• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ice accretion simulation in supercooled large droplets regime

    2013-11-08 06:17:52BAIJunqiangLIXinHUAJunWANGKun
    關(guān)鍵詞:物面液態(tài)水算例

    BAI Jun-qiang,LI Xin,HUA Jun,2,WANG Kun

    (1.College of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China;2.Chinese Aeronautical Establishment,Beijing 100012,China)

    0 Introduction

    Aircraft aerodynamic surfaces are subject to ice accretion when flying through clouds of supercooled water droplets,ice accretion on the wing or on the tail wing can lead to serious degradation of the aerodynamic performance,such as an increase in drag,a decrease in the stall angle,altered moment characteristics of the aircraft and a decrease in lift.More importantly,ice accretion on propellers or engine nacelles can cause dangerous accident when the ice accretion breaks free.Traditionally,the design of de-icing and anti-icing systems is based on the impingement limits corresponding to Mean Volumetric Diameters(MVD)of 40μm or less,which is currently defined in Appendix C of the Federal Aviation Regulation(FAR)25regulations.SLD (MVD>40μm)induce severe icing conditions,cause water film run back on longer distances and freeze beyond the areas protected by the anti-icing system,when the de-icing system is activated,the dangerous ridge ice accretion can occur on the wing behind the leading edge de-icing system.In fact,in two relatively recent aircraft accidents (ATR-72commuter at Roselawn,IN,in 1994and Embraer-120twin turboprop at Detroit in 1997)the primary cause has been attributed to ice ridges due to SLD[1]. A research program on aircraft in-flight icing conducted byMeteorological Service of Canada out of St.John’s and Ottawa showed that SLD occurred 41%of the time during in-flight icing conditions experienced near Ottawa and 73%near St.John’s,so these dangerous conditions are quite frequent[2].

    It is very clear that the design of anti-icing and de-icing system based on theMVDof 40μm is insufficient,and an extension of numerical approach to account for SLD effects is needed.The problem is such an extension is difficult for the SLD regime violates some assumptions made by Bourgault et al[3].The first one is SLD do not travel at the freestream velocity because of their largeMVDs,SLD no longer enjoy a stable velocity,so an additional velocity component needs to be introduced in the initial velocity.The second one is SLD are prone to deform under the influence of shear forces,resulting in an oblate disk shapes.The last one is the splashing and rebound effects may lead to partial deposition of the impinging droplet mass.

    Many researchers have done lots of work to take into account the effects of terminal velocity,droplet deformation,splashing and rebound.One of the detailed experimental studies was performed by Stow who reported on the impact of water drops on a dry surface[4].Khan and Richardson derived an expression to take into account the effects of terminal droplet velocity[5].Yarin and Weiss proposed a splashing model as a type of kinematic discontinuity[6].Bai and Gosman did a lot of work on rebound model[7].In china,many people have done research on numerical simulation of ice accretion,such as Yi Xian,Wei Dong,Wang Jiangfeng et al[8-10],but few people did research related to SLD regimes,Jianping Hu and Zhenxia Liu did a research on SLD impact behaviors on Aero-engine Strut in 2011[11].

    In this study,an Eulerian droplet tracking method together with models for splashing and rebound are described.First of all,the splashing and rebound model calibration is needed.A recent study performed by Papadakis facilitates the calibration of the model[12].The experiment was carried on a NACA23012airfoil of 1.8288span over a large range of droplet diameters,MVDof 111μm was employed to conduct the calibration work.To examine the accuracy of the model,the splashing model was then used along with the rebound model to generate ice shapes on a NACA0012airfoil,the dataset chosen was reported by Potapczuk in 2003[13].To establish the model’s applicability to arbitrary geometries,flow conditions and droplet size distributions,a three-element airfoil consists of a slat,a main element and a flap was chosen to evaluate the effects of SLD on the impingement results and predicted ice accretion[14-15].

    1 Formulation and numerical method

    1.1 Governing equations for gas phase

    The flow field for air can be obtained by solving the Reynolds-Averaged Navier-Stokes (N-S)equations.Numerical approach is based on the finite volume form of the integral equations.In a domain of a volumeΩwith boundary?Ω,the equation can be written in the integral form:

    The vector of the conserved variables,the convective flux term,and the viscous flux term are given as follows,respectively.

    The Cell-centered finite volume method is employed to solve the N-S equations,and the Lower-Upper Symmetric Gauss-Siedel (LU-SGS)algorithm for time marching,Roe Flux Difference Splitting scheme for the spatial discretization of the convective flux is implemented into codes.The treatment of the far field boundary condition is based on the introduction of Riemann invariants for a one dimensional flow normal to the boundary.Chi andShih[16]suggested that Spalart-Allmaras (S-A)is proper for simulating ice accretion.The N-S equations are closed by the S-A model with thermally perfect gas and temperature-dependent properties,see details in Reference[17].

    1.2 Governing equations for droplets

    The continuity equation and momentum equations for droplets are a set of partial differential equations,one of the source terms for the momentum balance will have to be the drag force,since it is the main force for the droplet phase.The equations for mass and momentum conservation of the droplet phase are[18-19]:

    The other source term considered besides the drag forcefdragare gravity force,pressure gradient force,mass force,Basset history force,Magnus force and Saffman force.

    The drag fore is modeled using the drag coefficientCD:

    WhereRedis the droplets Reynolds number,Kis an inertia parameter,Lis reference length,dis the droplet diameter,ρw,U∞,μddenote the density of water,freestream velocity and molecular viscosity coefficient respectively.

    Droplets having large diameter are prone to deform under the influence of shear forces,resulting in the increase in aerodynamic drag at SLD conditions[20]:

    Weber number is:

    Cd1andCd2represent the drag coefficients of a spherical particle and oblate disk,respectively.σdis the droplet surface tension.

    The force due to gravity and buoyancy is:

    Froude number is expressed as[21]:

    The Saffman force describes a lift force for small particles,it is more important for small particles than for the larger particles that are being studied.The Basset force models the effect of the change in drag as a function of time which is used to model the flow of gas bubbles,this effect is unimportant for present study,since the viscosity of air is much less than that of droplets.Saffman and Basset forces can be safely ignored based on calculation in LEWICE.For large droplets with big inertia,Magnus force is negligible.The ratio of mass force to the drag force,is of the order of 10-4in icing conditions,since ice accretion involves no shock wave,so the pressure gradient force can be neglected reasonably.

    The finite volume method is applied to discretize the governing equations,the convective term is discretized using the QUICK(Quadratic Upwind Interpolation of Convective Kinematics)scheme,and the deferred correction method is used to ensure the diagonal dominance in the discretized equations.In order to guarantee the stability of the iterative solution of algebraic equations,the source term is disposed linearly,the Alternating Direction Implicit(ADI)iteration method is utilized to solve the algebraic equations.In the Eulerian method,the setting of the wall boundary condition is very important in the calculation of collection efficiency,apermeable wall boundary condition is applied to simulate the droplets’impingement onto the wall[22].

    2 SLD model

    2.1 Terminal velocity of droplets

    Khan and Richardson used a dimensionless Galileo number defined as a function of physical properties of the droplet and gas phase to account for the terminal velocity[5],

    Terminal Reynolds number is:

    The corresponding terminal velocity can be obtained from terminal Reynolds number:

    Once the terminal velocity corresponding to a givenMVDis determined,the initial velocity may be changed accordingly(three dimensional case):

    2.2 Interactions between droplet and ice accreting surface

    Bai and Gosman collected a number of results from literature and tried to identify some threshold levels in terms of dimensionless numbers for impact phenomenon[7].They proposed several mechanisms of wall-droplet interactions,four of them within the operational envelope of in-flight icing,Weber number and Laplace number dominate the behaviors of droplets when impact occurs(Fig.1 ),

    Fig.1 Schematic of droplet-wall interaction mechanisms圖1 水滴和物面相互作用示意圖

    Stick,We<2

    Rebound,2<We<10

    Spread,10<We<1320La-0.183

    Splash,We>1320La-0.183

    Stick and spread have no mass loss,so they are accounted for automatically in governing equations,rebound and splashing mechanisms are required to incorporate into droplet governing equations.

    The model for mass-loss due to splashing in SLD conditions by Honsek is used[23],the mass-loss coefficient is expressed as:

    Kywis defined by Yarin and Weiss[6]:

    With the Ohnesorge number defined as:

    Trujillo determined the number of secondary droplets after splashing,the following relation for the number of secondary droplets[24]is introduced:

    Kdryis a function of the non-dimensional surface roughnessksnd,

    Cosali number[25]is similar tokyw:

    When splashing occurs,the normal and tangential components of secondary droplet velocities are determined by functions based on the experimental data reported by Mundo[26],

    The average size of secondary droplets can be determined by:

    About rebound,the components of velocities follow the expressions below:

    Whereθ=90-arctan

    For an Eulerian method,the splashing and rebound phenomenon cause mass loss,this phenomenon is implemented by defining a splashing boundary condition and a rebound boundary condition,which means adding a source term to the flux in the mass and momentum equations at the wall boundary,the source terms for mass equation are:

    The source terms for momentum equations are:

    With source termsMandIincluded,the following droplet governing equations are obtained:

    Wherei=1,2,…,Nbinindicates the droplet bin.

    3 Collection efficiency

    The collection efficiency shows the distribution of liquid on ice accreting surface,with the solution of droplet volume fraction,α,and the distribution of velocity,the collection efficiencyβcan be obtained with the following expression:

    Wherenis unit vector normal to wall,U∞andα∞are the velocity and the droplet volume fraction of far field.

    4 Icing model

    The icing model is based on the model proposed by Messinger[27],the icing model consists of mass and energy conservation equations,for each control volume,the conservation equation of droplet mass can be described as follows,

    Wheremimpis the flux of impinging droplets,mflowinis the total mass flux entering the control volume from the previous control volume,mflowoutis the total mass flux flow out of the control volume,miceis ice accumulation in the control volume,msubis the flux due to ice sublimation in control volume,mevais the flux caused by water evaporation in control volume under consideration.

    The improved thermal conservation equation can be expressed as the following,

    WhereQcondis conductive heat through the ice accreting surface,Qimpis the heat carried by impinging droplets,Qevais the heat transfer induced by water evaporation,Qiceis the freezing heat stored in accreted ice,Qconvis convective heat,Qairis aerodynamic heating by airflow,Qsubis heat transfer caused by ice sublimation,Qflowinis the heat added into the present control volume from previous control volume,Qflowoutis the heat transfer out of the control volume,further information may be found in Reference[28].

    5 Results

    5.1 Model calibration with NACA23012

    Papadakis performed experiment with differentMVDsfor a NACA23012airfoil at angle of attack equals to 2.5°,one case ofMVDequals 111μm was selected to carry on the calibration work,the selected case and the corresponding conditions are shown in table 1 .In order to get more accurate results,droplet size distribution of LangmuirDis employed for selected case.The splashing and rebound model mentioned above are implemented into present code,it is easier for Eulerian method to implement re-injection phenomenon than Lagrangian method does.The catching efficiency with splashing and rebound effects is compared with the catching efficiencywithout the effects as well as experimental results.The catching efficiency calculated is shown in Fig.2,a dramatic improvement is observed when the SLD model is employed.Due to the SLD effects,the catching efficiency decreases almost everywhere,especially near the impingement limitation as shown in Fig.2.It should be noted that over-predicted decrease occurs near leading edge and impingement limitation.Anyway,close agreement with experimental data can be obtained by taking into account the SLD effects.

    Table 1 Test conditions for model calibration表1 模型驗(yàn)證計(jì)算條件

    Fig.2 Water collection efficiency of NACA23012圖2 NACA23012翼型水滴收集率

    The Liquid Water Content(LWC)can be obtained easily since the full field of the droplets can be provided by Eulerian method,the calculatedLWCfor selected case is shown in Fig.3,for this case,there is apparent difference in theLWCwith and without SLD effects,especially near the leading edge,showing a region of increasedLWCconcentration.The reason for this is once the splashing effect occurs near leading edge,the splashed secondary droplets are re-injected into a smaller bin corresponding to the diameter closest to the secondary droplet diameter obtained from the splashing model.

    From the above discussion,the proposed mathematical model may be considered mathematically consistent and physically representative.

    Fig.3 Liquid water content distribution of NACA23012圖3 NACA23012翼型液態(tài)水含量分布云圖

    5.2 Ice accretion on NACA0012

    The splashing model is then used along with the rebound model to generate ice shape on a NACA0012airfoil,the selected case is Run 1-23which was reported by Potapczuk[13],the calculate conditions are shown in table 2 .The same as NACA23012,Langmuir D distribution is used here.The comparison shows a slight decrease in the overall shape when the splashing model is activated,as illustrated in Fig.4 d,the calculation captures the overall size and shape of the experimental ice shape,whereas the calculation is unable to reproduce the detail of the ice shape surface nor is it able to depict the small structures aft of the main ice shape.The using of the SLD model decreases the amount of ice accretion almost everywhere,especially near the aft limits of the ice shape.

    For the calculated ice shape,corresponding water collection efficiency is shown in Fig.4 c,collection efficiency decreases after accounting for SLD effects,especially near icing limit whereas unapparent decrease near leading edge.Since breakup occurs only in regions of high velocity gradient,so splashing phenomenon dominates near the leadingedge,while rebound phenomenon dominates near the icing limit.This explains why catching efficiency decreases more severely near icing limit,for the mass-loss coefficient equals to 1when rebound occurs,when it comes to splashing,the mass-loss coefficient is less than 1.

    Table 2 Parameters for ice accretion on NACA0012表2 NACA0012冰形預(yù)測(cè)計(jì)算條件

    Fig.4 The results of Case 1-23圖4 算例Case 1-23結(jié)果

    Fig.4 bshows theLWCdistributions for the SLD effects around the airfoil,near the suction and pressure side of the airfoil,there are two symmetry shadow zones in which droplet volume fraction nearly equals to zero,the calculation with SLD effects have smaller shadow zone than the calculation without SLD effects.Particularly,SLD effects which are the splashed and rebounded phenomenon due to the droplet-wall interaction are observed as a result ofLWCdistributions,F(xiàn)ig.4 bdemonstrates that SLD effects tend to enhance theLWCconcentration around the airfoil.

    5.3 Ice accretion on three-element airfoil

    In this section,a high lift airfoil section is selected to address the needs of large transport aircraft,it is an advance high lift system which designed in the early 1990′s.The three element airfoil consists of a slat,a main element and a flap with 36 inches chord.For this case,only the landing configuration is considered in this investigation,for the landing configuration the slat deflection is 30°leading edge down and the flap deflection is 30°trailing edge down,the definition of deflection of the highlift components is set with respect to the main element wing reference plane.The gap and overlap are defined to depict the slot size between the main element and the high lift components.Gap is the minimum distance between the leading edge of the downstream element and the trailing edge of the upstream element,for the flap,the gap is 0.457inches and for the slat it is 1.062inches.Overlap is the horizontal distance from the leading edge of the downstream element and the trailing edge of the upstream element,the overlaps for the flap and slat are 0.09 and-0.9inches respectively.Test parameters are in table 3,the temperature for the ice accretion is 260.65K,LangmuirDdistribution is used to computethe overall impingement distribution.

    Table 3 Parameters for ice accretion on three-element airfoil表3 三段翼冰形預(yù)測(cè)計(jì)算條件

    Fig.5 Three-element high lift system圖5 三段翼示意圖

    TheLWCdistribution and water collection efficiency are shown in Fig.6 and Fig.7 respectively,around the airfoil,some shadow zones appear near the pressure side of the slat and flap,the suction side and the trapped vortex area of the main element.Droplets splashing,rebound and re-impingement had relatively greater effects on the flap element compared to the slat and main element,for concentration zones(Fig.6 b)are observed near the leading edge of the flap and the pressure side of the three-element airfoil,which are thought to be contributed by the splashed droplets.As shown in Fig.7,all elements experience significant mass loss due to droplet splashing and rebound process,which means SLD effects can not be ignored.Fig.7 also shows that accounting for SLD effects has resulted in a better agreement with the experimental impingement distributions for all the elements,especially for slat and flap elements.The collection efficiency near the trailing edge of the flap is over-predicted slightly while an under-prediction collection efficiency is found in the main element,this is very likely due to the sensitivity of the droplet rebound model and splashing model that resulted in the mass flux being over or underestimated for the models have not been validated quantitatively.

    Fig.6 Liquid water content distribution圖6 三段翼液態(tài)水含量分布云圖

    Fig.7 Water collection efficiency圖7 三段翼水滴收集率

    For the icing shape calculated from the catching efficiency with and without SLD effects,shown in Fig.8,a decrease of the ice thickness can be observed downstream of the leading edge compared with that of without SLD effects.For all the elements,there are significant changes when compared to those calculated without SLD effects,so the SLD effects can not be negligible.

    Fig.8 Predicted ice shape圖8 冰形預(yù)測(cè)結(jié)果

    6 Conclusion

    A suitable mathematical model for the dropletwall interactions in an Eulerian method has been proposed and successfully calibrated against experimental data on the collection efficiency of NACA23012airfoil forMVDof 111micrometers,the SLD model was then used to generate ice shape on a NACA0012airfoil.At last an assessment of SLD effects on the simulation of droplet impingement and ice accretion prediction on a three-element airfoil has been presented.SLD effects tend to enhance theLWCconcentration around the airfoil and cause reduction of collection efficiency near the leading edge.Droplets splashing occurred in all three elements with different degree of intensity,the main and slat elements experienced mainly droplet splashing while the flap element experienced both splashing and re-impingement on the pressure side of the element.

    SLD effects include droplet splashing,rebound and re-impingement,the splashing and rebound effects are accounted for by adding source terms into the governing equations of droplet,the re-impingement effect is carried on by re-injecting secondary droplets into the droplet bin corresponding to the diameter closest to the secondary droplet diameter obtained from the splashing model.The good agreement between experimental and numerical data shows that the SLD model is feasible and effective,but the experimental and numerical results still have slight disagreement,which is possibly caused by the sensitivity of the rebound model and splashing model which have only been validated qualitatively due to the lack of quantitative data and the accuracy of re-impingement approach,in the future, more works should be done on the improvement of SLD model.

    Acknowledgement:

    The authors would like to thank Professor Tom I-P Shih,head of school of Aeronautics and Astronautics,Purdue University,for giving so much help.

    [1]MARWITZ J,POLITOVICH M,BERSTEIN B,et al.Meteorological conditions associated with the ATR72 aircraft accident near Roselawn[J].BulletinoftheA-mericanMeteorologicalSociety,1997,78(1):41-52.

    [2]ISAAC G A,et al.Recent canadian research on aircraft in-flight icing[J].CanadianAeronauticsandSpace Journal,2001,47(3):1-9.

    [3]BOURGAULT Y,HABASHI W G,DOMPIERRE J,et al.An Eulerian approach to supercooled droplets impingement calculations[R].AIAA-97-0176,1997.

    [4]STOW C D,STAINER R D.The physical products of a splashing water drop[J].JournaloftheMeteorological SocietyofJapan,1997,55(5):518-532.

    [5]KHAN A R,RICHARDSON J F.The resistance to motion of a solid sphere in a fluid[J].ChemicalEngineeringCommunications,1987,62:135-150.

    [6]YARIN A L,WEISS D A.Impact of drops on solid surfaces:self-similar capillary waves,and splashing as a new type of kinematic discontinuity[J].Journalof Fluidmechanics,1995,283:141-173.

    [7]BAI C,GOSMAN A D.Development of methodology for spray impingement simulation[R].SAE Technical Report 950283,1995.

    [8]YI X,ZHU G L,WANG K C.Numerically simulating of ice accretion on airfoil[J].ACTAAerodynamica Sinica,2002,20(4):428-433.(in Chinese)

    [9]DONG W,ZHU J,ZHOU Z X,et al.Heat transfer and temperature analysis of an anti-icing system for an aero-engine strut under icing condition[R].AIAA-2012-2753,2012.

    [10]WANG J F,XIA J,TIAN S L.Numerical simulation of ice accretion on airfoil based on unstructured dynamic grids[J].ACTAAeronauticaetAstronauticaSinica,2009,30(12):2269-2274.(in Chinese)

    [11]HU J P,LIU Z X,ZHANG L F.Supercooled large droplet impact behaviors on an aero-engine strut[J].ACTAAeronauticaetAstronauticaSinica,2011,32(10):1778-1785.(in Chinese)

    [12]PAPADAKIS M,RACHMAN A,WONG S C,et al.Water im-pingement experiments on a NACA 23012airfoil with simulated glaze ice shapes[R].AIAA-2004-0565,2004.

    [13]POTAPCZUK M G.Ice mass measurements:implications for the ice accretion process[R].AIAA-2003-387,2003.

    [14]VALAREZO W O,DOMINIK C J,MCGHEE R J,et al.Multi-element airfoil optimization for maximum lift at high reynolds numbers[R].AIAA-91-3332,1991.

    [15]PAPADAKIS M,HUNG K.E,VU G T,et al.Experimental investigation of water droplet impingement on airfoils,finite wings,and an S-Duct engine inlet[R].NASA TM-2002-211700,2002.

    [16]CHI X,ZHU B,SHIH T I P,et al.CFD analysis of the aerodynamics of a business-jet airfoil with leadingedge ice accretion[R].AIAA-2004-0560,2004.

    [17]SU W.Aerodynamic optimization design based on computational fluid dynamics and surrogate model[D].Xi′an:Northwestern Polytechnical University,2007.(in Chinese)

    [18]RAIMUND H,WAGDI G H.Fensap-ice:Eulerian modeling of droplet impingement in the SLD regime of aircraft icing[R].AIAA-2006-465,2006.

    [19]IULIANO E,MINGIONE G,PETROSINO F.Eulerian modeling of SLD physics towards more realistic aircraft icing simulation[R].AIAA-2010-7676,2010.

    [20]CLIFT R,GRACE J R,WEBER M E.Bubbles,drops and particles[M].New York:Academic Press,1978.

    [21]WILLIAM B W,MARK G P.Semi-empirical modeling of SLD physics[R].AIAA-2004-412,2004.

    [22]CAO Y,ZHANG Q,SHERIDAN J.Numerical simulation of rime ice accretions on an aerofoil using an Eulerian method[J].TheAeronauticalJournal,2008,112:243-249.

    [23]HONSEK R,HABASHI W G,AUBE M S.Eulrian modeling of in-flight icing due to supercooled large droplets[J].JournalofAircraft,2008,45(4):1290-1296.

    [24]TRUJILLO M F,MATHEWS W S,LEE C F,et al.Modeling and experiments of impingement and atomization of a liquid spray on a wall[J].Internationaljournalofengineresearch,2000,1(1):87-105.

    [25]COSSALI G E,COGHE A,MARENGO M.The impact of a single drop on a wetted solid surface[J].ExperimentsinFluids,1997,22(6):463-472.

    [26]MUNDO C,SOMMERFELD M,TROPEA C.Dropletwall collisions:experimental studies of the deformation and breakup process[J].InternationalJournalofMultiphaseFlow,1995,21(2):151.

    [27]MESSINGER B L.Equilibrium temperature of an unheated icing surface as a function of air speed[J].JournaloftheAeronauticalSciences,1953,20(1):29-42.

    [28]SUN Z G,ZHU C X,F(xiàn)U B.Study on thermodynamic characteristics of ice-layer accretion for airfoils[J].HeatMassTransfer,2012,48:427-438.

    猜你喜歡
    物面液態(tài)水算例
    激波/湍流邊界層干擾壓力脈動(dòng)特性數(shù)值研究1)
    基于微波輻射計(jì)的張掖地區(qū)水汽、液態(tài)水變化特征分析
    Ka/Ku雙波段毫米波雷達(dá)功率譜數(shù)據(jù)反演液態(tài)水含量方法研究
    零下溫度的液態(tài)水
    PEMFC氣體擴(kuò)散層中液態(tài)水傳輸實(shí)驗(yàn)研究綜述
    讓吸盤掛鉤更牢固
    基于振蕩能量的低頻振蕩分析與振蕩源定位(二)振蕩源定位方法與算例
    新型單面陣自由曲面光學(xué)測(cè)量方法成像特性仿真
    互補(bǔ)問(wèn)題算例分析
    基于CYMDIST的配電網(wǎng)運(yùn)行優(yōu)化技術(shù)及算例分析
    午夜a级毛片| 欧美中文日本在线观看视频| 日韩欧美国产在线观看| 老司机深夜福利视频在线观看| 99久久久亚洲精品蜜臀av| 欧美亚洲日本最大视频资源| 国产精品久久久人人做人人爽| 丰满的人妻完整版| 日韩视频一区二区在线观看| e午夜精品久久久久久久| 成人一区二区视频在线观看| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影 | 精品不卡国产一区二区三区| 国内揄拍国产精品人妻在线 | 亚洲精品av麻豆狂野| 日韩中文字幕欧美一区二区| 一进一出好大好爽视频| 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区| 久久国产乱子伦精品免费另类| 88av欧美| 99精品久久久久人妻精品| 正在播放国产对白刺激| 亚洲电影在线观看av| 在线永久观看黄色视频| 麻豆av在线久日| 校园春色视频在线观看| 在线十欧美十亚洲十日本专区| 亚洲成人精品中文字幕电影| 两个人视频免费观看高清| 欧美黄色淫秽网站| 日韩精品中文字幕看吧| 午夜福利一区二区在线看| 久久久久久久精品吃奶| 午夜福利成人在线免费观看| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 精品久久久久久久末码| 两个人看的免费小视频| 亚洲三区欧美一区| 日韩欧美三级三区| 两性夫妻黄色片| 中文在线观看免费www的网站 | 国产免费av片在线观看野外av| 亚洲aⅴ乱码一区二区在线播放 | 欧美性长视频在线观看| 91成人精品电影| 欧美性猛交╳xxx乱大交人| 亚洲人成伊人成综合网2020| 中文字幕精品免费在线观看视频| 一区福利在线观看| 嫁个100分男人电影在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品99久久99久久久不卡| 一a级毛片在线观看| 两个人视频免费观看高清| 欧美成人免费av一区二区三区| 亚洲自偷自拍图片 自拍| 久久人人精品亚洲av| 免费高清在线观看日韩| 久久久国产成人精品二区| 国产伦在线观看视频一区| 免费看a级黄色片| 听说在线观看完整版免费高清| 99热6这里只有精品| 精品高清国产在线一区| 国产在线观看jvid| 人成视频在线观看免费观看| 观看免费一级毛片| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 三级毛片av免费| 男男h啪啪无遮挡| 久久精品人妻少妇| 91av网站免费观看| 久久伊人香网站| 久热爱精品视频在线9| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片 | av欧美777| 啪啪无遮挡十八禁网站| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 首页视频小说图片口味搜索| 国产伦一二天堂av在线观看| 两个人免费观看高清视频| 欧美成人一区二区免费高清观看 | 精品久久蜜臀av无| 亚洲av五月六月丁香网| 精品国产美女av久久久久小说| 丝袜人妻中文字幕| 国产激情偷乱视频一区二区| 亚洲自拍偷在线| 18禁美女被吸乳视频| 亚洲欧美精品综合久久99| 亚洲午夜精品一区,二区,三区| av欧美777| 午夜福利在线观看吧| 制服人妻中文乱码| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 精品一区二区三区av网在线观看| 午夜免费成人在线视频| 亚洲精品中文字幕一二三四区| 欧美成人免费av一区二区三区| 国产黄片美女视频| 亚洲第一青青草原| av福利片在线| 女性被躁到高潮视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产激情偷乱视频一区二区| 国产精品久久久av美女十八| 日本 欧美在线| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸| 国产欧美日韩精品亚洲av| 国产极品粉嫩免费观看在线| 成人永久免费在线观看视频| 久久99热这里只有精品18| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 精品高清国产在线一区| 久久99热这里只有精品18| 久久九九热精品免费| 国产精品野战在线观看| 亚洲自拍偷在线| 99久久无色码亚洲精品果冻| 窝窝影院91人妻| 91成人精品电影| 99久久无色码亚洲精品果冻| 成人一区二区视频在线观看| 国产成人系列免费观看| 久久久久九九精品影院| 国产亚洲精品综合一区在线观看 | 满18在线观看网站| 久久热在线av| 色在线成人网| 国产色视频综合| 成人精品一区二区免费| 久久国产精品男人的天堂亚洲| 午夜福利在线观看吧| 中文字幕久久专区| 亚洲国产毛片av蜜桃av| 亚洲成av人片免费观看| 欧美绝顶高潮抽搐喷水| 91麻豆精品激情在线观看国产| 给我免费播放毛片高清在线观看| 国产成+人综合+亚洲专区| 国内揄拍国产精品人妻在线 | 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 白带黄色成豆腐渣| 99精品欧美一区二区三区四区| 人人妻人人澡人人看| 亚洲自偷自拍图片 自拍| 日本 av在线| 大型av网站在线播放| 午夜久久久久精精品| 久久久久久人人人人人| 日日干狠狠操夜夜爽| 国产成人欧美在线观看| 日日夜夜操网爽| www.熟女人妻精品国产| 两人在一起打扑克的视频| 一本精品99久久精品77| 色播在线永久视频| 国产精品综合久久久久久久免费| 美女免费视频网站| 黄色视频不卡| 高清毛片免费观看视频网站| 国产亚洲欧美精品永久| 国产伦在线观看视频一区| 精品电影一区二区在线| 老汉色av国产亚洲站长工具| av超薄肉色丝袜交足视频| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 在线观看www视频免费| 国产av一区二区精品久久| 69av精品久久久久久| av片东京热男人的天堂| 一级毛片女人18水好多| 亚洲自拍偷在线| 又大又爽又粗| 国产免费男女视频| 亚洲精品粉嫩美女一区| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区色噜噜| av在线天堂中文字幕| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 免费在线观看视频国产中文字幕亚洲| 99在线人妻在线中文字幕| 亚洲第一欧美日韩一区二区三区| 成人av一区二区三区在线看| av超薄肉色丝袜交足视频| 看片在线看免费视频| 男人舔女人下体高潮全视频| 亚洲人成伊人成综合网2020| 老汉色∧v一级毛片| 国产黄色小视频在线观看| xxx96com| 午夜福利18| 91国产中文字幕| 亚洲一区二区三区不卡视频| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 悠悠久久av| 日本a在线网址| 50天的宝宝边吃奶边哭怎么回事| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 999久久久国产精品视频| 一级片免费观看大全| 麻豆一二三区av精品| 欧美黑人精品巨大| 免费在线观看成人毛片| 国产成人欧美| 日韩大码丰满熟妇| www日本在线高清视频| 亚洲精品粉嫩美女一区| xxx96com| 男女做爰动态图高潮gif福利片| 久久这里只有精品19| 亚洲五月色婷婷综合| 俄罗斯特黄特色一大片| xxx96com| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 人成视频在线观看免费观看| 一本综合久久免费| 午夜福利免费观看在线| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看 | 午夜老司机福利片| 午夜两性在线视频| 久久亚洲真实| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 1024手机看黄色片| 一区二区三区激情视频| 久久精品91无色码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 岛国视频午夜一区免费看| 久久久久国产一级毛片高清牌| 一进一出抽搐gif免费好疼| 大型av网站在线播放| 看片在线看免费视频| 久久天堂一区二区三区四区| 人妻久久中文字幕网| 韩国精品一区二区三区| 久久精品成人免费网站| 亚洲色图av天堂| 久久久精品欧美日韩精品| 黄色a级毛片大全视频| 一a级毛片在线观看| 免费在线观看成人毛片| 久久精品人妻少妇| 午夜精品久久久久久毛片777| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 国产亚洲精品av在线| 亚洲久久久国产精品| 亚洲国产精品久久男人天堂| 精品久久久久久,| 亚洲色图 男人天堂 中文字幕| 精品福利观看| 成在线人永久免费视频| 热re99久久国产66热| 在线免费观看的www视频| 成人三级做爰电影| 亚洲欧美日韩无卡精品| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 香蕉国产在线看| 国产精品98久久久久久宅男小说| 日日干狠狠操夜夜爽| 亚洲午夜理论影院| 午夜福利一区二区在线看| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 国产精品一区二区三区四区久久 | 国产一级毛片七仙女欲春2 | 免费看a级黄色片| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看 | 色播在线永久视频| 99在线人妻在线中文字幕| 91大片在线观看| 亚洲精品久久成人aⅴ小说| 久久久国产成人精品二区| 亚洲 国产 在线| 制服诱惑二区| 999精品在线视频| 一本久久中文字幕| 成人特级黄色片久久久久久久| 国产精品久久久久久精品电影 | 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 国产又色又爽无遮挡免费看| 夜夜夜夜夜久久久久| 亚洲全国av大片| 欧美成狂野欧美在线观看| 少妇 在线观看| 欧美zozozo另类| 中文字幕精品免费在线观看视频| 亚洲人成77777在线视频| 免费在线观看日本一区| 黄色视频不卡| 精品久久久久久久人妻蜜臀av| 长腿黑丝高跟| 99精品在免费线老司机午夜| 一区二区日韩欧美中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| 可以免费在线观看a视频的电影网站| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 黄片大片在线免费观看| 麻豆成人av在线观看| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 日本熟妇午夜| 久久久久久久精品吃奶| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 韩国av一区二区三区四区| 露出奶头的视频| 久久久久久久久免费视频了| 美女高潮喷水抽搐中文字幕| 国内精品久久久久精免费| 欧美黄色片欧美黄色片| 啦啦啦观看免费观看视频高清| 亚洲,欧美精品.| 国产人伦9x9x在线观看| 国产精品免费一区二区三区在线| 国产片内射在线| 久久精品国产亚洲av香蕉五月| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 国产单亲对白刺激| 久久狼人影院| svipshipincom国产片| 欧美黑人精品巨大| 天堂影院成人在线观看| 99热只有精品国产| 日韩大尺度精品在线看网址| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 国产精品精品国产色婷婷| 亚洲国产日韩欧美精品在线观看 | 亚洲色图av天堂| 99久久无色码亚洲精品果冻| 亚洲五月色婷婷综合| 在线观看午夜福利视频| 在线观看www视频免费| 成人手机av| 亚洲精品在线美女| 麻豆成人午夜福利视频| 日韩欧美国产一区二区入口| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 怎么达到女性高潮| 91成年电影在线观看| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲午夜精品一区,二区,三区| 亚洲黑人精品在线| 午夜两性在线视频| 国产熟女午夜一区二区三区| www.自偷自拍.com| aaaaa片日本免费| 男女午夜视频在线观看| 精品欧美一区二区三区在线| 久久婷婷人人爽人人干人人爱| 在线播放国产精品三级| www.999成人在线观看| 国产激情欧美一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人中文| 这个男人来自地球电影免费观看| 国产一级毛片七仙女欲春2 | 在线观看一区二区三区| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 国产精品自产拍在线观看55亚洲| 欧美性长视频在线观看| 1024视频免费在线观看| 亚洲一区二区三区色噜噜| 亚洲人成电影免费在线| 午夜免费成人在线视频| 国产亚洲欧美精品永久| 亚洲成人国产一区在线观看| 国产99久久九九免费精品| 国产三级黄色录像| 国产伦在线观看视频一区| 欧美成人性av电影在线观看| 女同久久另类99精品国产91| 久9热在线精品视频| 亚洲全国av大片| 亚洲成a人片在线一区二区| 搡老岳熟女国产| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 男人舔女人的私密视频| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 国产人伦9x9x在线观看| 国产一区二区在线av高清观看| 精品高清国产在线一区| 狠狠狠狠99中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片 | 这个男人来自地球电影免费观看| 亚洲成人久久性| 国内精品久久久久久久电影| 亚洲国产看品久久| 久久人妻av系列| 久久久水蜜桃国产精品网| 精品第一国产精品| 精品国产美女av久久久久小说| 色av中文字幕| 激情在线观看视频在线高清| 精品人妻1区二区| 欧美乱妇无乱码| 女同久久另类99精品国产91| 在线观看午夜福利视频| 手机成人av网站| 国产成人精品无人区| 亚洲av片天天在线观看| 国产av不卡久久| 亚洲人成网站高清观看| 少妇被粗大的猛进出69影院| 精品久久久久久成人av| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 精品国产超薄肉色丝袜足j| 俺也久久电影网| 亚洲av五月六月丁香网| 国产黄a三级三级三级人| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av| 久久草成人影院| 男女做爰动态图高潮gif福利片| 成人18禁高潮啪啪吃奶动态图| 亚洲中文av在线| 欧美绝顶高潮抽搐喷水| 视频在线观看一区二区三区| 18禁观看日本| 免费看日本二区| 亚洲精品久久成人aⅴ小说| 黄色a级毛片大全视频| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 这个男人来自地球电影免费观看| 午夜视频精品福利| 国产视频内射| 日韩欧美一区二区三区在线观看| 国产激情偷乱视频一区二区| av视频在线观看入口| 精品国产亚洲在线| 97超级碰碰碰精品色视频在线观看| 久久狼人影院| 欧美最黄视频在线播放免费| 亚洲欧美一区二区三区黑人| 亚洲国产高清在线一区二区三 | 无限看片的www在线观看| 中国美女看黄片| 国内少妇人妻偷人精品xxx网站 | 在线看三级毛片| 一区二区日韩欧美中文字幕| 丁香六月欧美| 欧美激情极品国产一区二区三区| 熟妇人妻久久中文字幕3abv| 俺也久久电影网| 身体一侧抽搐| 久久久国产成人精品二区| 国产91精品成人一区二区三区| 男男h啪啪无遮挡| 色播亚洲综合网| 亚洲国产欧美日韩在线播放| 两人在一起打扑克的视频| 少妇被粗大的猛进出69影院| 看黄色毛片网站| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 婷婷丁香在线五月| 天堂√8在线中文| 欧美 亚洲 国产 日韩一| 俺也久久电影网| 午夜免费成人在线视频| 99久久综合精品五月天人人| 免费高清视频大片| 亚洲va日本ⅴa欧美va伊人久久| 久久性视频一级片| 在线视频色国产色| 91老司机精品| 搡老妇女老女人老熟妇| 色哟哟哟哟哟哟| 免费看日本二区| 99精品欧美一区二区三区四区| 一本综合久久免费| 国产亚洲av嫩草精品影院| 午夜福利18| 黑人欧美特级aaaaaa片| 免费观看人在逋| 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 日本精品一区二区三区蜜桃| 国产免费男女视频| 后天国语完整版免费观看| 丁香欧美五月| 脱女人内裤的视频| cao死你这个sao货| 亚洲专区中文字幕在线| 日本三级黄在线观看| 女性生殖器流出的白浆| 午夜激情av网站| 一进一出抽搐动态| 黄色女人牲交| 91九色精品人成在线观看| 国产成人影院久久av| 婷婷精品国产亚洲av在线| 亚洲天堂国产精品一区在线| 久久人妻福利社区极品人妻图片| 欧美三级亚洲精品| 老司机午夜福利在线观看视频| 一二三四社区在线视频社区8| 757午夜福利合集在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品免费视频一区二区三区| 波多野结衣巨乳人妻| 色精品久久人妻99蜜桃| 日本五十路高清| 观看免费一级毛片| 日本a在线网址| 国产精品综合久久久久久久免费| 法律面前人人平等表现在哪些方面| 女性生殖器流出的白浆| 精品少妇一区二区三区视频日本电影| 两人在一起打扑克的视频| 深夜精品福利| 少妇熟女aⅴ在线视频| 操出白浆在线播放| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 亚洲成av人片免费观看| 99re在线观看精品视频| 成人精品一区二区免费| a在线观看视频网站| 亚洲成人精品中文字幕电影| 免费观看精品视频网站| 人成视频在线观看免费观看| 亚洲av成人不卡在线观看播放网| 成人18禁高潮啪啪吃奶动态图| 国产黄色小视频在线观看| 欧美一区二区精品小视频在线| 成人18禁在线播放| 精品国产乱码久久久久久男人| 亚洲国产欧美日韩在线播放| 国产久久久一区二区三区| 黄色视频,在线免费观看| 亚洲精品国产区一区二| 午夜久久久在线观看| 成在线人永久免费视频| 不卡一级毛片| 亚洲男人的天堂狠狠| 天天添夜夜摸| 老汉色∧v一级毛片| 国产亚洲欧美98| 日韩欧美一区视频在线观看| 欧美大码av| 午夜福利免费观看在线| 免费看十八禁软件| 精品少妇一区二区三区视频日本电影| 国产国语露脸激情在线看| 精华霜和精华液先用哪个| 91大片在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产一区二区精华液| 亚洲精品美女久久久久99蜜臀| 在线国产一区二区在线| av超薄肉色丝袜交足视频| 亚洲精品国产区一区二| 两人在一起打扑克的视频| 国产精品久久久av美女十八| 国产精品一区二区免费欧美| 久久人妻福利社区极品人妻图片| 婷婷亚洲欧美| 欧美人与性动交α欧美精品济南到| 午夜福利18|