• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    開放式的高分辨率超聲成像系統(tǒng)

    2013-11-23 06:39:34邱維寶于妍妍黎國鋒鄭海榮
    集成技術(shù) 2013年5期
    關(guān)鍵詞:香港理工大學(xué)醫(yī)學(xué)工程學(xué)部

    邱維寶 于妍妍 黎國鋒 錢 明 孫 雷 鄭海榮*

    1(中國科學(xué)院深圳先進(jìn)技術(shù)研究院生物醫(yī)學(xué)與健康工程研究所 深圳 518055)

    2(香港理工大學(xué)物醫(yī)學(xué)工程跨領(lǐng)域?qū)W部 香港 )

    1 Introduction

    High-resolution, noninvasive visualization of living tissues is an indispensable technique to observe physiological activities on a miniature scale. Diseases associated with small human structures such as eye, skin,blood vessel can benef i t from this technique. In addition,this technique can also facilitate preclinical researches of small animal models of human diseases in mice,rats, zebrafish, etc. Preclinical studies of small animal models can improve the knowledge and understanding of physiological and functional mechanism of pathologies and treatment strategies. Current high-resolution imaging modalities include micro-CT (computed tomography)[1],micro-MRI (magnetic resonance imaging)[2], micro-PET (positron emission tomography)[3], optical coherent tomography (OCT)[4], and high-resolution ultrasound imaging[5-6].

    High-resolution ultrasound imaging, also known as micro-ultrasound (micro-US)or ultrasound biomicroscope(UBM), has made it possible to delineate small structures with fine spatial resolution on the order of tens of microns[7]. It is clinically used for ophthalmology[8],dermatology[9], and intravascular diseases[10]. Preclinical small animal model research has also been signif i cantly propelled by this technique, for example, malignant tumor diagnosis[11-12], cardiac diseases[13-14], and embryonic developmental biology[15-16]. Recently, it has been combined with optical method such as OCT or fluorescence spectroscopy as a dual-modality imaging technique and demonstrated great potentials in biomedical studies[17-19]. Other advanced imaging techniques also take the advantage of high-resolution ultrasound imaging and extend its biomedical investigations such as photoacoustic imaging[20-21], contrast enhanced imaging[22], modulated excitation imaging[23], 3D imaging[24], elastography imaging[10,25], and harmonic imaging[26]. Each study is unique in nature and requires different utilization of the ultrasound imaging system. Imaging systems(eg:vevo 770, vevo 2100, Visualsonics, Inc., Canada)with fixed specifications, such as transducer characteristics,data acquisition strategy, signal processing method,and image display approach, do not satisfy extensive preclinical study requirements. Researchers need a highly flexible device to best suit their specific investigations.In addition, access to the raw experimental data is also important to scientific discovery. Therefore, an open and flexible ultrasound imaging system allowing users/researchers to customize for individual biomedical study is necessary.

    In this paper, the development of an open imaging system with high flexibility and compactness was described to satisfy various biomedical investigations.This open system incorporated a high-voltage arbitrary waveform generator, a programmable imaging receiver,high-precision servo motors, and high-performance transducers. FPGA was served as the core processor and replaced hardware circuitry for fast processing speed and programmability. Moreover, low-noise and high-speed analog electronics was used to achieve high signal-tonoise ratio (SNR)and high sensitivity. A PCIE bus, as a high-speed data transmission interface, was incorporated in this platform for image data or RF raw data transfer to a computer through direct memory access (DMA)operation. Nevertheless, all the electronics such as amplifier, filter, analog-to-digital converter (ADC)and FPGA were incorporated in a single PCB for compactness and cost-effectiveness. It was demonstrated that B-mode imaging, Doppler imaging, modulated excitation imaging,and intravascular imaging were realized in this system.

    2 System Description

    The designed open system included a high-frequency pulse generator, a high-speed ultrasound imaging receiver with analog front-end electronics and digital back-end unit, and a high-speed mechanical scan probe. The block diagram is shown in Fig.1. The pulse generator employed FPGA and high-speed metal-oxide-semiconductor field effect transistors (MOSFETs)to achieve high-voltage pulse generation. A high-speed imaging receiver was developed including front-end electronics, ADC, FPGA,and high-speed computer interfaces, which allowed to process the images in real-time with high programmability and flexibility. A personal computer was employed for image display and data storage for further investigations.Graphical user interface software was programmed in Visual C++ to process real-time ultrasound images. A PCIE bus utilization supports high-speed data transfer and real-time imaging.

    Figure 1. The block diagram of the high-resolution open system

    2.1 Pulse Generator

    The designed pulse generator for this open system incorporated a bipolar pulse generation scheme and an arbitrary waveform generator. A programmable FPGA component (Cyclone III, EP3C16F484C6N, Altera Corporation, San Jose, CA)was employed to control the timing and spectrum characteristics of the high voltage short pulse. Therefore, the pulse generator could be easily adjusted to support transducers with different center frequencies as well as match with the spectrum of individual transducer to acquire the optimized performance. Two MOSFET drivers (EL7158, Intersil Corporation, Milpitas, CA)were employed to accomplish the voltage level shift and high current output to excite the high-speed MOSFET pair (TC6320, Supertex Inc.,Sunnyvale, CA). The MOSFET pair could offer more than 150 Vpp breakdown voltages and a 2A output peak current, which made it suitable to produce a high-voltage pulse for ultrasound imaging.

    The waveform for modulated excitation imaging usually requires amplitude and frequency modulation(Chirp excitation) or phase modulation (Barker excitation and Golay excitation) of sinusoidal carrier signal. A programmable high-voltage arbitrary waveform generator was designed to generate various arbitrary waveforms for different modulated excitation imaging. A 16-bit DAC (DAC5682Z, Texas Instruments Inc., TX) with 1 giga-samples per second (GSPS)was employed to convert digital arbitrary waveforms to analog signals at a frequency higher than 100 MHz. Two stages of high-speed operational amplifiers (THS3091, Texas Instruments Inc., TX)were used to amplify the waveforms. Then a push-pull vertical diffused metal-oxide-semiconductor(VDMOS)transistor (SR705, Polyfet RF Devices,Camarillo, CA)was employed in the third stage for highvoltage amplif i cation.

    2.2 High-speed Digital Receiver

    The center frequency of high-resolution ultrasound is usually from 20 MHz to 80 MHz. So the echo receiver should have the capability to process this high-frequency ultrasound signal. In the developed open system, highprecision ultrasound signal amplif i cation and acquisition,real-time image processing, and fast data transfer were achieved in the high-speed imaging receiver. It utilized low-noise amplifiers and high-speed ADC to amplify and digitize the small ultrasound echo signal,respectively. Raw RF data which were acquired by the ADC after low-noise amplification were processed directly by the high-speed FPGA for fast imaging and compact implementation. In detail, a low-noise amplif i er(SMA231, Tyco Electronics Co., Berwyn, PA) was used as the fi rst stage amplif i er to support 27 dB gain. A lowdistortion amplifier (THS4509, Texas Instruments Inc.,Dallas, TX) was used as the second stage amplifier for further 20 dB amplification. A low-pass filter (RLP83+,Mini-Circuits, Brooklyn, NY) with a cut frequency of 93 MHz was employed for ADC anti-aliasing. A highspeed 11 bits ADC (ADS5517, Texas Instruments Inc.,Dallas, TX) with a maximum sampling rate of 200 MSPS was utilized for data converting. After the digitization,the digital signal was transferred to FPGA through the low-voltage differential signaling (LVDS)bus. A highperformance FPGA (Stratix II EP2S60F672I4, Altera Corporation, San Jose, CA)with great signal integrity was employed, which could support data processing at an adequate speed. This component included 39 DSP blocks (total 288 9×9Multipliers)which could eff i ciently implement high-speed digital signal processing algorithms. It demonstrated up to 287 MHz high order FIR, Hilbert transform and high-speed DSC algorithms.It could also support DDR2 SDRAM and PCI interface.A 512M bits RAM combined with two DDR2 SDRAM(MT47H16M16, Micron Technology Inc., Boise, ID)was used for temporary buffering of data. Various programmable algorithms could be achieved in the FPGA including band pass filter, compression filter, envelope detector, and digital scan converter for modulated excitation imaging. The receiver also supported raw RF data acquisition. Both processed image data and raw RF data could be transferred to a computer through PCIE interface (PEX8311, PLX Technology Inc, Sunnyvale,CA)for displaying or post-processing.

    2.3 Imaging Algorithms

    As a fi eld programmable microprocessor, the FPGA can achieve various functionalities traditionally realized by hardware circuitry. Moreover, the functions could easily be changed or modified by reprogramming the FPGA without change of hardware. Thus, the FPGA technology could significantly improve the system flexibility and diversity by programmable and reconf i gurable algorithms.Fig. 2 shows the representative structure of implemented algorithms for real-time B-mode imaging and directional PW Doppler.

    For B-mode imaging, three steps were adopted for data preconditioning, i.e. in the order of execution, band pass filter (BPF), digital time gain compensation (TGC)and envelope detection. After removing noises by BPF, the data were digitally amplif i ed by conf i gurable coeff i cients to compensate for ultrasound attenuation loss in tissues called TGC. The acquired envelop data then underwent DSC and logarithmic compression. The TGC, DSC and logarithm compressor were all reconfigurable by users through GUI software. For directional PW Doppler,BPF was also employed but with different coefficients conf i guration tuned for fl ow measurement. A novel digital quadrature demodulation was used to extract the flow information from the echo signal. The data were then saved in the dual port RAM for gate selection. When a train of data was accumulated, the spectrum extraction was then launched to estimate the fl ow velocity. Finally,image data or spectrogram data were sent to a computer through PCIE bus for display and storage.

    2.4 Evaluation Method

    The performance of the open system electronics was tested by a 240 MHz function generator (AFG 3251,Tektronix Inc., Beaverton, OR), a digital oscilloscope(LeCroy wavepro 715Zi, LeCroy Corp., Chestnut Ridge,NY), a signal generator (HP8656B, Hewlett Packard),a spectrum analyzer (HP8591E, Hewlett Packard), and a series of attenuators (Mini-Circuits, Brooklyn, NY).The signal generator and the spectrum analyzer were employed to test the gain linearity and fl atness of analog electronics. The noise level of the system was tested by measuring the minimum detectable signal level and dynamic range. Five-cycle sinusoidal signal generated by the function generator was attenuated by a series of attenuators and then sent to the imaging receiver. After passing through the front-end electronics, the amplitude of the weak signal that could just be identif i ed from the background noise determined the minimum detectable signal level. Given the input range of the high-speed ADC(2 Vpp), the dynamic range could be derived from the gain and the minimum detectable signal level.

    Figure 2. Schematic of algorithms implemented in the FPGA for real-time B-mode imaging and directional pulsed-wave Doppler.

    A wire phantom consisting of five 20 μm diameter tungsten wires (California Fine Wire Co., CA), was used to evaluate the image resolution. A tissue mimicking phantom was fabricated to further test the image quality of the open platform. The phantom fabrication procedure followed Madsen’s method[27]. It consisted of a mixture of deionized water, high-grade agarose, preservative,propylene glycol, fi ltered bovine milk, and glass-bead to generate tissue mimicking attenuation and backscattering.Anechoic spheres were fabricated separately and dispersed in the phantom to test the system resolution.The size of the anechoic spheres was in the range of 180-280 μm controlled by a dedicated sieve (Fisherbrand sieves, Fisher Scientif i c, Pittsburgh, PA).

    3 Results

    The system prototype for the proposed open system was shown in Fig. 3. Fig. 3(a)showed the arbitrary waveform generator in an eight-layer PCB. Fig. 3(b)showed the programmable imaging receiver with an eight-layer PCB incorporating low-noise front-end electronics, ADC,SDRAM, high speed FPGA, and PCIE interface.

    3.1 Electronics Performance

    Table 1 summarized the performance of the open system electronics. The highest amplitude of bipolar pulse was 160 Vpp with adjustable center frequency and bandwidth(Fig. 4). Table 1 also demonstrates that the maximum gain of the front-end electronics is 47 dB with good linearity at a maximum fl uctuation of less than ±1.2 dB between 10 MHz and 90 MHz. The minimal detectable signal level of the system receiver is less than 25 μV. Given the input range of the high-speed ADC (2 Vpp), the system can allow a 51 dB dynamic range at 35 MHz center frequency.

    Figure 3. (a)Photographs of the designed open system including a programmable pulse generator (b)and a high-speed imaging receiver

    The software-based band pass filter (BPF)was programmed in the FPGA to further remove the noise and improve the signal SNR. Quantitative analysis showed that approximately 4.8 dB SNR improvement was achieved after applying the BPF, which increased the system dynamic range to 55.8 dB. The algorithmic scheme implemented in the FPGA could achieve highspeed imaging by pipe-line signal processing. The data transferring speed was higher than 150 MByte/s for PCIE interface. At the image size of 512×512 pixels, the frame rate can be higher than 200 images per second for PCIE.Current frame rate is limited by the motor, and it can besignificantly improved if a faster motor is used. With the current utilization of FPGA resources, much more complicated signal processing may be implemented to acquire useful information than vessel morphology, such as the virtual histology (tissue characterization based on ultrasound raw RF data).

    Table 1. Electronics performance of the open system

    Figure 4. High-voltage bipolar monocycle pulse with 35 MHz center frequency, 150 Vpp amplitude, and 56 MHz 6dB bandwidth.

    3.2 B-mode Imaging

    The image quality of this system was evaluated by a customized wire phantom. The wire phantom consisted of five 20 μm diameter tungsten wires (California Fine Wire Co., CA)of which distance intervals along vertical and horizontal directions were 1.6 mm and 1.0 mm respectively. The ultrasound image of this wire phantom was shown in Fig. 5 with a dynamic range of 50 dB.In this experiment, a 35 MHz PVDF single element transducer was employed. (Characteristics: focal length 13.6 mm, bandwidth 88%, f-number 2.7). No visible noise was noticed in this image.

    Fig. 6 showed the ultrasound image of the tissue phantom acquired by this system prototype. The black circular dots appearing in the images were the anechoic spheres producing no detectable echoes. The diameter of the spheres were at approximately 180 μm, correlating well with the actual sphere size. The transducer for this experiment was a 50 MHz lithium niobate (LiNbO3)transducer with focal length of 9.3 mm and bandwidth of 47%.

    3.3 Flow Imaging

    Figure 5. Wire phantom image of the open platform.

    Figure 6. Image of tissue phantom with anechoic spheres. The dynamic range for this test is set at 48 dB. The trigger pulse is single cycle 150 Vpp bipolar pulse.

    Figure 7. The pulsed-wave Doppler waveform of a vein in the back of a human hand.

    Fig. 7 showed an in vivo spectrogram acquired from a vein in the back of a human hand. A needle transducer(42.5 MHz)was placed close to the vein coupled by ultrasound gel with an angle of 72 degrees approximately.A seven-cycle 40Vpp sinusoidal pulse was generated with PRF of 1.95 KHz. The blood moving away from the transducer confirmed the negative velocity profile. The cyclic pattern of the spectrogram correlated well to the heart beat of the subject. The heart rate was 80 beats/min measured from the spectrogram agreed with the heart rate of 78 beats/min of the subject.

    3.4 Modulated Excitation Imaging

    Fig. 8 showed in vivo ultrasound images of the dorsal skin of a human hand acquired by the short pulse imaging and the modulated excitation imaging with the proposed system. The dynamic range was set to 52 dB in both two images. The image of modulated excitation was brighter than the image of short pulse excitation, simply because the echo signals from the modulated excitation method was much larger. The penetration depth has been significantly improved by the chirp-based modulated excitation imaging technique. Moreover, motor noise was clearly visible in the short pulse imaging, while the noise was unnoticeable in the modulated excitation imaging.

    Figure 8. In vivo images of the dorsal skin of a human hand(a)The image of short pulse imaging. (b)The image of chirp-based modulated excitation imaging.

    3.5 Intravascular Imaging

    The designed open system supports various applications for micro-ultrasound techniques. Intravascular ultrasound imaging was also achieved by replacing the transducer with IVUS transducer. The motor was also changed with a rotary motor. In vitro coronary artery specimen was used for system evaluation. The ultrasound image of specimen was shown in Fig. 9(a). Different layers of the artery could be clearly identif i ed in the ultrasound image.The result from a multi-modality imaging combining IVUS and photoacoustics was shown in Fig. 9(b). An actively Q-switched pulsed laser (Explorer 532 Laser System, Spectra-Physics, Santa Clara, CA)operating at 532 nm wavelength generated very short laser pulses with 240 μJ energy. Ultrasound imaging was launched after the acquisition of photoacoustic signal. The echo intensity of ultrasound imaging slightly increased in bottom right corner of the tissue. This difference could be clearly visualized in photoacoustic image which indicated the change of tissue composition. Combined image showed the complementary nature of ultrasound imaging and photoacoustic imaging that could be useful for the diagnosis of intravascular diseases. This in vitro experimental result clearly demonstrated the capability and fl exibility of the proposed open system.

    Figure 9. In vitro imaging of human coronary artery (a)IVUS image.(b)Combined image of IVUS and photoacoustics.

    4 Conclusions

    In this paper, a programmable open system for real-time high-resolution ultrasound was developed and evaluated based on a high-speed FPGA. It was implemented in a compact and cost-effective PCB scheme. This open system demonstrated a high image quality with a good spatial resolution for preclinical small animal imaging.The flexible and programmable design makes the open system suitable for various biomedical studies.

    [1]Badea C T, Drangova M, Holdsworth D W, et al. In vivo small animal imaging using micro-CT and digital subtraction angiography [J]. Physics in Medicine and Biology, 2008, 53(19):319-350.

    [2]Driehuys B, Nouls J, Badea A, et al. Small animal imaging with magnetic resonance microscopy [J]. ILAR Journal, 2008, 49(1):35-53.

    [3]Schn?ckel U, Hermann S, Stegger L, et al. Small-animal PET:a promising, non-invasive tool in pre-clinical research [J].European Journal of Pharmaceutics and Biopharmaceutics,2010, 74(1): 50-54.

    [4]Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging [J]. Nature Biotechnology, 2003,21(11): 1361-1367.

    [5]Foster F S, Zhang M Y, Zhou Y Q, et al. A new ultrasound instrument for in vivo microimaging of mice [J]. Ultrasound in Medicine and Biology, 2002, 28(9): 1165-1172.

    [6]Foster F S, Mehi J, Lukacs M, et al. A new 15-50 MHz arraybased micro-ultrasound scanner for preclinical imaging [J].Ultrasound in Medicine and Biology, 2009, 35(10): 1700-1708.

    [7]Foster F S, Pavlin C J, Harasiewicz K A, et al. Advances in ultrasound biomicroscopy [J]. Ultrasound in Medicine and Biology, 2000, 26(1): 1-27.

    [8]Silverman R H, Ketterling J A, Coleman D J. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer [J]. Ophthalmology, 2007, 114(4): 816-822.

    [9]Vogt M, Ermert H. In vivo ultrasound biomicroscopy of skin:spectral system characteristics and inverse fi ltering optimization [J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(8): 1551-1559.

    [10]de Korte C L, van der Steen A F, Cespedes E I, et al.Characterization of plaque components and vulnerability with intravascular ultrasound elastography [J]. Physics in Medicind and Biology, 2000, 45(6): 1465-1475.

    [11]Cheung A M, Brown A S, Hastie L A, et al. Three-dimensional ultrasound biomicroscopy for xenograft growth analysis [J].Ultrasound in Medicine and Biology, 2005, 31(6): 865-870.

    [12]Goessling W, North T E, Zon L I. Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors [J].Nature Methods, 2007, 4(7): 551-553.

    [13]Zhou Y Q, Foster F S, Nieman B J, et al. Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging [J]. Physiological Genomics, 2004, 18(2):232-244.

    [14]Du J, Zhang C, Liu J, et al. A point mutation (R192H)in the C-terminus of human cardiac troponin I causes diastolic dysfunction in transgenic mice [J]. Archives of Biochemistry and Biophysics, 2006, 456(2): 143-150.

    [15]Zhou Y Q, Foster F S, Qu D W, et al. Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood [J]. Physiological Genomics, 2002,10(2): 113-126.

    [16]Kulandavelu S, Qu D, Sunn N, et al. Embryonic and neonatal phenotyping of genetically engineered mice [J]. ILAR Journal,2006, 47(2): 103-117.

    [17]R?mer T J, Brennan III J F, Puppels G J, et al. Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20(2): 478-483.

    [18]Sun Y, Park J, Stephens D N, et al. Development of a dual-modal tissue diagnostic system combining time-resolved fl uorescence spectroscopy and ultrasonic backscatter microscopy [J]Review of Scientif i c Instruments, 2009, 80(6): 065104.

    [19]Yang H C, Yin J, Hu C, Cannata J, et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12): 2839-2843.

    [20]Wang L V. Multiscale photoacoustic microscopy and computed tomography [J]. Nature Photonics, 2009, 3(9): 503-509.

    [21]Sethuraman S, Amirian J H, Litovsky S H, et al. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques [J]. Optics Express, 2008, 16(5): 3362-3367.

    [22]Goertz D E, Cherin E, Needles A, et al. High frequency nonlinear B-scan imaging of microbubble contrast agents [J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(1): 65-79.

    [23]Mamou J, Aristizábal O, Silverman R H, et al. Highfrequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging [J]. Ultrasound in Medicine and Biology, 35(7): 1198-1208.

    [24]Wirtzfeld L A, Wu G, Bygrave M, et al. A new threedimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model [J].Cancer Research, 2005, 65(14): 6337-6345.

    [25]Maurice R L, Daronat M, Ohayon J, et al. Non-invasive highfrequency vascular ultrasound elastography [J]. Physics in Medicine and Biology, 2005, 50(7): 1611-1628.

    [26]Needles A, Arditi M, Rognin N G, et al. Nonlinear Contrast Imaging with an Array-Based Micro-Ultrasound System [J].Ultrasound in Medicine and Biology, 2010, 36(12): 2097-2106.

    [27]Madsen E L, Frank G R, McCormick M M, et al. Anechoic sphere phantoms for estimating 3-D resolution of very-highfrequency ultrasound scanners [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010,57(10): 2284-2292.

    猜你喜歡
    香港理工大學(xué)醫(yī)學(xué)工程學(xué)部
    香港理工大學(xué)無錫科技創(chuàng)新研究院啟用
    黃河科技學(xué)院藝體學(xué)部作品選登
    廣西師范大學(xué)教育學(xué)部特殊教育系簡介
    香港理工大學(xué)無錫科技創(chuàng)新研究院簽約落地?zé)o錫空港經(jīng)開區(qū)
    黃河科技學(xué)院藝體學(xué)部作品選登
    香港理工大學(xué)護(hù)理本科教育見聞及啟示
    僑胞任洪亮率團(tuán)斬獲全球醫(yī)學(xué)工程創(chuàng)新大賽金獎(jiǎng)等
    我院醫(yī)學(xué)工程科的現(xiàn)狀及發(fā)展對策的探討
    仿真優(yōu)化設(shè)計(jì)助推綠色經(jīng)濟(jì)——訪卓展工程顧問有限公司特約嘉賓、香港理工大學(xué)教授牛建磊
    醫(yī)院醫(yī)學(xué)工程部門開展科研的探索與實(shí)踐
    麻豆乱淫一区二区| 少妇人妻一区二区三区视频| 欧美人与善性xxx| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站在线播| 春色校园在线视频观看| 免费大片18禁| 人人妻人人添人人爽欧美一区卜| 在线观看美女被高潮喷水网站| 精品少妇久久久久久888优播| 国产成人免费无遮挡视频| 曰老女人黄片| 国产av一区二区精品久久| 欧美最新免费一区二区三区| av免费在线看不卡| 99久国产av精品国产电影| 国产在线一区二区三区精| 亚洲国产日韩一区二区| 99热国产这里只有精品6| 国产亚洲最大av| 亚洲国产色片| 国产在线男女| 在线观看免费日韩欧美大片 | 99热国产这里只有精品6| 视频中文字幕在线观看| 国产精品蜜桃在线观看| 亚洲中文av在线| 欧美日韩视频精品一区| 日本爱情动作片www.在线观看| 韩国av在线不卡| 精品视频人人做人人爽| 亚洲精品aⅴ在线观看| 各种免费的搞黄视频| 99九九在线精品视频 | 桃花免费在线播放| 久久午夜福利片| 18禁动态无遮挡网站| 熟女av电影| 亚洲精品视频女| √禁漫天堂资源中文www| 女性被躁到高潮视频| 国产高清三级在线| 两个人的视频大全免费| 久久久精品94久久精品| 免费看av在线观看网站| 女人久久www免费人成看片| 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 99热全是精品| 国产在线视频一区二区| 精品国产一区二区久久| 好男人视频免费观看在线| 蜜桃久久精品国产亚洲av| 欧美激情极品国产一区二区三区 | 天天躁夜夜躁狠狠久久av| 2018国产大陆天天弄谢| 亚洲国产精品成人久久小说| 蜜桃在线观看..| 国产黄色免费在线视频| 18禁在线播放成人免费| 最近2019中文字幕mv第一页| 日韩成人伦理影院| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 久久久国产精品麻豆| 久久热精品热| 亚洲欧洲精品一区二区精品久久久 | 欧美区成人在线视频| 成人毛片60女人毛片免费| 成人国产av品久久久| 丰满迷人的少妇在线观看| 一级黄片播放器| 亚洲人成网站在线观看播放| 最黄视频免费看| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 99热网站在线观看| 久久久久精品性色| av视频免费观看在线观看| a级毛片在线看网站| 多毛熟女@视频| 少妇熟女欧美另类| 不卡视频在线观看欧美| 久久精品久久久久久噜噜老黄| 久久97久久精品| 自线自在国产av| 久久女婷五月综合色啪小说| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 丁香六月天网| 黄色一级大片看看| 精品人妻熟女av久视频| 久久久久久久精品精品| 夜夜骑夜夜射夜夜干| 欧美 日韩 精品 国产| 丝袜喷水一区| 不卡视频在线观看欧美| 亚洲精品自拍成人| 国产亚洲91精品色在线| 老司机亚洲免费影院| 观看免费一级毛片| 久久久久久久久久人人人人人人| 99热国产这里只有精品6| 日日爽夜夜爽网站| 久久久久久久大尺度免费视频| 亚洲丝袜综合中文字幕| 久久久久久久久久成人| 中文字幕人妻丝袜制服| 国产精品久久久久久久电影| 亚洲一区二区三区欧美精品| 欧美老熟妇乱子伦牲交| 午夜视频国产福利| 久久av网站| 插逼视频在线观看| 亚洲欧美精品专区久久| 我的女老师完整版在线观看| 精品一区二区三区视频在线| 97超碰精品成人国产| 街头女战士在线观看网站| 99九九线精品视频在线观看视频| 精品亚洲乱码少妇综合久久| 日韩人妻高清精品专区| 视频中文字幕在线观看| 久久久a久久爽久久v久久| 午夜福利网站1000一区二区三区| 亚洲精品久久午夜乱码| 一个人免费看片子| 这个男人来自地球电影免费观看 | 人妻人人澡人人爽人人| 赤兔流量卡办理| 亚洲欧美精品专区久久| 一级毛片我不卡| 91成人精品电影| 国产色爽女视频免费观看| 美女内射精品一级片tv| 欧美3d第一页| 丝袜喷水一区| 亚洲成色77777| 国产女主播在线喷水免费视频网站| 国产精品国产三级专区第一集| 亚洲美女黄色视频免费看| 人人妻人人澡人人看| 大片电影免费在线观看免费| av国产精品久久久久影院| 欧美xxxx性猛交bbbb| 国产亚洲av片在线观看秒播厂| 十八禁网站网址无遮挡 | 99热6这里只有精品| 尾随美女入室| 18禁裸乳无遮挡动漫免费视频| 水蜜桃什么品种好| 久久久国产精品麻豆| av又黄又爽大尺度在线免费看| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 九草在线视频观看| 国产男女内射视频| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 欧美另类一区| 精品亚洲乱码少妇综合久久| 2022亚洲国产成人精品| 精品久久久精品久久久| 中文资源天堂在线| 亚洲综合色惰| a级毛色黄片| 免费大片黄手机在线观看| 十分钟在线观看高清视频www | 在线天堂最新版资源| √禁漫天堂资源中文www| 婷婷色av中文字幕| 中文字幕人妻丝袜制服| 国产精品女同一区二区软件| 成年av动漫网址| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 美女福利国产在线| 国产淫语在线视频| 亚洲欧洲国产日韩| 国产日韩欧美视频二区| 熟女电影av网| 嫩草影院新地址| 十八禁高潮呻吟视频 | 国产精品久久久久久久久免| 91久久精品电影网| 一二三四中文在线观看免费高清| 成年女人在线观看亚洲视频| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 大香蕉久久网| 狂野欧美激情性xxxx在线观看| 女的被弄到高潮叫床怎么办| 久久免费观看电影| av国产久精品久网站免费入址| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| av国产精品久久久久影院| 嘟嘟电影网在线观看| 丝袜喷水一区| 狂野欧美激情性xxxx在线观看| 人妻系列 视频| 人人妻人人爽人人添夜夜欢视频 | 七月丁香在线播放| av国产久精品久网站免费入址| av黄色大香蕉| 欧美三级亚洲精品| 色吧在线观看| 中文字幕精品免费在线观看视频 | 欧美精品国产亚洲| av在线播放精品| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| .国产精品久久| 欧美bdsm另类| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 观看免费一级毛片| 日韩不卡一区二区三区视频在线| 老司机亚洲免费影院| 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 亚洲av不卡在线观看| 美女脱内裤让男人舔精品视频| 中国国产av一级| 精品亚洲成国产av| 国产熟女午夜一区二区三区 | 男人添女人高潮全过程视频| 搡女人真爽免费视频火全软件| 国产精品熟女久久久久浪| 国产探花极品一区二区| xxx大片免费视频| 亚洲av不卡在线观看| 天天操日日干夜夜撸| 久久6这里有精品| 精品视频人人做人人爽| 亚洲av男天堂| 内射极品少妇av片p| 国产精品国产三级国产av玫瑰| 性色av一级| 国产熟女欧美一区二区| 日本av手机在线免费观看| 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 大香蕉97超碰在线| 欧美日韩综合久久久久久| 成人影院久久| 免费人成在线观看视频色| 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 中文字幕人妻丝袜制服| 一级毛片久久久久久久久女| 99热这里只有是精品50| 少妇人妻久久综合中文| 亚洲av不卡在线观看| 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 欧美性感艳星| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 狂野欧美白嫩少妇大欣赏| 人体艺术视频欧美日本| 99久久综合免费| 亚洲无线观看免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 高清欧美精品videossex| 亚洲国产日韩一区二区| 少妇裸体淫交视频免费看高清| 久久狼人影院| xxx大片免费视频| 亚洲不卡免费看| 自拍偷自拍亚洲精品老妇| 久久久久网色| 欧美日本中文国产一区发布| 国产亚洲5aaaaa淫片| 黑丝袜美女国产一区| 一级毛片 在线播放| 国产黄色视频一区二区在线观看| 国产成人午夜福利电影在线观看| 天天躁夜夜躁狠狠久久av| 国产男女内射视频| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜| 日韩不卡一区二区三区视频在线| 国产精品女同一区二区软件| 免费看日本二区| 女性生殖器流出的白浆| 最近最新中文字幕免费大全7| 久久国产精品男人的天堂亚洲 | 国内精品宾馆在线| 大又大粗又爽又黄少妇毛片口| 男女边摸边吃奶| 午夜免费鲁丝| 高清在线视频一区二区三区| 亚洲电影在线观看av| 久久久精品94久久精品| 国产91av在线免费观看| 免费观看a级毛片全部| 国产美女午夜福利| 男的添女的下面高潮视频| 丰满少妇做爰视频| 亚洲成色77777| 日韩成人av中文字幕在线观看| 两个人免费观看高清视频 | 中文字幕久久专区| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影| 国产午夜精品久久久久久一区二区三区| 五月天丁香电影| 亚洲av二区三区四区| 午夜免费鲁丝| 欧美人与善性xxx| 国产亚洲午夜精品一区二区久久| 精品久久久噜噜| 国产成人免费观看mmmm| 中文字幕制服av| 亚洲欧美精品专区久久| 免费看av在线观看网站| 深夜a级毛片| 狂野欧美白嫩少妇大欣赏| 男女免费视频国产| 99久国产av精品国产电影| 久久久久久久久久久免费av| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 七月丁香在线播放| 在线观看人妻少妇| 18禁裸乳无遮挡动漫免费视频| 高清毛片免费看| 69精品国产乱码久久久| 美女视频免费永久观看网站| 欧美日韩在线观看h| 韩国av在线不卡| 日韩欧美 国产精品| 日韩免费高清中文字幕av| 国产白丝娇喘喷水9色精品| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 日韩强制内射视频| 久热这里只有精品99| 大码成人一级视频| 日本欧美视频一区| 国产亚洲91精品色在线| 久久婷婷青草| 少妇人妻久久综合中文| 一级黄片播放器| 大陆偷拍与自拍| 国产精品一区二区在线不卡| av黄色大香蕉| 街头女战士在线观看网站| 国产亚洲精品久久久com| 黄色配什么色好看| 亚洲精品国产成人久久av| 又爽又黄a免费视频| av在线观看视频网站免费| 欧美日韩国产mv在线观看视频| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| a 毛片基地| 久久女婷五月综合色啪小说| 色哟哟·www| 亚洲人成网站在线播| 高清午夜精品一区二区三区| 国产男女内射视频| 婷婷色av中文字幕| 国产av码专区亚洲av| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 我的老师免费观看完整版| 人人妻人人添人人爽欧美一区卜| 午夜影院在线不卡| 久久99蜜桃精品久久| 一本大道久久a久久精品| 国产伦在线观看视频一区| 亚洲自偷自拍三级| 国产精品久久久久久精品古装| 精品熟女少妇av免费看| 天美传媒精品一区二区| 精品一区二区三卡| 免费播放大片免费观看视频在线观看| 麻豆乱淫一区二区| 中文字幕人妻丝袜制服| 国产精品嫩草影院av在线观看| 免费观看av网站的网址| 成年人午夜在线观看视频| 国产成人精品无人区| 丝袜脚勾引网站| 纵有疾风起免费观看全集完整版| 水蜜桃什么品种好| 亚洲欧美精品专区久久| 国产精品蜜桃在线观看| 久久久久久久久大av| 97在线人人人人妻| 大码成人一级视频| 欧美变态另类bdsm刘玥| 亚洲情色 制服丝袜| 精品少妇黑人巨大在线播放| 国产高清有码在线观看视频| 亚洲av综合色区一区| 亚洲真实伦在线观看| 亚洲av综合色区一区| 如日韩欧美国产精品一区二区三区 | 9色porny在线观看| 99国产精品免费福利视频| 日本爱情动作片www.在线观看| 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 欧美三级亚洲精品| 国产老妇伦熟女老妇高清| 22中文网久久字幕| 妹子高潮喷水视频| 少妇人妻 视频| 亚洲av在线观看美女高潮| 十分钟在线观看高清视频www | 日韩精品有码人妻一区| 久久精品国产a三级三级三级| 亚洲综合色惰| 久久国产精品男人的天堂亚洲 | 久久久久久伊人网av| 91成人精品电影| 啦啦啦在线观看免费高清www| a级一级毛片免费在线观看| 亚洲精品国产色婷婷电影| 亚洲国产精品999| 精品一区在线观看国产| 欧美人与善性xxx| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 国产在视频线精品| 日韩av在线免费看完整版不卡| 国产精品国产三级国产专区5o| 国产精品无大码| 中文字幕制服av| 少妇人妻久久综合中文| 免费少妇av软件| 午夜激情久久久久久久| 亚洲精品一二三| 视频中文字幕在线观看| 色94色欧美一区二区| 99久久精品国产国产毛片| 肉色欧美久久久久久久蜜桃| 亚洲欧美一区二区三区国产| 国产真实伦视频高清在线观看| 纯流量卡能插随身wifi吗| 美女国产视频在线观看| av专区在线播放| 青青草视频在线视频观看| 人妻制服诱惑在线中文字幕| 一区二区三区乱码不卡18| 中文天堂在线官网| 美女视频免费永久观看网站| 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 精品久久久久久久久av| 亚洲国产精品999| 久久6这里有精品| 国产熟女欧美一区二区| 亚洲欧美一区二区三区国产| 国产熟女午夜一区二区三区 | 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 永久免费av网站大全| 日韩一区二区三区影片| 国产熟女午夜一区二区三区 | 熟女电影av网| 国产美女午夜福利| 欧美日韩精品成人综合77777| 又爽又黄a免费视频| 国产国拍精品亚洲av在线观看| 久久久欧美国产精品| 久久6这里有精品| 免费观看在线日韩| 99热全是精品| 成人国产麻豆网| 久久国产精品男人的天堂亚洲 | 久久久国产一区二区| 国产伦理片在线播放av一区| 六月丁香七月| 日韩欧美 国产精品| 亚洲av综合色区一区| 色婷婷av一区二区三区视频| 日韩精品免费视频一区二区三区 | 日本色播在线视频| av在线老鸭窝| 中国国产av一级| 看十八女毛片水多多多| 丝袜脚勾引网站| 亚洲精品日韩av片在线观看| videos熟女内射| 97在线视频观看| 内射极品少妇av片p| 能在线免费看毛片的网站| 日韩一本色道免费dvd| 国产精品久久久久久久久免| 色吧在线观看| 欧美老熟妇乱子伦牲交| 精品国产国语对白av| 成人毛片60女人毛片免费| 妹子高潮喷水视频| 亚洲国产精品专区欧美| av专区在线播放| 久久99热这里只频精品6学生| 美女脱内裤让男人舔精品视频| 少妇 在线观看| av福利片在线| 亚洲三级黄色毛片| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| a级毛色黄片| 精品久久久久久电影网| a级一级毛片免费在线观看| av在线播放精品| 日本黄大片高清| 久久精品夜色国产| av福利片在线| 男女无遮挡免费网站观看| 日韩成人av中文字幕在线观看| 欧美区成人在线视频| 秋霞在线观看毛片| 日韩制服骚丝袜av| 午夜视频国产福利| 精品少妇内射三级| 久久久久久久久久久久大奶| 嘟嘟电影网在线观看| 亚洲一级一片aⅴ在线观看| 熟女av电影| 久久午夜福利片| 日韩一本色道免费dvd| 纯流量卡能插随身wifi吗| 自拍欧美九色日韩亚洲蝌蚪91 | 一区二区三区乱码不卡18| 国产极品天堂在线| 亚洲国产精品国产精品| 噜噜噜噜噜久久久久久91| 国产高清不卡午夜福利| 少妇熟女欧美另类| 亚洲伊人久久精品综合| 日韩在线高清观看一区二区三区| videossex国产| 亚洲精品久久久久久婷婷小说| 黑人巨大精品欧美一区二区蜜桃 | av又黄又爽大尺度在线免费看| 亚洲性久久影院| 国产亚洲精品久久久com| 午夜av观看不卡| 国产日韩欧美在线精品| 少妇裸体淫交视频免费看高清| 精品熟女少妇av免费看| 成人二区视频| 有码 亚洲区| 亚洲久久久国产精品| 国产亚洲精品久久久com| 国产精品偷伦视频观看了| 在线观看人妻少妇| 一级毛片久久久久久久久女| 午夜福利在线观看免费完整高清在| 亚洲av综合色区一区| 国产男人的电影天堂91| 国产精品.久久久| 欧美日韩av久久| 精品国产乱码久久久久久小说| 久久精品熟女亚洲av麻豆精品| av在线播放精品| 男的添女的下面高潮视频| 午夜精品国产一区二区电影| 久久人人爽人人爽人人片va| 国产精品一区二区三区四区免费观看| 水蜜桃什么品种好| 少妇人妻 视频| 日韩在线高清观看一区二区三区| 一区二区三区乱码不卡18| 日产精品乱码卡一卡2卡三| 精品亚洲成a人片在线观看| 久久久久人妻精品一区果冻| 中文字幕人妻丝袜制服| 欧美成人精品欧美一级黄| √禁漫天堂资源中文www| 欧美日韩综合久久久久久| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产色片| 成人国产麻豆网| 熟女av电影| 五月天丁香电影| 如日韩欧美国产精品一区二区三区 | 欧美丝袜亚洲另类| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的| 国产真实伦视频高清在线观看| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 丝袜喷水一区| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 一级毛片aaaaaa免费看小| 亚洲欧洲精品一区二区精品久久久 | 精品酒店卫生间| 午夜91福利影院| 欧美三级亚洲精品| 少妇 在线观看| 九九久久精品国产亚洲av麻豆| 人妻一区二区av| 欧美日韩av久久| 日韩大片免费观看网站|