• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ice accretion simulation in supercooled large droplets regime

    2013-11-08 06:17:52BAIJunqiangLIXinHUAJunWANGKun
    關(guān)鍵詞:物面液態(tài)水算例

    BAI Jun-qiang,LI Xin,HUA Jun,2,WANG Kun

    (1.College of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China;2.Chinese Aeronautical Establishment,Beijing 100012,China)

    0 Introduction

    Aircraft aerodynamic surfaces are subject to ice accretion when flying through clouds of supercooled water droplets,ice accretion on the wing or on the tail wing can lead to serious degradation of the aerodynamic performance,such as an increase in drag,a decrease in the stall angle,altered moment characteristics of the aircraft and a decrease in lift.More importantly,ice accretion on propellers or engine nacelles can cause dangerous accident when the ice accretion breaks free.Traditionally,the design of de-icing and anti-icing systems is based on the impingement limits corresponding to Mean Volumetric Diameters(MVD)of 40μm or less,which is currently defined in Appendix C of the Federal Aviation Regulation(FAR)25regulations.SLD (MVD>40μm)induce severe icing conditions,cause water film run back on longer distances and freeze beyond the areas protected by the anti-icing system,when the de-icing system is activated,the dangerous ridge ice accretion can occur on the wing behind the leading edge de-icing system.In fact,in two relatively recent aircraft accidents (ATR-72commuter at Roselawn,IN,in 1994and Embraer-120twin turboprop at Detroit in 1997)the primary cause has been attributed to ice ridges due to SLD[1]. A research program on aircraft in-flight icing conducted byMeteorological Service of Canada out of St.John’s and Ottawa showed that SLD occurred 41%of the time during in-flight icing conditions experienced near Ottawa and 73%near St.John’s,so these dangerous conditions are quite frequent[2].

    It is very clear that the design of anti-icing and de-icing system based on theMVDof 40μm is insufficient,and an extension of numerical approach to account for SLD effects is needed.The problem is such an extension is difficult for the SLD regime violates some assumptions made by Bourgault et al[3].The first one is SLD do not travel at the freestream velocity because of their largeMVDs,SLD no longer enjoy a stable velocity,so an additional velocity component needs to be introduced in the initial velocity.The second one is SLD are prone to deform under the influence of shear forces,resulting in an oblate disk shapes.The last one is the splashing and rebound effects may lead to partial deposition of the impinging droplet mass.

    Many researchers have done lots of work to take into account the effects of terminal velocity,droplet deformation,splashing and rebound.One of the detailed experimental studies was performed by Stow who reported on the impact of water drops on a dry surface[4].Khan and Richardson derived an expression to take into account the effects of terminal droplet velocity[5].Yarin and Weiss proposed a splashing model as a type of kinematic discontinuity[6].Bai and Gosman did a lot of work on rebound model[7].In china,many people have done research on numerical simulation of ice accretion,such as Yi Xian,Wei Dong,Wang Jiangfeng et al[8-10],but few people did research related to SLD regimes,Jianping Hu and Zhenxia Liu did a research on SLD impact behaviors on Aero-engine Strut in 2011[11].

    In this study,an Eulerian droplet tracking method together with models for splashing and rebound are described.First of all,the splashing and rebound model calibration is needed.A recent study performed by Papadakis facilitates the calibration of the model[12].The experiment was carried on a NACA23012airfoil of 1.8288span over a large range of droplet diameters,MVDof 111μm was employed to conduct the calibration work.To examine the accuracy of the model,the splashing model was then used along with the rebound model to generate ice shapes on a NACA0012airfoil,the dataset chosen was reported by Potapczuk in 2003[13].To establish the model’s applicability to arbitrary geometries,flow conditions and droplet size distributions,a three-element airfoil consists of a slat,a main element and a flap was chosen to evaluate the effects of SLD on the impingement results and predicted ice accretion[14-15].

    1 Formulation and numerical method

    1.1 Governing equations for gas phase

    The flow field for air can be obtained by solving the Reynolds-Averaged Navier-Stokes (N-S)equations.Numerical approach is based on the finite volume form of the integral equations.In a domain of a volumeΩwith boundary?Ω,the equation can be written in the integral form:

    The vector of the conserved variables,the convective flux term,and the viscous flux term are given as follows,respectively.

    The Cell-centered finite volume method is employed to solve the N-S equations,and the Lower-Upper Symmetric Gauss-Siedel (LU-SGS)algorithm for time marching,Roe Flux Difference Splitting scheme for the spatial discretization of the convective flux is implemented into codes.The treatment of the far field boundary condition is based on the introduction of Riemann invariants for a one dimensional flow normal to the boundary.Chi andShih[16]suggested that Spalart-Allmaras (S-A)is proper for simulating ice accretion.The N-S equations are closed by the S-A model with thermally perfect gas and temperature-dependent properties,see details in Reference[17].

    1.2 Governing equations for droplets

    The continuity equation and momentum equations for droplets are a set of partial differential equations,one of the source terms for the momentum balance will have to be the drag force,since it is the main force for the droplet phase.The equations for mass and momentum conservation of the droplet phase are[18-19]:

    The other source term considered besides the drag forcefdragare gravity force,pressure gradient force,mass force,Basset history force,Magnus force and Saffman force.

    The drag fore is modeled using the drag coefficientCD:

    WhereRedis the droplets Reynolds number,Kis an inertia parameter,Lis reference length,dis the droplet diameter,ρw,U∞,μddenote the density of water,freestream velocity and molecular viscosity coefficient respectively.

    Droplets having large diameter are prone to deform under the influence of shear forces,resulting in the increase in aerodynamic drag at SLD conditions[20]:

    Weber number is:

    Cd1andCd2represent the drag coefficients of a spherical particle and oblate disk,respectively.σdis the droplet surface tension.

    The force due to gravity and buoyancy is:

    Froude number is expressed as[21]:

    The Saffman force describes a lift force for small particles,it is more important for small particles than for the larger particles that are being studied.The Basset force models the effect of the change in drag as a function of time which is used to model the flow of gas bubbles,this effect is unimportant for present study,since the viscosity of air is much less than that of droplets.Saffman and Basset forces can be safely ignored based on calculation in LEWICE.For large droplets with big inertia,Magnus force is negligible.The ratio of mass force to the drag force,is of the order of 10-4in icing conditions,since ice accretion involves no shock wave,so the pressure gradient force can be neglected reasonably.

    The finite volume method is applied to discretize the governing equations,the convective term is discretized using the QUICK(Quadratic Upwind Interpolation of Convective Kinematics)scheme,and the deferred correction method is used to ensure the diagonal dominance in the discretized equations.In order to guarantee the stability of the iterative solution of algebraic equations,the source term is disposed linearly,the Alternating Direction Implicit(ADI)iteration method is utilized to solve the algebraic equations.In the Eulerian method,the setting of the wall boundary condition is very important in the calculation of collection efficiency,apermeable wall boundary condition is applied to simulate the droplets’impingement onto the wall[22].

    2 SLD model

    2.1 Terminal velocity of droplets

    Khan and Richardson used a dimensionless Galileo number defined as a function of physical properties of the droplet and gas phase to account for the terminal velocity[5],

    Terminal Reynolds number is:

    The corresponding terminal velocity can be obtained from terminal Reynolds number:

    Once the terminal velocity corresponding to a givenMVDis determined,the initial velocity may be changed accordingly(three dimensional case):

    2.2 Interactions between droplet and ice accreting surface

    Bai and Gosman collected a number of results from literature and tried to identify some threshold levels in terms of dimensionless numbers for impact phenomenon[7].They proposed several mechanisms of wall-droplet interactions,four of them within the operational envelope of in-flight icing,Weber number and Laplace number dominate the behaviors of droplets when impact occurs(Fig.1 ),

    Fig.1 Schematic of droplet-wall interaction mechanisms圖1 水滴和物面相互作用示意圖

    Stick,We<2

    Rebound,2<We<10

    Spread,10<We<1320La-0.183

    Splash,We>1320La-0.183

    Stick and spread have no mass loss,so they are accounted for automatically in governing equations,rebound and splashing mechanisms are required to incorporate into droplet governing equations.

    The model for mass-loss due to splashing in SLD conditions by Honsek is used[23],the mass-loss coefficient is expressed as:

    Kywis defined by Yarin and Weiss[6]:

    With the Ohnesorge number defined as:

    Trujillo determined the number of secondary droplets after splashing,the following relation for the number of secondary droplets[24]is introduced:

    Kdryis a function of the non-dimensional surface roughnessksnd,

    Cosali number[25]is similar tokyw:

    When splashing occurs,the normal and tangential components of secondary droplet velocities are determined by functions based on the experimental data reported by Mundo[26],

    The average size of secondary droplets can be determined by:

    About rebound,the components of velocities follow the expressions below:

    Whereθ=90-arctan

    For an Eulerian method,the splashing and rebound phenomenon cause mass loss,this phenomenon is implemented by defining a splashing boundary condition and a rebound boundary condition,which means adding a source term to the flux in the mass and momentum equations at the wall boundary,the source terms for mass equation are:

    The source terms for momentum equations are:

    With source termsMandIincluded,the following droplet governing equations are obtained:

    Wherei=1,2,…,Nbinindicates the droplet bin.

    3 Collection efficiency

    The collection efficiency shows the distribution of liquid on ice accreting surface,with the solution of droplet volume fraction,α,and the distribution of velocity,the collection efficiencyβcan be obtained with the following expression:

    Wherenis unit vector normal to wall,U∞andα∞are the velocity and the droplet volume fraction of far field.

    4 Icing model

    The icing model is based on the model proposed by Messinger[27],the icing model consists of mass and energy conservation equations,for each control volume,the conservation equation of droplet mass can be described as follows,

    Wheremimpis the flux of impinging droplets,mflowinis the total mass flux entering the control volume from the previous control volume,mflowoutis the total mass flux flow out of the control volume,miceis ice accumulation in the control volume,msubis the flux due to ice sublimation in control volume,mevais the flux caused by water evaporation in control volume under consideration.

    The improved thermal conservation equation can be expressed as the following,

    WhereQcondis conductive heat through the ice accreting surface,Qimpis the heat carried by impinging droplets,Qevais the heat transfer induced by water evaporation,Qiceis the freezing heat stored in accreted ice,Qconvis convective heat,Qairis aerodynamic heating by airflow,Qsubis heat transfer caused by ice sublimation,Qflowinis the heat added into the present control volume from previous control volume,Qflowoutis the heat transfer out of the control volume,further information may be found in Reference[28].

    5 Results

    5.1 Model calibration with NACA23012

    Papadakis performed experiment with differentMVDsfor a NACA23012airfoil at angle of attack equals to 2.5°,one case ofMVDequals 111μm was selected to carry on the calibration work,the selected case and the corresponding conditions are shown in table 1 .In order to get more accurate results,droplet size distribution of LangmuirDis employed for selected case.The splashing and rebound model mentioned above are implemented into present code,it is easier for Eulerian method to implement re-injection phenomenon than Lagrangian method does.The catching efficiency with splashing and rebound effects is compared with the catching efficiencywithout the effects as well as experimental results.The catching efficiency calculated is shown in Fig.2,a dramatic improvement is observed when the SLD model is employed.Due to the SLD effects,the catching efficiency decreases almost everywhere,especially near the impingement limitation as shown in Fig.2.It should be noted that over-predicted decrease occurs near leading edge and impingement limitation.Anyway,close agreement with experimental data can be obtained by taking into account the SLD effects.

    Table 1 Test conditions for model calibration表1 模型驗(yàn)證計(jì)算條件

    Fig.2 Water collection efficiency of NACA23012圖2 NACA23012翼型水滴收集率

    The Liquid Water Content(LWC)can be obtained easily since the full field of the droplets can be provided by Eulerian method,the calculatedLWCfor selected case is shown in Fig.3,for this case,there is apparent difference in theLWCwith and without SLD effects,especially near the leading edge,showing a region of increasedLWCconcentration.The reason for this is once the splashing effect occurs near leading edge,the splashed secondary droplets are re-injected into a smaller bin corresponding to the diameter closest to the secondary droplet diameter obtained from the splashing model.

    From the above discussion,the proposed mathematical model may be considered mathematically consistent and physically representative.

    Fig.3 Liquid water content distribution of NACA23012圖3 NACA23012翼型液態(tài)水含量分布云圖

    5.2 Ice accretion on NACA0012

    The splashing model is then used along with the rebound model to generate ice shape on a NACA0012airfoil,the selected case is Run 1-23which was reported by Potapczuk[13],the calculate conditions are shown in table 2 .The same as NACA23012,Langmuir D distribution is used here.The comparison shows a slight decrease in the overall shape when the splashing model is activated,as illustrated in Fig.4 d,the calculation captures the overall size and shape of the experimental ice shape,whereas the calculation is unable to reproduce the detail of the ice shape surface nor is it able to depict the small structures aft of the main ice shape.The using of the SLD model decreases the amount of ice accretion almost everywhere,especially near the aft limits of the ice shape.

    For the calculated ice shape,corresponding water collection efficiency is shown in Fig.4 c,collection efficiency decreases after accounting for SLD effects,especially near icing limit whereas unapparent decrease near leading edge.Since breakup occurs only in regions of high velocity gradient,so splashing phenomenon dominates near the leadingedge,while rebound phenomenon dominates near the icing limit.This explains why catching efficiency decreases more severely near icing limit,for the mass-loss coefficient equals to 1when rebound occurs,when it comes to splashing,the mass-loss coefficient is less than 1.

    Table 2 Parameters for ice accretion on NACA0012表2 NACA0012冰形預(yù)測(cè)計(jì)算條件

    Fig.4 The results of Case 1-23圖4 算例Case 1-23結(jié)果

    Fig.4 bshows theLWCdistributions for the SLD effects around the airfoil,near the suction and pressure side of the airfoil,there are two symmetry shadow zones in which droplet volume fraction nearly equals to zero,the calculation with SLD effects have smaller shadow zone than the calculation without SLD effects.Particularly,SLD effects which are the splashed and rebounded phenomenon due to the droplet-wall interaction are observed as a result ofLWCdistributions,F(xiàn)ig.4 bdemonstrates that SLD effects tend to enhance theLWCconcentration around the airfoil.

    5.3 Ice accretion on three-element airfoil

    In this section,a high lift airfoil section is selected to address the needs of large transport aircraft,it is an advance high lift system which designed in the early 1990′s.The three element airfoil consists of a slat,a main element and a flap with 36 inches chord.For this case,only the landing configuration is considered in this investigation,for the landing configuration the slat deflection is 30°leading edge down and the flap deflection is 30°trailing edge down,the definition of deflection of the highlift components is set with respect to the main element wing reference plane.The gap and overlap are defined to depict the slot size between the main element and the high lift components.Gap is the minimum distance between the leading edge of the downstream element and the trailing edge of the upstream element,for the flap,the gap is 0.457inches and for the slat it is 1.062inches.Overlap is the horizontal distance from the leading edge of the downstream element and the trailing edge of the upstream element,the overlaps for the flap and slat are 0.09 and-0.9inches respectively.Test parameters are in table 3,the temperature for the ice accretion is 260.65K,LangmuirDdistribution is used to computethe overall impingement distribution.

    Table 3 Parameters for ice accretion on three-element airfoil表3 三段翼冰形預(yù)測(cè)計(jì)算條件

    Fig.5 Three-element high lift system圖5 三段翼示意圖

    TheLWCdistribution and water collection efficiency are shown in Fig.6 and Fig.7 respectively,around the airfoil,some shadow zones appear near the pressure side of the slat and flap,the suction side and the trapped vortex area of the main element.Droplets splashing,rebound and re-impingement had relatively greater effects on the flap element compared to the slat and main element,for concentration zones(Fig.6 b)are observed near the leading edge of the flap and the pressure side of the three-element airfoil,which are thought to be contributed by the splashed droplets.As shown in Fig.7,all elements experience significant mass loss due to droplet splashing and rebound process,which means SLD effects can not be ignored.Fig.7 also shows that accounting for SLD effects has resulted in a better agreement with the experimental impingement distributions for all the elements,especially for slat and flap elements.The collection efficiency near the trailing edge of the flap is over-predicted slightly while an under-prediction collection efficiency is found in the main element,this is very likely due to the sensitivity of the droplet rebound model and splashing model that resulted in the mass flux being over or underestimated for the models have not been validated quantitatively.

    Fig.6 Liquid water content distribution圖6 三段翼液態(tài)水含量分布云圖

    Fig.7 Water collection efficiency圖7 三段翼水滴收集率

    For the icing shape calculated from the catching efficiency with and without SLD effects,shown in Fig.8,a decrease of the ice thickness can be observed downstream of the leading edge compared with that of without SLD effects.For all the elements,there are significant changes when compared to those calculated without SLD effects,so the SLD effects can not be negligible.

    Fig.8 Predicted ice shape圖8 冰形預(yù)測(cè)結(jié)果

    6 Conclusion

    A suitable mathematical model for the dropletwall interactions in an Eulerian method has been proposed and successfully calibrated against experimental data on the collection efficiency of NACA23012airfoil forMVDof 111micrometers,the SLD model was then used to generate ice shape on a NACA0012airfoil.At last an assessment of SLD effects on the simulation of droplet impingement and ice accretion prediction on a three-element airfoil has been presented.SLD effects tend to enhance theLWCconcentration around the airfoil and cause reduction of collection efficiency near the leading edge.Droplets splashing occurred in all three elements with different degree of intensity,the main and slat elements experienced mainly droplet splashing while the flap element experienced both splashing and re-impingement on the pressure side of the element.

    SLD effects include droplet splashing,rebound and re-impingement,the splashing and rebound effects are accounted for by adding source terms into the governing equations of droplet,the re-impingement effect is carried on by re-injecting secondary droplets into the droplet bin corresponding to the diameter closest to the secondary droplet diameter obtained from the splashing model.The good agreement between experimental and numerical data shows that the SLD model is feasible and effective,but the experimental and numerical results still have slight disagreement,which is possibly caused by the sensitivity of the rebound model and splashing model which have only been validated qualitatively due to the lack of quantitative data and the accuracy of re-impingement approach,in the future, more works should be done on the improvement of SLD model.

    Acknowledgement:

    The authors would like to thank Professor Tom I-P Shih,head of school of Aeronautics and Astronautics,Purdue University,for giving so much help.

    [1]MARWITZ J,POLITOVICH M,BERSTEIN B,et al.Meteorological conditions associated with the ATR72 aircraft accident near Roselawn[J].BulletinoftheA-mericanMeteorologicalSociety,1997,78(1):41-52.

    [2]ISAAC G A,et al.Recent canadian research on aircraft in-flight icing[J].CanadianAeronauticsandSpace Journal,2001,47(3):1-9.

    [3]BOURGAULT Y,HABASHI W G,DOMPIERRE J,et al.An Eulerian approach to supercooled droplets impingement calculations[R].AIAA-97-0176,1997.

    [4]STOW C D,STAINER R D.The physical products of a splashing water drop[J].JournaloftheMeteorological SocietyofJapan,1997,55(5):518-532.

    [5]KHAN A R,RICHARDSON J F.The resistance to motion of a solid sphere in a fluid[J].ChemicalEngineeringCommunications,1987,62:135-150.

    [6]YARIN A L,WEISS D A.Impact of drops on solid surfaces:self-similar capillary waves,and splashing as a new type of kinematic discontinuity[J].Journalof Fluidmechanics,1995,283:141-173.

    [7]BAI C,GOSMAN A D.Development of methodology for spray impingement simulation[R].SAE Technical Report 950283,1995.

    [8]YI X,ZHU G L,WANG K C.Numerically simulating of ice accretion on airfoil[J].ACTAAerodynamica Sinica,2002,20(4):428-433.(in Chinese)

    [9]DONG W,ZHU J,ZHOU Z X,et al.Heat transfer and temperature analysis of an anti-icing system for an aero-engine strut under icing condition[R].AIAA-2012-2753,2012.

    [10]WANG J F,XIA J,TIAN S L.Numerical simulation of ice accretion on airfoil based on unstructured dynamic grids[J].ACTAAeronauticaetAstronauticaSinica,2009,30(12):2269-2274.(in Chinese)

    [11]HU J P,LIU Z X,ZHANG L F.Supercooled large droplet impact behaviors on an aero-engine strut[J].ACTAAeronauticaetAstronauticaSinica,2011,32(10):1778-1785.(in Chinese)

    [12]PAPADAKIS M,RACHMAN A,WONG S C,et al.Water im-pingement experiments on a NACA 23012airfoil with simulated glaze ice shapes[R].AIAA-2004-0565,2004.

    [13]POTAPCZUK M G.Ice mass measurements:implications for the ice accretion process[R].AIAA-2003-387,2003.

    [14]VALAREZO W O,DOMINIK C J,MCGHEE R J,et al.Multi-element airfoil optimization for maximum lift at high reynolds numbers[R].AIAA-91-3332,1991.

    [15]PAPADAKIS M,HUNG K.E,VU G T,et al.Experimental investigation of water droplet impingement on airfoils,finite wings,and an S-Duct engine inlet[R].NASA TM-2002-211700,2002.

    [16]CHI X,ZHU B,SHIH T I P,et al.CFD analysis of the aerodynamics of a business-jet airfoil with leadingedge ice accretion[R].AIAA-2004-0560,2004.

    [17]SU W.Aerodynamic optimization design based on computational fluid dynamics and surrogate model[D].Xi′an:Northwestern Polytechnical University,2007.(in Chinese)

    [18]RAIMUND H,WAGDI G H.Fensap-ice:Eulerian modeling of droplet impingement in the SLD regime of aircraft icing[R].AIAA-2006-465,2006.

    [19]IULIANO E,MINGIONE G,PETROSINO F.Eulerian modeling of SLD physics towards more realistic aircraft icing simulation[R].AIAA-2010-7676,2010.

    [20]CLIFT R,GRACE J R,WEBER M E.Bubbles,drops and particles[M].New York:Academic Press,1978.

    [21]WILLIAM B W,MARK G P.Semi-empirical modeling of SLD physics[R].AIAA-2004-412,2004.

    [22]CAO Y,ZHANG Q,SHERIDAN J.Numerical simulation of rime ice accretions on an aerofoil using an Eulerian method[J].TheAeronauticalJournal,2008,112:243-249.

    [23]HONSEK R,HABASHI W G,AUBE M S.Eulrian modeling of in-flight icing due to supercooled large droplets[J].JournalofAircraft,2008,45(4):1290-1296.

    [24]TRUJILLO M F,MATHEWS W S,LEE C F,et al.Modeling and experiments of impingement and atomization of a liquid spray on a wall[J].Internationaljournalofengineresearch,2000,1(1):87-105.

    [25]COSSALI G E,COGHE A,MARENGO M.The impact of a single drop on a wetted solid surface[J].ExperimentsinFluids,1997,22(6):463-472.

    [26]MUNDO C,SOMMERFELD M,TROPEA C.Dropletwall collisions:experimental studies of the deformation and breakup process[J].InternationalJournalofMultiphaseFlow,1995,21(2):151.

    [27]MESSINGER B L.Equilibrium temperature of an unheated icing surface as a function of air speed[J].JournaloftheAeronauticalSciences,1953,20(1):29-42.

    [28]SUN Z G,ZHU C X,F(xiàn)U B.Study on thermodynamic characteristics of ice-layer accretion for airfoils[J].HeatMassTransfer,2012,48:427-438.

    猜你喜歡
    物面液態(tài)水算例
    激波/湍流邊界層干擾壓力脈動(dòng)特性數(shù)值研究1)
    基于微波輻射計(jì)的張掖地區(qū)水汽、液態(tài)水變化特征分析
    Ka/Ku雙波段毫米波雷達(dá)功率譜數(shù)據(jù)反演液態(tài)水含量方法研究
    零下溫度的液態(tài)水
    PEMFC氣體擴(kuò)散層中液態(tài)水傳輸實(shí)驗(yàn)研究綜述
    讓吸盤掛鉤更牢固
    基于振蕩能量的低頻振蕩分析與振蕩源定位(二)振蕩源定位方法與算例
    新型單面陣自由曲面光學(xué)測(cè)量方法成像特性仿真
    互補(bǔ)問(wèn)題算例分析
    基于CYMDIST的配電網(wǎng)運(yùn)行優(yōu)化技術(shù)及算例分析
    国产午夜精品久久久久久一区二区三区| 欧美性感艳星| av免费在线看不卡| 99久久中文字幕三级久久日本| 国产男人的电影天堂91| 夫妻午夜视频| 亚洲欧洲精品一区二区精品久久久 | 欧美精品国产亚洲| 热99国产精品久久久久久7| 高清毛片免费看| 亚洲久久久国产精品| 在线看a的网站| 精品一区二区免费观看| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| 中国美白少妇内射xxxbb| 日本-黄色视频高清免费观看| 精品国产一区二区久久| 一级毛片我不卡| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| a级毛片在线看网站| 欧美精品国产亚洲| 麻豆成人午夜福利视频| 男女无遮挡免费网站观看| 夜夜看夜夜爽夜夜摸| av福利片在线| 91在线精品国自产拍蜜月| 人妻系列 视频| 国产伦精品一区二区三区四那| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| 在线观看人妻少妇| 人妻夜夜爽99麻豆av| 丰满人妻一区二区三区视频av| av卡一久久| 99热这里只有精品一区| 99精国产麻豆久久婷婷| 黑人高潮一二区| 日韩免费高清中文字幕av| 亚洲不卡免费看| 性高湖久久久久久久久免费观看| 亚洲伊人久久精品综合| 中文字幕av电影在线播放| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 欧美日韩在线观看h| 在线观看国产h片| 少妇 在线观看| 日韩一区二区视频免费看| 久久99一区二区三区| 日韩,欧美,国产一区二区三区| 国产精品成人在线| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 午夜福利,免费看| 国产极品天堂在线| av天堂久久9| 好男人视频免费观看在线| 黄色毛片三级朝国网站 | 国产高清国产精品国产三级| 美女xxoo啪啪120秒动态图| 好男人视频免费观看在线| 99热全是精品| 夜夜爽夜夜爽视频| kizo精华| av有码第一页| 久久久久久久久久久久大奶| 国产成人freesex在线| 欧美3d第一页| 乱码一卡2卡4卡精品| 国产精品不卡视频一区二区| 国产av码专区亚洲av| 纵有疾风起免费观看全集完整版| 男女边摸边吃奶| 日本wwww免费看| 在线观看国产h片| 曰老女人黄片| 亚洲精品国产av蜜桃| 久久国产精品男人的天堂亚洲 | 一区二区三区四区激情视频| 精品人妻熟女av久视频| 亚洲不卡免费看| 99热这里只有精品一区| 久久精品夜色国产| 午夜激情福利司机影院| 精品99又大又爽又粗少妇毛片| 夜夜爽夜夜爽视频| 岛国毛片在线播放| 男的添女的下面高潮视频| 最黄视频免费看| 亚洲内射少妇av| 日日摸夜夜添夜夜爱| 国产 精品1| 日本欧美国产在线视频| 99热全是精品| 欧美一级a爱片免费观看看| 蜜桃在线观看..| 街头女战士在线观看网站| 精品一区在线观看国产| 少妇裸体淫交视频免费看高清| 少妇高潮的动态图| 99精国产麻豆久久婷婷| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 久久青草综合色| 久久午夜福利片| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 国产综合精华液| 欧美日韩亚洲高清精品| 男女免费视频国产| 国产日韩一区二区三区精品不卡 | 水蜜桃什么品种好| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄| 99九九在线精品视频 | 久久ye,这里只有精品| 青春草国产在线视频| 一个人看视频在线观看www免费| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频 | av黄色大香蕉| 日韩av不卡免费在线播放| 美女xxoo啪啪120秒动态图| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99| 久久久久视频综合| 韩国高清视频一区二区三区| 国产精品.久久久| 成人国产av品久久久| 久久久久久久国产电影| 人妻夜夜爽99麻豆av| 国产视频首页在线观看| 国产精品蜜桃在线观看| 人妻夜夜爽99麻豆av| 久久久久人妻精品一区果冻| 日本91视频免费播放| 日韩欧美 国产精品| 久久影院123| 成年av动漫网址| 欧美三级亚洲精品| 观看美女的网站| 久久久久久人妻| 亚洲国产日韩一区二区| 日韩欧美一区视频在线观看 | 精品人妻熟女毛片av久久网站| 18+在线观看网站| 九草在线视频观看| 亚洲精品亚洲一区二区| 中文精品一卡2卡3卡4更新| 国产男人的电影天堂91| 在线观看免费高清a一片| 18禁在线无遮挡免费观看视频| 欧美日韩av久久| 99久久人妻综合| 成年人免费黄色播放视频 | 最近中文字幕高清免费大全6| 91精品一卡2卡3卡4卡| 成人黄色视频免费在线看| 精品卡一卡二卡四卡免费| 欧美一级a爱片免费观看看| 汤姆久久久久久久影院中文字幕| 精品久久国产蜜桃| 精品久久久久久久久av| 亚洲第一区二区三区不卡| 久久国产乱子免费精品| 丰满人妻一区二区三区视频av| 高清不卡的av网站| 欧美3d第一页| 国产在线免费精品| 搡女人真爽免费视频火全软件| 91精品国产国语对白视频| 乱人伦中国视频| 国产男女超爽视频在线观看| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 久热这里只有精品99| 91久久精品电影网| 国产精品欧美亚洲77777| 水蜜桃什么品种好| 亚洲欧美成人精品一区二区| 成人毛片60女人毛片免费| 国产成人精品婷婷| 亚洲欧美一区二区三区国产| 久久av网站| 最近中文字幕2019免费版| 午夜福利网站1000一区二区三区| 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 少妇的逼水好多| 亚洲真实伦在线观看| 9色porny在线观看| 久久韩国三级中文字幕| 高清欧美精品videossex| 亚洲不卡免费看| 18+在线观看网站| 一级,二级,三级黄色视频| 亚州av有码| 青春草亚洲视频在线观看| 成年人午夜在线观看视频| 又黄又爽又刺激的免费视频.| 波野结衣二区三区在线| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 欧美丝袜亚洲另类| 麻豆成人av视频| 一区二区三区精品91| av天堂久久9| 国产日韩欧美视频二区| 18+在线观看网站| 亚洲一区二区三区欧美精品| 91久久精品国产一区二区三区| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 亚洲激情五月婷婷啪啪| 日韩强制内射视频| 啦啦啦视频在线资源免费观看| 亚洲综合色惰| av国产精品久久久久影院| a级毛色黄片| 女人久久www免费人成看片| 2022亚洲国产成人精品| h日本视频在线播放| 亚洲怡红院男人天堂| 一区二区三区乱码不卡18| 国产免费又黄又爽又色| 午夜视频国产福利| 少妇人妻一区二区三区视频| 卡戴珊不雅视频在线播放| 少妇精品久久久久久久| 国内少妇人妻偷人精品xxx网站| 又粗又硬又长又爽又黄的视频| av在线播放精品| 老熟女久久久| 日本免费在线观看一区| 狂野欧美激情性xxxx在线观看| 性色av一级| 五月开心婷婷网| 美女国产视频在线观看| 99久国产av精品国产电影| 日韩欧美一区视频在线观看 | 日韩强制内射视频| 在线免费观看不下载黄p国产| 亚洲欧美成人精品一区二区| 只有这里有精品99| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看 | 简卡轻食公司| 欧美xxⅹ黑人| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 免费av中文字幕在线| 在线观看人妻少妇| 国产一区二区在线观看av| 日韩一区二区三区影片| 日韩一本色道免费dvd| 99九九在线精品视频 | 国语对白做爰xxxⅹ性视频网站| 欧美激情国产日韩精品一区| 精品久久久久久久久亚洲| 老司机影院成人| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图 | 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| 少妇丰满av| 亚洲精品日韩在线中文字幕| 多毛熟女@视频| 妹子高潮喷水视频| 大香蕉久久网| 国内揄拍国产精品人妻在线| 青春草亚洲视频在线观看| 亚洲国产欧美日韩在线播放 | 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频 | 五月天丁香电影| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 日韩视频在线欧美| 亚洲欧洲国产日韩| 一级av片app| 91午夜精品亚洲一区二区三区| 最近手机中文字幕大全| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 国产精品99久久久久久久久| 偷拍熟女少妇极品色| 在线观看免费视频网站a站| 日本vs欧美在线观看视频 | 亚洲国产av新网站| 自线自在国产av| 国产真实伦视频高清在线观看| 熟女人妻精品中文字幕| 交换朋友夫妻互换小说| 老司机影院成人| 大陆偷拍与自拍| 黄色怎么调成土黄色| 人妻 亚洲 视频| 日韩三级伦理在线观看| 久久久久久人妻| 如日韩欧美国产精品一区二区三区 | 偷拍熟女少妇极品色| 欧美97在线视频| av免费在线看不卡| 丁香六月天网| 精品国产一区二区久久| 亚洲不卡免费看| 日本av免费视频播放| 精品人妻熟女av久视频| .国产精品久久| 黄色怎么调成土黄色| 日韩在线高清观看一区二区三区| 成人影院久久| 人妻 亚洲 视频| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久小说| 人妻系列 视频| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| av有码第一页| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| 欧美性感艳星| 欧美激情国产日韩精品一区| 久久久久久久精品精品| 日本黄色日本黄色录像| 久久青草综合色| 人人妻人人爽人人添夜夜欢视频 | tube8黄色片| 精品久久久久久电影网| 中文在线观看免费www的网站| 亚洲怡红院男人天堂| 国产91av在线免费观看| 国产伦精品一区二区三区视频9| 三上悠亚av全集在线观看 | 久久久久久久亚洲中文字幕| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 亚洲精品色激情综合| 免费黄频网站在线观看国产| 中国三级夫妇交换| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 日本91视频免费播放| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂| 亚洲真实伦在线观看| 最后的刺客免费高清国语| 国产黄片美女视频| 人妻人人澡人人爽人人| 亚洲国产精品一区二区三区在线| 精品一区二区三区视频在线| 久久免费观看电影| 国产乱来视频区| 午夜日本视频在线| 午夜老司机福利剧场| 伦精品一区二区三区| 久久久国产欧美日韩av| 国产免费一级a男人的天堂| 欧美少妇被猛烈插入视频| 大香蕉久久网| 国产欧美另类精品又又久久亚洲欧美| 一级黄片播放器| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 日日爽夜夜爽网站| av专区在线播放| 亚洲综合色惰| 亚洲成人一二三区av| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频| 欧美变态另类bdsm刘玥| 亚洲欧美成人综合另类久久久| 97精品久久久久久久久久精品| 欧美区成人在线视频| 青春草亚洲视频在线观看| 亚洲av成人精品一区久久| 国产熟女午夜一区二区三区 | 女性被躁到高潮视频| 日本黄大片高清| 五月天丁香电影| 成人毛片a级毛片在线播放| 欧美日韩av久久| 亚洲精品亚洲一区二区| 男人狂女人下面高潮的视频| 一区二区av电影网| tube8黄色片| 一级片'在线观看视频| 久久久精品免费免费高清| 日韩强制内射视频| 亚洲国产日韩一区二区| 成人无遮挡网站| 国产av码专区亚洲av| 国内精品宾馆在线| 久久热精品热| 超碰97精品在线观看| 精华霜和精华液先用哪个| 免费黄网站久久成人精品| www.色视频.com| av在线老鸭窝| 有码 亚洲区| 亚洲精品一二三| 校园人妻丝袜中文字幕| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 性色av一级| 麻豆成人av视频| 久久99热这里只频精品6学生| 国产成人freesex在线| 国产精品久久久久久av不卡| 日本免费在线观看一区| 亚洲欧美一区二区三区国产| 亚洲熟女精品中文字幕| 97在线人人人人妻| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 免费大片18禁| h日本视频在线播放| 国产在视频线精品| 久久免费观看电影| 极品教师在线视频| 少妇人妻久久综合中文| 免费人成在线观看视频色| 伦理电影免费视频| 亚洲欧美日韩东京热| 久久午夜福利片| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 深夜a级毛片| 久久精品国产亚洲av天美| 桃花免费在线播放| 国产av一区二区精品久久| 有码 亚洲区| 国产一区有黄有色的免费视频| 桃花免费在线播放| 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 看免费成人av毛片| 婷婷色综合www| 一级毛片黄色毛片免费观看视频| 大片免费播放器 马上看| 伦理电影大哥的女人| 日韩免费高清中文字幕av| 国产av精品麻豆| av卡一久久| av福利片在线观看| 亚洲精品日本国产第一区| 最新的欧美精品一区二区| 免费看日本二区| 精品久久久久久电影网| 久久这里有精品视频免费| 日韩成人av中文字幕在线观看| 亚洲av二区三区四区| 伦理电影大哥的女人| 婷婷色综合www| 日韩av在线免费看完整版不卡| 日本免费在线观看一区| 欧美精品亚洲一区二区| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 日韩,欧美,国产一区二区三区| 日韩欧美精品免费久久| 日韩av不卡免费在线播放| 国产精品久久久久久久久免| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院 | av福利片在线| 国产日韩欧美在线精品| 人人澡人人妻人| av福利片在线观看| 国产黄色视频一区二区在线观看| 久久国产乱子免费精品| 国产精品麻豆人妻色哟哟久久| 成人特级av手机在线观看| 熟女av电影| 嫩草影院入口| 欧美精品人与动牲交sv欧美| 如何舔出高潮| 在线观看三级黄色| 在线精品无人区一区二区三| 亚洲欧美清纯卡通| 国产黄色免费在线视频| 国产深夜福利视频在线观看| 国国产精品蜜臀av免费| 女性生殖器流出的白浆| 人妻少妇偷人精品九色| av免费观看日本| 又黄又爽又刺激的免费视频.| 久久久久人妻精品一区果冻| 老司机影院毛片| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 天美传媒精品一区二区| 在线天堂最新版资源| 免费在线观看成人毛片| www.色视频.com| 两个人免费观看高清视频 | 成人毛片60女人毛片免费| 亚洲成人一二三区av| 十分钟在线观看高清视频www | 一级片'在线观看视频| 欧美激情国产日韩精品一区| 高清欧美精品videossex| 一区二区三区精品91| av黄色大香蕉| 亚洲av电影在线观看一区二区三区| .国产精品久久| 狂野欧美白嫩少妇大欣赏| 国内揄拍国产精品人妻在线| av黄色大香蕉| 一本色道久久久久久精品综合| 精品久久久噜噜| 纵有疾风起免费观看全集完整版| 欧美另类一区| 97超碰精品成人国产| 久久99热这里只频精品6学生| 久久久国产精品麻豆| 99久久综合免费| 国产有黄有色有爽视频| 午夜福利影视在线免费观看| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 国产永久视频网站| 99热6这里只有精品| 国产黄频视频在线观看| 国产无遮挡羞羞视频在线观看| 亚洲精品,欧美精品| 三级国产精品片| freevideosex欧美| 超碰97精品在线观看| 观看av在线不卡| 高清毛片免费看| 亚洲av.av天堂| 国产一区有黄有色的免费视频| 亚洲综合色惰| tube8黄色片| 午夜激情久久久久久久| 在线观看免费视频网站a站| 国产精品欧美亚洲77777| 午夜视频国产福利| 国产高清国产精品国产三级| 人妻一区二区av| 最近中文字幕高清免费大全6| 岛国毛片在线播放| 午夜免费鲁丝| 国产精品.久久久| 日韩欧美精品免费久久| 成年美女黄网站色视频大全免费 | 午夜91福利影院| 大话2 男鬼变身卡| 色哟哟·www| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 全区人妻精品视频| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区| 麻豆乱淫一区二区| 69精品国产乱码久久久| 乱人伦中国视频| 啦啦啦在线观看免费高清www| 赤兔流量卡办理| 免费大片18禁| 国产精品一区二区在线观看99| 大香蕉97超碰在线| 久久久亚洲精品成人影院| 国产亚洲一区二区精品| 又大又黄又爽视频免费| 久久久国产欧美日韩av| 男女边吃奶边做爰视频| 亚洲久久久国产精品| 久久午夜福利片| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 久久精品久久久久久噜噜老黄| 国产一区有黄有色的免费视频| 丰满乱子伦码专区| 国产成人freesex在线| 插阴视频在线观看视频| 国内少妇人妻偷人精品xxx网站| 久久精品久久久久久久性| 成人国产麻豆网| 免费少妇av软件| 黄色毛片三级朝国网站 | 人妻少妇偷人精品九色| 99热网站在线观看| 伊人久久精品亚洲午夜| 51国产日韩欧美| 我的女老师完整版在线观看| 日韩,欧美,国产一区二区三区| 狂野欧美激情性bbbbbb| 免费不卡的大黄色大毛片视频在线观看| 伊人久久精品亚洲午夜| 97精品久久久久久久久久精品| 黑人高潮一二区| h日本视频在线播放| 啦啦啦啦在线视频资源| 国产成人免费无遮挡视频| 精品酒店卫生间|