCBs) and measured by Agilent N5230 vector network analyzer, as shown in Fig.5.

    The suspended microstrip method[14],[15]was applied to verify the bandgap property of the novel EBG in which a 50 Ω microstrip line was placed above upper substrate(εr=2.65, h=0.5 mm) and soldered with SMA connectors to measure the S-parameters.As a strong coupling measurement method, the bandgap is defined in the range with S21below –10 dB.The measured results are depicted in Fig.6:the bandgap is from 4.1 GHz to 6.7 GHz.Though it is narrower than the simulated result (Fig.2(b)), it is much lower than that of the CML-EBG (7.6 GHz to 11.8 GHz) as measured.

    The measured results agree well with the simulated results, however, there is some error between them.The discrepancy is probably due to the following three reasons:1) ideal infinite periodic cells used in simulations, 2)manufacturing tolerances, and 3) interference from the surrounding environment.

    4.Conclusions

    A novel compact RSRs and IE embedded conventional mushroom-like EBG structure is studied and tested.The measure results confirm the location of the bandgap calculated by Ansoft HFSS.Compared with the conventional mushroom-like EBG structure, the combination of RSRs and IE results in decreasing the center frequency of the band-gap by 13.6%, therefore, the proposed RSRs-IE based EBG can be effectively applied in compact microstrip patch array.

    Acknowledgment

    The authors would like to thank Zhongyang Xingye Corporation and W.S.Zhan for fabrication of the prototypes.They also would like to thank Y.Huang for technical guidance in measurement.

    [1]D.Sievenpiper, L.J.Zhang, R.F.J.Broas, N.G.Alexopolous, and E.Yabiomovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans.on Microw.Theory Tech., vol.47, no.11, pp.2059–2074, 1999.

    [2]F.Yang and Y.Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering, Cambridge: Cambridge Univ.Press, 2008.

    [3]F.Yang and Y.Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures:A low mutual coupling design for array applications,” IEEE Trans.on Antenna Propag., vol.51, no.10, pp.2936–2946,2003.

    [4]Z.Iluz, R.Shavit, and R.Bauer, “Microstrip antenna phased array with electromagnetic bandgap substrate,” IEEE Trans.on Antenna Propag., vol.52, no.6, pp.1446–1453, 2004.

    [5]J.Liang and H.Y.D.Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,”IEEE Trans.on Antenna Propag., vol.55, no.6, pp.1691–1697, 2007.

    [6]M.Coulombe, S.F.Koodian, and C.Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans.on Antenna Propag., vol.58, no.4, pp.1076–1086, 2010.

    [7]Y.-Q.Fu, N.-C.Yuan, and G.-H.Zhang, “Compact high-impedance surfaces incorporated with interdigital structure,” Electron.Lett., vol.40, no.5, pp.310–311, 2004.

    [8]L.Yang, M.-Y.Fan, F.-L.Chen, J.-Z.She, and Z.-H.Feng,“A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits,” IEEE Trans.on Microw.Theory Tech., vol.53, no.1, pp.183–190, 2005.

    [9]L.Peng, C.-L.Ruan, and Z.-Q.Li, “A novel compact and polarization-dependent mushroom-type EBG structure using CSRR for dual/triple-band application,” IEEE Microw.Wireless Compon.Lett., vol.20, no.9, pp.489–491, 2010.

    [10]Y.Yao, X.Wang, and Z-H.Feng, “A novel dual-band compact electromagnetic bandgap (EBG) structure and its application in multiantennas,” in Proc.of IEEE Antennas and Propagation Society International Symposium, Albuquerque,2006, pp.1943–1946.

    [11]P.Jiang and K.Xie, “Design of novel compact electromagnetic bandgap structure with enhanced bandwidth,” J.Electron.Science Tech., vol.8, no.3, pp.262–266, Sep.2010.

    [12]E.Rajo-Iglesias, L.Inclan-Sanchez, J.L.Vazquez-Roy, and E.Garcia-Muoz, “Size reduction of mushroom-type EBG surfaces by using edge located vias,” IEEE Microw.Wireless.Compon.Lett., vol.17, no.9, pp.670–672, Sep.2007.

    [13]R.Remski, “Analysis of PBG surfaces using Ansoft HFSS,”Microwave Journal, vol.43, no.9, pp.190–198, Sep.2000.

    [14]M.-Y.Fan, R.Hu, Z.-H.Feng, X.-X.Zhang, and Q.Hao,“New method for 2D-EBG structures’ research,” J.Infrared Millim.Waves, vol.22, no.2, pp.127–131, Oct.2003.

    [15]Y.Ning, Z.-N.Chen, and Y.-Y.Wang, “A novel two-layer compact electromagnetic band-gap (EBG) structure and its applications in microwave circuits,” Science in China (Series E), vol.46, no.4, pp.439–447, 2003.

    精品一区二区三区视频在线| 亚洲性久久影院| 97热精品久久久久久| 亚洲欧美日韩东京热| av在线亚洲专区| 国产亚洲精品av在线| 国产精品一区二区性色av| 久久精品国产亚洲av涩爱| 国产欧美日韩精品一区二区| 国产探花在线观看一区二区| a级一级毛片免费在线观看| a级一级毛片免费在线观看| 亚洲av中文字字幕乱码综合| 人人妻人人看人人澡| 97超碰精品成人国产| kizo精华| 搞女人的毛片| 国产精品99久久久久久久久| 不卡视频在线观看欧美| 91精品一卡2卡3卡4卡| av在线亚洲专区| 夫妻性生交免费视频一级片| 国产三级在线视频| 免费观看人在逋| 一级黄片播放器| 免费人成在线观看视频色| 国产午夜福利久久久久久| 热99在线观看视频| 69av精品久久久久久| 美女高潮的动态| 国产成人午夜福利电影在线观看| 日韩一区二区视频免费看| 国产精品久久久久久久电影| 高清日韩中文字幕在线| 色哟哟·www| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 啦啦啦观看免费观看视频高清| 欧美高清性xxxxhd video| 老师上课跳d突然被开到最大视频| 日韩av在线大香蕉| 91久久精品国产一区二区成人| 日日干狠狠操夜夜爽| 亚洲婷婷狠狠爱综合网| 日本一二三区视频观看| 精品人妻熟女av久视频| 人妻少妇偷人精品九色| 日韩 亚洲 欧美在线| 亚洲一区高清亚洲精品| 欧美另类亚洲清纯唯美| 精品久久久久久久久久久久久| 又爽又黄a免费视频| 国产在视频线在精品| av在线亚洲专区| 欧美最新免费一区二区三区| 黑人高潮一二区| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 欧美又色又爽又黄视频| 99九九线精品视频在线观看视频| 69人妻影院| 韩国av在线不卡| 成人二区视频| 内射极品少妇av片p| 三级男女做爰猛烈吃奶摸视频| 国产女主播在线喷水免费视频网站 | 特级一级黄色大片| eeuss影院久久| 亚洲av熟女| 极品教师在线视频| 欧美不卡视频在线免费观看| 午夜a级毛片| av在线播放精品| 18禁动态无遮挡网站| 岛国毛片在线播放| 美女黄网站色视频| 国产精品一区www在线观看| 国产淫语在线视频| 国产av在哪里看| 成人漫画全彩无遮挡| 青春草国产在线视频| 中文资源天堂在线| 亚洲美女视频黄频| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 国产精品乱码一区二三区的特点| 看非洲黑人一级黄片| 99国产精品一区二区蜜桃av| 十八禁国产超污无遮挡网站| 亚洲精品自拍成人| 日本av手机在线免费观看| 欧美丝袜亚洲另类| 成人欧美大片| 最近中文字幕2019免费版| 久久久久久久久大av| 亚洲va在线va天堂va国产| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 麻豆成人午夜福利视频| 特级一级黄色大片| av免费在线看不卡| 在线免费观看不下载黄p国产| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| 欧美性猛交╳xxx乱大交人| 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 亚洲成人精品中文字幕电影| 观看美女的网站| 欧美成人免费av一区二区三区| 国产精品不卡视频一区二区| 久久国产乱子免费精品| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 亚洲国产高清在线一区二区三| 日韩精品有码人妻一区| 2021少妇久久久久久久久久久| 亚洲精品一区蜜桃| 日本黄色视频三级网站网址| 国产高清国产精品国产三级 | 国产高潮美女av| 久热久热在线精品观看| 老司机影院毛片| 丰满人妻一区二区三区视频av| 久久久久久久午夜电影| 亚洲国产成人一精品久久久| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久 | 天美传媒精品一区二区| 尤物成人国产欧美一区二区三区| 日本黄色视频三级网站网址| 偷拍熟女少妇极品色| 亚洲久久久久久中文字幕| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 成年av动漫网址| 精品国产露脸久久av麻豆 | 有码 亚洲区| 久99久视频精品免费| 久久精品熟女亚洲av麻豆精品 | 只有这里有精品99| 免费av毛片视频| 91aial.com中文字幕在线观看| 久久久欧美国产精品| 国产午夜精品论理片| 国产极品精品免费视频能看的| 国产爱豆传媒在线观看| 男人舔女人下体高潮全视频| 乱人视频在线观看| 中文乱码字字幕精品一区二区三区 | 91aial.com中文字幕在线观看| 日日撸夜夜添| 日日干狠狠操夜夜爽| 中文字幕精品亚洲无线码一区| 国产在线一区二区三区精 | 欧美日韩在线观看h| 麻豆国产97在线/欧美| 偷拍熟女少妇极品色| 午夜激情欧美在线| 可以在线观看毛片的网站| 精品一区二区三区人妻视频| 国产成人91sexporn| www日本黄色视频网| 又爽又黄a免费视频| 午夜视频国产福利| 少妇熟女aⅴ在线视频| ponron亚洲| 久久久久久久久大av| 亚洲欧美日韩卡通动漫| 三级国产精品片| 成人一区二区视频在线观看| 国产一级毛片七仙女欲春2| 亚洲伊人久久精品综合 | 青青草视频在线视频观看| 久久久色成人| 国产日韩欧美在线精品| h日本视频在线播放| 国产三级在线视频| 午夜a级毛片| av视频在线观看入口| 蜜桃亚洲精品一区二区三区| 91精品一卡2卡3卡4卡| 免费黄色在线免费观看| 少妇猛男粗大的猛烈进出视频 | 有码 亚洲区| 国产黄片视频在线免费观看| 久久精品国产亚洲网站| 99热精品在线国产| av.在线天堂| 国产精品,欧美在线| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放 | 男人和女人高潮做爰伦理| 中文在线观看免费www的网站| 天天一区二区日本电影三级| 久久99蜜桃精品久久| 深爱激情五月婷婷| 午夜免费激情av| 亚洲天堂国产精品一区在线| 欧美日韩综合久久久久久| 热99在线观看视频| 亚洲婷婷狠狠爱综合网| 午夜久久久久精精品| 欧美区成人在线视频| 国产精品av视频在线免费观看| 欧美性猛交╳xxx乱大交人| 嘟嘟电影网在线观看| 久久久久国产网址| 国产三级在线视频| 国产精品日韩av在线免费观看| 欧美日韩精品成人综合77777| 村上凉子中文字幕在线| 91精品伊人久久大香线蕉| 久热久热在线精品观看| 国产白丝娇喘喷水9色精品| 色综合亚洲欧美另类图片| 欧美激情在线99| 超碰97精品在线观看| 一级爰片在线观看| 高清午夜精品一区二区三区| 少妇丰满av| 一二三四中文在线观看免费高清| 国产亚洲最大av| 99热全是精品| 99久久精品一区二区三区| av天堂中文字幕网| 菩萨蛮人人尽说江南好唐韦庄 | 欧美xxxx黑人xx丫x性爽| 超碰97精品在线观看| 熟妇人妻久久中文字幕3abv| 久久精品熟女亚洲av麻豆精品 | 97超碰精品成人国产| 午夜福利在线在线| 深爱激情五月婷婷| 晚上一个人看的免费电影| 国产成人freesex在线| 2022亚洲国产成人精品| 国产高清国产精品国产三级 | 日韩欧美在线乱码| 亚洲av男天堂| 美女高潮的动态| 亚洲中文字幕一区二区三区有码在线看| 久久久精品94久久精品| 黄色欧美视频在线观看| 亚洲欧洲国产日韩| 午夜爱爱视频在线播放| 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| av黄色大香蕉| 亚洲自拍偷在线| 国内精品宾馆在线| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 久久久国产成人免费| 国产又色又爽无遮挡免| 婷婷色综合大香蕉| 美女高潮的动态| 精品熟女少妇av免费看| 国产精品日韩av在线免费观看| av福利片在线观看| av又黄又爽大尺度在线免费看 | 国产又黄又爽又无遮挡在线| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 欧美成人午夜免费资源| 日韩欧美 国产精品| 精品人妻视频免费看| 最近视频中文字幕2019在线8| 乱系列少妇在线播放| 中文字幕制服av| 国产伦理片在线播放av一区| 亚洲欧洲国产日韩| av卡一久久| 最近最新中文字幕大全电影3| 可以在线观看毛片的网站| 伦理电影大哥的女人| 日韩一本色道免费dvd| 青青草视频在线视频观看| 免费在线观看成人毛片| 欧美日韩国产亚洲二区| 亚洲国产精品sss在线观看| 精品久久国产蜜桃| 久久草成人影院| 欧美日韩国产亚洲二区| 美女大奶头视频| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 波多野结衣高清无吗| av国产久精品久网站免费入址| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 爱豆传媒免费全集在线观看| 免费看日本二区| 99视频精品全部免费 在线| 亚洲av电影在线观看一区二区三区 | 看十八女毛片水多多多| 亚洲18禁久久av| 婷婷色av中文字幕| 人体艺术视频欧美日本| 偷拍熟女少妇极品色| 国产色婷婷99| 精品久久久久久久久亚洲| 国产真实乱freesex| 看免费成人av毛片| 国产三级中文精品| 狠狠狠狠99中文字幕| 老女人水多毛片| 国产亚洲5aaaaa淫片| 性色avwww在线观看| 久久这里有精品视频免费| 久久亚洲精品不卡| 精品一区二区三区视频在线| 黄色一级大片看看| av又黄又爽大尺度在线免费看 | 国产欧美日韩精品一区二区| 哪个播放器可以免费观看大片| 99久久无色码亚洲精品果冻| 99久久成人亚洲精品观看| 日本免费一区二区三区高清不卡| 亚洲熟妇中文字幕五十中出| 一级黄片播放器| 亚洲av二区三区四区| 久久久久久久亚洲中文字幕| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 亚洲美女搞黄在线观看| 欧美区成人在线视频| 九色成人免费人妻av| 国产精品伦人一区二区| 黄色一级大片看看| 国产高清视频在线观看网站| 女的被弄到高潮叫床怎么办| 小说图片视频综合网站| 在线观看美女被高潮喷水网站| 嘟嘟电影网在线观看| 欧美日韩综合久久久久久| 日韩精品有码人妻一区| av卡一久久| 成人欧美大片| 国产成人免费观看mmmm| 91精品国产九色| 中文天堂在线官网| 午夜福利在线观看吧| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄 | 午夜精品国产一区二区电影 | 国产人妻一区二区三区在| 国产伦在线观看视频一区| 成人国产麻豆网| 一级黄片播放器| 一级黄色大片毛片| 一级二级三级毛片免费看| 国产亚洲av片在线观看秒播厂 | 中国美白少妇内射xxxbb| 日韩三级伦理在线观看| 又爽又黄a免费视频| av免费观看日本| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验| 欧美日韩在线观看h| 亚洲国产欧美人成| 亚洲久久久久久中文字幕| 亚洲精品久久久久久婷婷小说 | 九色成人免费人妻av| 18禁动态无遮挡网站| 永久网站在线| 免费观看人在逋| 免费黄网站久久成人精品| 亚洲中文字幕日韩| 国产免费视频播放在线视频 | 天堂影院成人在线观看| 国产三级在线视频| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久中文| 色噜噜av男人的天堂激情| 水蜜桃什么品种好| 波野结衣二区三区在线| 26uuu在线亚洲综合色| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 国产黄片视频在线免费观看| 日韩视频在线欧美| 久久久久精品久久久久真实原创| 禁无遮挡网站| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩在线中文字幕| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱| 久久久久久国产a免费观看| 久久人妻av系列| 在线观看一区二区三区| 卡戴珊不雅视频在线播放| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 99久久无色码亚洲精品果冻| 亚洲av中文字字幕乱码综合| 国产精品av视频在线免费观看| 免费观看人在逋| 国产探花在线观看一区二区| 哪个播放器可以免费观看大片| 亚洲va在线va天堂va国产| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 亚洲欧美精品综合久久99| av.在线天堂| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 亚洲国产精品sss在线观看| 能在线免费观看的黄片| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 男人舔女人下体高潮全视频| 中文字幕人妻熟人妻熟丝袜美| 久久精品人妻少妇| 国产在视频线精品| 99热这里只有是精品50| 成人综合一区亚洲| 亚洲欧洲国产日韩| 亚洲精品456在线播放app| 国产精品综合久久久久久久免费| 国产高清视频在线观看网站| 国产69精品久久久久777片| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 国产成人a区在线观看| 日本与韩国留学比较| 亚洲av免费高清在线观看| 内射极品少妇av片p| 少妇的逼好多水| 好男人在线观看高清免费视频| av专区在线播放| 久久久久久久久久黄片| 中文字幕免费在线视频6| av免费观看日本| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 国产精品永久免费网站| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 亚洲性久久影院| 高清日韩中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区精品小视频在线| 国产在线男女| 丝袜喷水一区| 日韩大片免费观看网站 | 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 国产成人91sexporn| 国产淫片久久久久久久久| 成年版毛片免费区| 久久精品久久精品一区二区三区| 日韩欧美国产在线观看| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 在现免费观看毛片| 寂寞人妻少妇视频99o| 久久午夜福利片| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 精品久久久久久成人av| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看| 国产日韩欧美在线精品| 日本五十路高清| 成年免费大片在线观看| 国产精品综合久久久久久久免费| av国产久精品久网站免费入址| 亚洲成色77777| 天美传媒精品一区二区| 欧美激情国产日韩精品一区| 国产精品久久视频播放| 中文天堂在线官网| 欧美3d第一页| 国产成人91sexporn| 99热精品在线国产| 国产精品女同一区二区软件| 老司机影院毛片| 亚洲欧美日韩高清专用| 日韩欧美精品v在线| 高清毛片免费看| 亚洲自偷自拍三级| 国产伦一二天堂av在线观看| 一级毛片我不卡| 在线观看av片永久免费下载| 99久国产av精品| 日日撸夜夜添| 看片在线看免费视频| 美女xxoo啪啪120秒动态图| 看十八女毛片水多多多| 成人性生交大片免费视频hd| av播播在线观看一区| 亚洲国产精品国产精品| 精品久久国产蜜桃| 国产毛片a区久久久久| 99久国产av精品国产电影| 免费看a级黄色片| 成年av动漫网址| 亚洲18禁久久av| 国产成人一区二区在线| 男人的好看免费观看在线视频| 亚洲成色77777| 午夜爱爱视频在线播放| av免费观看日本| 亚洲av成人精品一区久久| or卡值多少钱| av天堂中文字幕网| 免费黄色在线免费观看| 亚洲怡红院男人天堂| 国产伦精品一区二区三区四那| 男女国产视频网站| av福利片在线观看| 人妻少妇偷人精品九色| 久久久久精品久久久久真实原创| 直男gayav资源| 麻豆国产97在线/欧美| 亚洲国产精品合色在线| 亚洲四区av| 深夜a级毛片| 国产一区有黄有色的免费视频 | 国产男人的电影天堂91| 国产成人freesex在线| 亚洲av免费高清在线观看| 91aial.com中文字幕在线观看| 亚洲图色成人| 久久久久久大精品| 在线观看66精品国产| 秋霞在线观看毛片| 男女下面进入的视频免费午夜| videos熟女内射| 综合色av麻豆| 人体艺术视频欧美日本| 色视频www国产| 热99在线观看视频| 日韩一区二区视频免费看| 青青草视频在线视频观看| 欧美三级亚洲精品| a级毛色黄片| 草草在线视频免费看| 国产激情偷乱视频一区二区| 亚洲国产精品成人综合色| 纵有疾风起免费观看全集完整版 | 国产亚洲一区二区精品| 97超视频在线观看视频| 人人妻人人看人人澡| 国产精品久久视频播放| 国产精品国产三级专区第一集| 亚洲美女搞黄在线观看| 综合色av麻豆| 精品国产露脸久久av麻豆 | 麻豆精品久久久久久蜜桃| 国产成人免费观看mmmm| 国产午夜精品论理片| 亚洲四区av| 3wmmmm亚洲av在线观看| 国产精品电影一区二区三区| 99久久无色码亚洲精品果冻| 日韩精品青青久久久久久| 亚洲国产精品久久男人天堂| 噜噜噜噜噜久久久久久91| 一边摸一边抽搐一进一小说| 午夜日本视频在线| 老师上课跳d突然被开到最大视频| 天堂√8在线中文| 大香蕉久久网| 午夜激情欧美在线| 精品一区二区免费观看| 亚洲丝袜综合中文字幕| 久久午夜福利片| 欧美日本亚洲视频在线播放| 高清毛片免费看| 青春草亚洲视频在线观看| 成年女人看的毛片在线观看| 麻豆av噜噜一区二区三区| 日韩三级伦理在线观看| 岛国毛片在线播放| 国产中年淑女户外野战色| 国产精品一及| 欧美激情国产日韩精品一区| 成人av在线播放网站| 国产伦精品一区二区三区视频9| 亚洲天堂国产精品一区在线| 综合色丁香网| 男的添女的下面高潮视频| 亚洲美女搞黄在线观看| av在线天堂中文字幕| av在线蜜桃| 亚洲精品乱码久久久v下载方式| 亚洲内射少妇av| 伦理电影大哥的女人| 少妇人妻精品综合一区二区| 亚洲av男天堂| 高清视频免费观看一区二区 | 欧美高清性xxxxhd video| 最近视频中文字幕2019在线8| 成人亚洲欧美一区二区av| 欧美丝袜亚洲另类| 亚洲精品乱久久久久久| 大香蕉久久网| 三级国产精品片| 久久人人爽人人爽人人片va| 一个人看的www免费观看视频| 午夜爱爱视频在线播放| 日日撸夜夜添| 看免费成人av毛片| 国产成人aa在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 |