• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水團(tuán)簇構(gòu)象穩(wěn)定性起源和本質(zhì)的密度泛函理論與量子分子動(dòng)力學(xué)研究

    2013-10-18 05:27:18王友娟趙東波榮春英劉述斌
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:化工學(xué)院湖南師范大學(xué)物理化學(xué)

    王友娟 趙東波 榮春英,* 劉述斌,2,*

    (1湖南師范大學(xué)化學(xué)化工學(xué)院,資源精細(xì)化與先進(jìn)材料湖南省高校重點(diǎn)實(shí)驗(yàn)室,化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410081; 2 Research Computing Center,University of North Carolina,Chapel Hill,North Carolina 27599-3420,U.S.A.)

    1 Introduction

    For a given polyatomic molecule,there often exist a few experimentally accessible conformations.As the number of atoms in a molecule increases,the total number of local minima skyrockets exponentially,thus impossible to enumerate them exhaustively.Natural questions to ask are which one is most stable,why,and what factor or factors dictate the relative stability of these local conformational minima.A convincing answer to these questions is not easy,even for the simplest molecules like ethane and hydrogen peroxide.1With the tools available it is now straightforward to identify which conformation has a lower energy,but to find out what factor or factors contribute to or dominate in its stability is controversial.2-6This is often where disagreements arise.From the physicochemical viewpoint,however,to have a definite and well-accepted answer is essential for our understanding.

    In this work,using the octamer water cluster as an example,we investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability.To that end,we employ quantum molecular dynamics to generate a large number of conformations for octamer water clusters and then employ two energy partition schemes recently established from density functional theory(DFT)to pinpoint the principles governing the stability of these species.The key question we want to answer is which interaction or interactions determine the molecular stability.Water clusters are bound together through hydrogen bonds.It is generally believed that the nature of hydrogen bonding is predominantly electrostatic,even though quantum contributions through covalent bonding could also be important.Is it really true that the electrostatic interaction is the dominant factor in a water cluster?Do other effects such as steric and exchange-correlation contributions play a role as well?We will provide our answer to these questions in this study.

    2 Methodology and computational details

    From the theoretical point of view,using virial theorem,the energy difference ΔE between two stable isomers should satisfy7

    where T and V denote the kinetic and potential energies,respectively,of the system in concern.Eq.(1)suggests that the stability difference between two conformers is equal to either the entire kinetic energy difference or half of the total potential energy difference.These energy components are,however,not chemically meaningful.We often wish to obtain insights from such effects as steric,electrostatic,or quantum,which are missing in Eq.(1).More importantly,Eq.(1)does not work for density functional theory,7-9because a portion of the kinetic energy,Tc[ρ],has already been incorporated in the exchange-correlation energy Exc,making the DFT version of the viral theorem much more complicated.10-13

    In DFT,the total energy of a system comes from five different contributions:

    where Ts,Vne,J,Exc,and Vnnrepresent the non-interacting kinetic,nuclear-electron attraction,classical electron-electron repulsion,exchange-correlation,and nuclear-nuclear repulsion interactions,respectively.Since Vne,J,and Vnnare electrostatic in nature,these three components can be bundled together,yielding Ee[ρ]=Vne[ρ]+J[ρ]+Vnn.Therefore,the conventional approach to perform the decomposition for the total energy difference in DFT is the following,7-9

    where Eestands for the electrostatic energy components.

    Recently,we proposed an alternative scheme to perform energy difference partition in the framework of DFT,14

    where the total energy difference ΔE comes from the contribution of three independent effects,steric ΔEs,electrostatic ΔEe,and fermionic quantum ΔEq,which results from the exchange and correlation effects among electrons.It has been shown that the energy contribution from the steric effect can simply be expressed by the Weizs?cker kinetic energy,Es≡Tw,with

    where ρ(r)and ?ρ(r)are the total electron density and its gradient,respectively.Also,the fermionic quantum energy contribution due to the exchange-correlation effect(because electrons are fermions),Eq[ρ],is the sum of the conventional exchangecorrelation energy Exc[ρ],which includes a kinetic counterpart of the dynamic electron correlation,and the Pauli energy,15,16EPauli[ρ],which is the contribution to the kinetic energy from the antisymmetric requirement of the many-body wave function required by the Pauli Exclusion Principle.10,11,13It is known in the literature that the Pauli energy is the difference between the non-interacting kinetic energy Tsand the Weizs?cker kinetic energy Tw.17Therefore,

    The physical meaning of this new quantification of the steric contribution,Eq.(5),is based on the introduction of a new reference state,where electrons in atoms and molecules are assumed to behave like bosons.If the density of the hypothetical boson state is the same as that of the fermionic state,ρ(r),the total wave function of the hypothetical state will be(ρ(r)/N)1/2,where N is the number of electrons.The total kinetic energy of the hypothetical state,from which Weisskopf′s“kinetic energy pressure”14,18for the steric effect is calculated,is simply Eq.(5).

    A few prominent features and properties of this novel quantification of steric contribution have been revealed.For instance,the integrand of Eq.(5)is non-negative everywhere,and thus repulsive in nature.It vanishes for the case of a homogeneous electron gas.It is extensive because it is homogeneous of degree one in density scaling,11,19,20so the larger the system,the larger the steric repulsion.If Bader′s atoms-in-molecules approach is adopted,the steric energy can be partitioned at the atomic and functional group levels as well.Its corresponding steric potential,steric charge,and steric force have been defined and evaluated.14,21Its relationship with information theory has been investigated.22,23This approach has been applied to a number of systems,such as conformational changes of small molecules,1,24,25SN2 reactions,26chained and branched alkanes,27and other systems.28-30Reasonably good trends and linear relationships between theoretical and experimental scales (by Taft)of the steric effect have recently been observed at both group and entire molecular levels.31

    In this work,we take the octamer water cluster,(H2O)8,as an example and investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability and to address which interaction or interactions determine the molecular stability of these species.To that end,a large number of conformations for octamer water clusters are needed to perform the two energy partition schemes discussed above.To generate as many different local minima as possible,we employ the quantum molecular dynamics(QMD)approach,which has successfully been used for other purposes elsewhere.32In QMD simulations,which were performed with the NWChem package,33atomic nuclei are treated as Newtonian particles whose forces are obtained from the fully converged electronic structure calculation in the Born-Oppenheimer approximation.The simulation protocol is the following.We start the QMD simulations with a few structures from the literature.After an initial structure optimization of 120 steps,each structure is undergone QMD simulations under 300 K for 100 ps with a step size of 0.5 fs and the leapfrog integration algorithm.We employ a constant temperature ensemble using Berendsen′s thermostat with the temperature relaxation time set to be 2 fs.The cutoff radius for short range interactions is 2.8 nm.SHAKE is disabled and thus all bonding interactions are treated according to the force calculated from quantum mechanics.Trajectories are saved in every 50 femtoseconds.A shell script has been written to extract distinct conformations with a total of at least 0.8 nm derivations from the last selected local minimum.The initial structure was from the literature.34A total of 185 distinct isomers have been obtained from these processes.A few selected low-energy local minima from QMD simulations are shown in Scheme 1.For each structure extracted by the post-processing script,a full geometrical optimization is performed at the level of M062X/aug-cc-PVTZ theory35using the Gaussian 09 package36with tight SCF convergence and ultrafine integration grids.Energy partition analyses are ensued after the optimized structure is obtained at the same level of theory.Different approximate exchange-correlation functionals and basis sets were tested and no substantially different results were obtained(results not shown).

    3 Results and discussion

    Fig.1 shows three strong correlations obtained for these systems between the total energy difference ΔE of different octamer water clusters and their energy components.Our first observation is that all these two energy components,ΔExc,ΔEe,and ΔEs,are negative in sign,indicating that they are contributing positively to the molecular stability,because ΔE<0.In Figs.1(a)and 1(c),we find that the relative stability ΔE of the water cluster is proportional to the exchange-correlation energy difference ΔExcand to the steric effect difference ΔEs,with the correlation coefficient equal to 0.954 and 0.987,respectively.A less significant correlation between the relative stability and the total electrostatic interaction difference ΔEewith the correlation coefficient R2=0.767 was also observed.The positive slope in these three relationships suggests that these energy components all contribute positively to the relative stability.The less than unit slope in these correlations indicates that these energy components are larger in magnitude than the total energy difference itself.

    Scheme 1 A few low-energy structures obtained from QMD simulations in this study

    Fig.1 Three strong linear correlations between the total energy difference,ΔE,and three energy components,

    A few working principles about the relative stability of this molecular system can be obtained from Fig.1.Notice that in magnitude Eq>0,Es>0,Exc<0,Ee<0,and E<0.First,a strong linear correlation between ΔE and ΔEsin Fig.1(c)shows that the more stable a water octamer cluster,the smaller its steric repulsion,suggesting that for a lower energy cluster structure,its steric repulsion should be smaller.Since a smaller steric repulsion also implies smaller size,29this result suggests that more stable clusters are often compact and possess smaller sizes.This working principle of molecular stability can be called the minimum steric repulsion principle.Another principle is from Fig.1(a),where the exchange-correlation difference ΔExcis proportional to the relative stability ΔE,meaning that the more stable an isomer,the larger its exchange-correlation interaction.This result indicates that stable water clusters prefer to have strong exchange-correlation interactions.This can be called the maximum exchange-correlation interaction principle.For the relationship in Fig.1(b),the correlation is not as strong as the other two energy components,yet it still appears that the electrostatic interaction in a lower energy structure possesses a stronger electrostatic interaction.This latter point answers the question where or not the electrostatic interactions in water cluster is predominant.What we observe in this study is that the electrostatic interaction is indeed a strong,positive contribution to the stability of water clusters,but its correlation with the relative stability,ΔE,is not as strong as the steric repulsion ΔEsand the exchange-correlation interaction ΔExc.These results also provide inputs for other questions.For example,is the quantum effect(exchange-correlation interactions)important?The answer is certainly yes,as illustrated in Fig.1(a).In addition,Fig.1(c)adds another factor into the picture of our consideration,that is,the steric effect.This effect has not been previously taken into consideration,but our present results clearly showcased its relevance.Put together,our results in Fig.1 suggest that more stable structures of water clusters prefer to have smaller size and smaller steric repulsion,and at the same time,strong exchange-correlation and electrostatic interactions.

    Shown in Fig.2 are two strong correlations between energy components.The first one is between the electrostatic interaction energy difference ΔEeand the total noninteracting kinetic energy difference ΔTswith the correlation coefficient equal to 0.976,and the other is between the Fermionic quantum energy difference ΔEqand the steric energy difference ΔEswith R2=0.999.The second correlation has already been discovered elsewhere,24-28whereas the first one is peculiar only to this system.The two relationships are converse correlations,each with a negative slope,meaning that(i)the non-interacting kinetic energy difference ΔTsand the Fermionic quantum energy difference ΔEqare both positive quantities,contributing negatively to the molecular stability,and(ii)the two energy components involved are canceling one another because ΔEeand ΔEsare negative values.

    With the fitted formulas from Fig.2,we have

    Together with Eqs.(3)and(4),there result

    Eq.(8)shows that ΔEeis the dominant contributor to ΔE<0 because the second quantity in this equation is positive(since ΔEs<0),whereas in Eq.(7)the contribution comes from both terms,with the governing contributor from ΔExcbut the remnant of ΔEe/ΔTsalso contributing positively to ΔE.The correlation coefficients for Eqs.(7)and(8)are found to be 0.96 and 0.77,respectively.These equations provide us with two different approaches to find out which energy component is the dictating factor in governing the relative molecular stability.

    Fig.2 Strong linear correlations(a)between total electrostatic energy difference ΔE eand the kinetic energy difference ΔT s,and(b)between Fermionic quantum energy difference ΔE qand the steric repulsion ΔE s

    Fig.3 Correlations between the calculated relative stability of water clusters and the two fitted models using two-variable least-square fitting from the energy decomposition schemes in density functional theory

    Given the strong correlations in Fig.2,another way to simplify Eqs.(3)and(4)is to use two of the three quantities in Fig.1,which are found to be positively proportional to the relative stability ΔE,to perform least-square fittings.Fig.3 shows the twovariable fitting results in this manner.Using ΔEeplus ΔExcor ΔEs,much better fits can be obtained,with all quantities contributing positively to ΔE and R2equal to or better than 0.99.In Fig.3(a),the fitted formula is

    where we find that the dominant contribution is from the exchange-correlation interaction with the latter possessing a larger coefficient,whereas in Fig.3(b),

    where we see that the electrostatic terms possesses a larger coefficient than the steric repulsion term and thus ΔEeis the dominant contributor.These results are consistent with what we found in Eqs.(7)and(8),where ΔExcand ΔEewere shown to play dominant roles in the two energy partition schemes,respectively.

    Put together,our present results unambiguously show that there exist clear working principles governing the relative stability for such molecular systems as water clusters.Three energy components,electrostatic,steric,and exchange-correlation,are found to all contribute positively to the molecular stability,with the correlation coefficient of the last two correlations better than 0.95.These relationships demonstrate that a more stable structure possesses less steric repulsion,and stronger Fermionic and exchange-correlation interactions.We also found that there exist strong correlations between energy components,such as ΔEevs ΔTs,and ΔEsvs ΔEq.These relationships enable us to simplify the two energy partition schemes in Eqs.(3)and(4)and to obtain either Eqs.(7)and(8)or Eqs.(9)and(10),where ΔEeand ΔExcare found to be the dominant contributor,respectively.

    Our current results also shed new light on how to account for the origin of molecular stability for systems like water clusters.Same as other systems,1the relative stability of an isomer comes from the net contribution from all energetic effects involved.These effects,including electrostatic,steric,kinetic,exchange-correlation,and Fermionic quantum interactions,have different values for different isomers and they follow different trends in the conformation space.Some effects contribute positively to the molecular stability,while others do so negatively,canceling contributions from other interactions.One of the main results in this work is the finding that exchange-correlation interaction and steric repulsion are strongly correlated to the relative stability of water clusters,whereas for the electrostatic interaction,a less strong correlation has been observed.Even though in Eqs.(8)and(10),the electrostatic interaction is dominant,Fig.1(b)shows that its correlation with molecular stability is weaker than the exchange-correlation interaction or steric repulsion.Using Eq.(7)or(9),where ΔExcis dominant,much stronger correlation with relative molecular stability can be obtained.

    4 Conclusions

    To summarize,in this work,we employ quantum molecular dynamics to obtain a large number of distinct structures for the octamer water cluster and then perform energy partition studies using two approaches from density functional theory to identify working principles governing the relative molecular stability for these water clusters.We find that the exchange-correlation interaction and steric repulsion are two strong indicators of their relative conformation stability.We also identify strong correlations between energy components.It appears that a more stable structure possesses a smaller size and less steric repulsion,and at the meantime it has stronger electrostatic and exchange-correlation interactions.Two strong linear correlations using two different quantities are subsequently proposed to account for their relative stability,each with the correlation coefficient larger than 0.99.This work should shed new light to our fundamental understanding about the origin and nature of molecular stability for systems like water clusters as well as other similar molecular complexes formed through intermolecular interactions.

    Finally,we mention in passing that our present approach is different from others scheme in performing energy decomposition analysis,such as the one by Morokuma,37where its focus is on the total interaction energy.In our case,we consider the total energy of the system instead.Also,what we have obtained in this work is only for the octamer.Are our conclusions applicable to other sizes of the water cluster as well?How sensitive are they to the choice of basis sets or density functionals?More interestingly,even though our approach is different from the other energy partition scheme(by Morokuma and others)in the literature,is there any correlation from the terms obtained these different approaches applied to the same systems?More systematic studies are in progress.These and other questions will be addressed elsewhere.

    (2)Pophristic,V.;Goodman,L.Nature 2001,411,565.doi:10.1038/35079036

    (3)Bickelhaupt,F.M.;Baerends,E.J.An gew.Chem.Int.Edit.2003,42,4183.

    (4)Weinhold,F.Angew.Ch em.Int.E dit.2003,42,4188.

    (5)Mo,Y.R.Nat.Chem.2010,2,666.doi:10.1038/nchem.721

    (6)Mo,Y.;Gao,J.Accounts Chem.R es.2007,40,113.doi:10.1021/ar068073w

    (7)Parr,R.G.;Yang,W.Density Functional Theory of Atoms Molecules;Oxford University Press:New York,1989.

    (8)Geerlings,P.;De Proft,F.;Langenaeker,W.Chem.Rev.2003,103,1793.doi:10.1021/cr990029p

    (9)Liu,S.B.Acta P hys.-Chim.Sin.2009,25,590.[劉述斌.物理化學(xué)學(xué)報(bào),2009,25,590.]doi:10.3866/PKU.WHXB20090332

    (10)Levy,M.;Perdew,J.P.Ph ys.Rev.A 1985,32,2010.doi:10.1103/PhysRevA.32.2010

    (11)Liu,S.B.;Parr,R.G.P hys.R ev.A 1996,53,2211.doi:10.1103/PhysRevA.53.2211

    (12)Liu,S.B.;Nagy,A.;Parr,R.G.Phys.Rev.A 1999,59,1131.doi:10.1103/PhysRevA.59.1131

    (13)Liu,S.B.;Morrison,R.C.;Parr,R.G.J.Ch em.Phys.2006,125,174109.doi:10.1063/1.2378769

    (14)Liu,S.B.J.Chem.Ph ys.2007,126,244103.doi:10.1063/1.2747247

    (15)March,N.H.Phys.L ett.A 1986,113,476.doi:10.1016/0375-9601(86)90123-4

    (16)Holas,A.;March,N.H.Phys.R ev.A 1991,44,5521.doi:10.1103/PhysRevA.44.5521

    (17)von Weizs?cker,C.F.Z.Phys.1935,96,431.doi:10.1007/BF01337700

    (18)Weisskopf,V.F.Science 1975,187,605.doi:10.1126/science.187.4177.605

    (19)Liu,S.B.Phys.R ev.A 1996,54,4863.doi:10.1103/PhysRevA.54.4863

    (20)Liu,S.B.;Parr,R.G.P hys.Rev.A 1997,55,1792.doi:10.1103/PhysRevA.55.1792

    (21)Tsirelson,V.G.;Stash,A.I.;Liu,S.B.J.Chem.P hys.2010,133,114110.doi:10.1063/1.3492377

    (22)Liu,S.B.J.Chem.P hys.2007,126,191107.doi:10.1063/1.2741244

    (23)Esquivel,R.O.;Liu,S.B.;Angulo,J.C.;Dehesa,J.S.;Antolín,J.;Molina-Espíritu,M.J.Phys.Chem.A 2011,115,4406.doi:10.1021/jp1095272

    (24)Liu,S.B.;Govind,N.J.Phys.Chem.A 2008,112,6690.doi:10.1021/jp800376a

    (25)Liu,S.B.;Govind,N.;Pedersen,L.G.J.Chem.Phys.2008,129,094104.doi:10.1063/1.2976767

    (26)Liu,S.B.;Hu,H.;Pedersen,L.G.J.Phys.Chem.A 2010,114,5913.doi:10.1021/jp101329f

    (27)Ess,D.H.;Liu,S.B.;De Proft,F.J.Phys.Chem.A 2010,114,12952.doi:10.1021/jp108577g

    (28)Huang,Y.;Zhong,A.G.;Yang,Q.;Liu,S.B.J.Chem.P hys.2011,134,084103.doi:10.1063/1.3555760

    (29)Zhao,D.B.;Rong,C.Y.;Jenkins,S.;Kirk,S.R.;Yin,D.L.;Liu,S.B.Acta Phys.-Chim.Sin.2013,29,43.[趙東波,榮春英,蘇 曼,蘇 文,尹篤林,劉述斌.物理化學(xué)學(xué)報(bào),2013,29,43.]doi:10.3866/PKU.WHXB201211121

    (30)Tsirelson,V.G.;Stash,A.I.;Karasiev,V.V.;Liu,S.B.Comp.T heor.Chem.2013,1006,92.doi:10.1016/j.comptc.2012.11.015

    (31)Torrent-Sucarrat,M.;Liu,S.B.;De Proft,F.J.Ph ys.Ch em.A 2009,113,3698.doi:10.1021/jp8096583

    (32)Liu,S.B.J.Chem.Sci.2005,117,477;Zhong,A.G.;Rong,C.Y.;Liu,S.B.J.Phys.Chem.A 2007,111,3132.doi:10.1007/BF02708352

    (33)Valiev,M.;Bylaska,E.J.;Govind,N.;Kowalski,K.;Straatsma,T.P.;Van Dam,H.J.J.;Wang,D.;Nieplocha,J.;Apra,E.;Windus,T.L.;de Jong,W.Comput.Phys.Commun.2010,181,1477.

    (34)Maeda,S.;Ohno,K.J.P hys.Chem.A 2007,111,4527.doi:10.1021/jp070606a

    (35)Zhao,Y.;Truhlar,D.G.T h eor.Ch em.A cc.2008,120,215.doi:10.1007/s00214-007-0310-x

    (36)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision C.01;Gaussian,Inc.:Wallingford,CT,2009.

    (37)Kitaura,K.;Morokuma,K.Int.J.Quantum Chem.1976,10,325.

    猜你喜歡
    化工學(xué)院湖南師范大學(xué)物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    湖南師范大學(xué)作品
    大眾文藝(2021年8期)2021-05-27 14:05:54
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    湖南師范大學(xué)美術(shù)作品
    大眾文藝(2020年11期)2020-06-28 11:26:50
    湖南師范大學(xué)作品
    大眾文藝(2019年16期)2019-08-24 07:54:00
    湖南師范大學(xué)作品欣賞
    大眾文藝(2019年10期)2019-06-05 05:55:32
    Chemical Concepts from Density Functional Theory
    视频在线观看一区二区三区| 黄色女人牲交| 国产在线观看jvid| 午夜福利免费观看在线| 波多野结衣一区麻豆| svipshipincom国产片| 香蕉久久夜色| 亚洲精品一区av在线观看| 黄片小视频在线播放| a级毛片在线看网站| 成人国语在线视频| 日韩免费高清中文字幕av| 99久久久亚洲精品蜜臀av| 最好的美女福利视频网| 免费观看人在逋| 欧美成狂野欧美在线观看| 伦理电影免费视频| 亚洲中文字幕日韩| 亚洲男人天堂网一区| 老鸭窝网址在线观看| 精品久久久久久电影网| 香蕉久久夜色| 大型黄色视频在线免费观看| 一个人免费在线观看的高清视频| 免费不卡黄色视频| 久久精品亚洲精品国产色婷小说| 国产成人系列免费观看| 99国产精品一区二区蜜桃av| 法律面前人人平等表现在哪些方面| 欧美国产精品va在线观看不卡| 婷婷精品国产亚洲av在线| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| 亚洲第一欧美日韩一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲成人免费电影在线观看| 亚洲成人国产一区在线观看| 久久久久国内视频| 9色porny在线观看| 在线观看www视频免费| 1024香蕉在线观看| 久久性视频一级片| 黄色毛片三级朝国网站| 国产精品影院久久| 国产精品九九99| 一区在线观看完整版| 国产成人欧美在线观看| 高潮久久久久久久久久久不卡| 在线播放国产精品三级| 久久久久精品国产欧美久久久| av国产精品久久久久影院| 色老头精品视频在线观看| 夜夜看夜夜爽夜夜摸 | 亚洲第一青青草原| 久久中文字幕人妻熟女| 亚洲av第一区精品v没综合| 一区二区三区精品91| 操出白浆在线播放| 黄色丝袜av网址大全| 91大片在线观看| 超色免费av| 久久人妻熟女aⅴ| 成人手机av| 两人在一起打扑克的视频| 9色porny在线观看| 免费日韩欧美在线观看| 午夜视频精品福利| 久久久国产欧美日韩av| 免费av毛片视频| 国产精品一区二区三区四区久久 | 香蕉国产在线看| 国内毛片毛片毛片毛片毛片| 18美女黄网站色大片免费观看| av福利片在线| 精品久久蜜臀av无| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产一区二区精华液| av天堂久久9| 久久热在线av| 亚洲精品国产色婷婷电影| 9色porny在线观看| 国产熟女xx| 亚洲专区字幕在线| 亚洲五月色婷婷综合| 12—13女人毛片做爰片一| 日韩精品青青久久久久久| 午夜福利欧美成人| 久久精品影院6| 亚洲av第一区精品v没综合| 免费人成视频x8x8入口观看| 欧美日韩黄片免| 欧美激情久久久久久爽电影 | 国产精品免费视频内射| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 中出人妻视频一区二区| 岛国在线观看网站| 免费av毛片视频| 又大又爽又粗| xxx96com| 亚洲美女黄片视频| 在线观看午夜福利视频| 国产1区2区3区精品| 亚洲少妇的诱惑av| av超薄肉色丝袜交足视频| 正在播放国产对白刺激| 18禁观看日本| 51午夜福利影视在线观看| 亚洲精品一区av在线观看| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| av电影中文网址| 丁香欧美五月| 一边摸一边抽搐一进一小说| 看片在线看免费视频| 亚洲精品一区av在线观看| 在线看a的网站| 色尼玛亚洲综合影院| 一区二区三区激情视频| 黑丝袜美女国产一区| 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清| 99精品欧美一区二区三区四区| 操出白浆在线播放| 国产精品国产高清国产av| 亚洲精品久久成人aⅴ小说| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 亚洲精品久久成人aⅴ小说| 高清毛片免费观看视频网站 | 国产欧美日韩一区二区三| 欧美精品一区二区免费开放| 美国免费a级毛片| 久久狼人影院| 十八禁人妻一区二区| 脱女人内裤的视频| 国产一区二区三区视频了| 麻豆成人av在线观看| 校园春色视频在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美乱码精品一区二区三区| 亚洲国产毛片av蜜桃av| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 中文字幕最新亚洲高清| 黑人欧美特级aaaaaa片| 国产成人精品久久二区二区免费| 黄色成人免费大全| 99久久人妻综合| 岛国视频午夜一区免费看| 亚洲人成电影观看| 色婷婷av一区二区三区视频| 窝窝影院91人妻| 欧美激情久久久久久爽电影 | 国产亚洲av高清不卡| 久久久国产欧美日韩av| 亚洲精品美女久久av网站| 国产精品久久视频播放| www国产在线视频色| 久久精品亚洲精品国产色婷小说| 天天躁夜夜躁狠狠躁躁| 男女床上黄色一级片免费看| 国产99白浆流出| 可以免费在线观看a视频的电影网站| 国产亚洲欧美精品永久| 国产精品电影一区二区三区| 一本大道久久a久久精品| 亚洲成人免费电影在线观看| 大型黄色视频在线免费观看| 婷婷六月久久综合丁香| 99在线人妻在线中文字幕| 久久久久久久久久久久大奶| 69精品国产乱码久久久| 中文字幕色久视频| 亚洲情色 制服丝袜| 91九色精品人成在线观看| 又紧又爽又黄一区二区| 日本免费一区二区三区高清不卡 | 97人妻天天添夜夜摸| 欧美日韩亚洲高清精品| 日本 av在线| 精品乱码久久久久久99久播| 啦啦啦 在线观看视频| 一二三四社区在线视频社区8| 亚洲视频免费观看视频| 丝袜美腿诱惑在线| 亚洲人成电影观看| 老司机午夜福利在线观看视频| 人妻丰满熟妇av一区二区三区| 女性被躁到高潮视频| 18禁观看日本| 亚洲精品久久成人aⅴ小说| 99国产综合亚洲精品| 男人操女人黄网站| 国产日韩一区二区三区精品不卡| 精品福利观看| 国产xxxxx性猛交| av网站免费在线观看视频| 黄色a级毛片大全视频| 婷婷精品国产亚洲av在线| 国产精品久久视频播放| 高清欧美精品videossex| 18禁国产床啪视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产区一区二| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 免费av毛片视频| 国产麻豆69| 精品福利观看| 香蕉丝袜av| √禁漫天堂资源中文www| 亚洲一区二区三区色噜噜 | 9色porny在线观看| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 国产精品久久久久成人av| 黄色女人牲交| 91麻豆av在线| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧美日韩在线播放| 欧美成人免费av一区二区三区| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| 亚洲av成人不卡在线观看播放网| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 欧美日韩亚洲国产一区二区在线观看| 免费日韩欧美在线观看| 波多野结衣av一区二区av| 日韩三级视频一区二区三区| 成人黄色视频免费在线看| xxxhd国产人妻xxx| 免费在线观看影片大全网站| 18禁国产床啪视频网站| 欧美乱妇无乱码| 9色porny在线观看| 999久久久精品免费观看国产| 露出奶头的视频| 夫妻午夜视频| 亚洲精品在线观看二区| 69精品国产乱码久久久| 成人特级黄色片久久久久久久| 国产伦人伦偷精品视频| 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区| 国产区一区二久久| 超碰97精品在线观看| 俄罗斯特黄特色一大片| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| av网站免费在线观看视频| 国产激情欧美一区二区| 老熟妇仑乱视频hdxx| 99国产极品粉嫩在线观看| 亚洲av成人一区二区三| 免费在线观看影片大全网站| 国产又色又爽无遮挡免费看| 成在线人永久免费视频| 久久精品国产99精品国产亚洲性色 | 麻豆一二三区av精品| 伊人久久大香线蕉亚洲五| 国产三级黄色录像| 国产区一区二久久| 欧美激情久久久久久爽电影 | 国产成人精品无人区| 精品国内亚洲2022精品成人| 午夜福利,免费看| 精品久久蜜臀av无| 亚洲自拍偷在线| 亚洲人成电影免费在线| 999精品在线视频| a级毛片在线看网站| av电影中文网址| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 在线av久久热| 99久久人妻综合| 国产av又大| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 青草久久国产| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 咕卡用的链子| 黑丝袜美女国产一区| 欧美最黄视频在线播放免费 | 成人亚洲精品av一区二区 | 午夜成年电影在线免费观看| 男女下面进入的视频免费午夜 | 性色av乱码一区二区三区2| 在线观看免费高清a一片| 精品乱码久久久久久99久播| 久久影院123| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 亚洲精品在线观看二区| 精品一区二区三区四区五区乱码| www.自偷自拍.com| 免费在线观看黄色视频的| 亚洲三区欧美一区| 18禁裸乳无遮挡免费网站照片 | 手机成人av网站| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 日韩欧美三级三区| 久久人妻av系列| 日韩欧美一区视频在线观看| 国产单亲对白刺激| 一级a爱片免费观看的视频| 99久久精品国产亚洲精品| 午夜精品国产一区二区电影| 99香蕉大伊视频| 亚洲精品在线美女| 青草久久国产| 国产一区二区三区视频了| www.www免费av| 亚洲色图av天堂| 日本a在线网址| 真人做人爱边吃奶动态| 视频区欧美日本亚洲| 怎么达到女性高潮| 久久久水蜜桃国产精品网| 久久午夜综合久久蜜桃| 在线免费观看的www视频| 丰满人妻熟妇乱又伦精品不卡| 国产不卡一卡二| 首页视频小说图片口味搜索| av中文乱码字幕在线| 美女 人体艺术 gogo| 国产成人欧美| 99在线视频只有这里精品首页| 激情视频va一区二区三区| 一级,二级,三级黄色视频| 老熟妇乱子伦视频在线观看| 亚洲黑人精品在线| 9热在线视频观看99| а√天堂www在线а√下载| 韩国av一区二区三区四区| 国产成人精品在线电影| 村上凉子中文字幕在线| 夜夜夜夜夜久久久久| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 青草久久国产| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 色哟哟哟哟哟哟| 香蕉国产在线看| 精品一区二区三区视频在线观看免费 | 亚洲欧美精品综合久久99| 黑人巨大精品欧美一区二区蜜桃| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 桃色一区二区三区在线观看| 日韩成人在线观看一区二区三区| 成人三级做爰电影| 久热这里只有精品99| 成人亚洲精品av一区二区 | 看免费av毛片| 成人免费观看视频高清| 亚洲午夜理论影院| 免费高清在线观看日韩| 91九色精品人成在线观看| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 免费少妇av软件| 在线av久久热| 午夜影院日韩av| 久久精品亚洲av国产电影网| 一级黄色大片毛片| 欧美精品一区二区免费开放| 国产精品综合久久久久久久免费 | 精品久久蜜臀av无| 大码成人一级视频| 欧美乱色亚洲激情| 人人妻人人添人人爽欧美一区卜| 欧美日韩黄片免| 国产av精品麻豆| 久久伊人香网站| 精品电影一区二区在线| 1024香蕉在线观看| 久久午夜亚洲精品久久| 不卡av一区二区三区| 男女下面进入的视频免费午夜 | 最近最新中文字幕大全电影3 | 国产精品久久久久久人妻精品电影| 日韩大尺度精品在线看网址 | 在线观看免费视频网站a站| 真人一进一出gif抽搐免费| 老司机深夜福利视频在线观看| 岛国视频午夜一区免费看| 亚洲人成电影免费在线| 亚洲午夜精品一区,二区,三区| 精品一品国产午夜福利视频| 日韩有码中文字幕| 亚洲av五月六月丁香网| 国产亚洲欧美在线一区二区| 老司机福利观看| 妹子高潮喷水视频| 99精品欧美一区二区三区四区| 男女做爰动态图高潮gif福利片 | 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久| 宅男免费午夜| 亚洲精品av麻豆狂野| 女生性感内裤真人,穿戴方法视频| 国产1区2区3区精品| 久久久精品欧美日韩精品| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 99国产精品一区二区蜜桃av| 午夜两性在线视频| 欧美人与性动交α欧美精品济南到| 日本免费一区二区三区高清不卡 | 黑人操中国人逼视频| 免费观看人在逋| 9热在线视频观看99| 日韩高清综合在线| 12—13女人毛片做爰片一| 精品国产一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 法律面前人人平等表现在哪些方面| 亚洲视频免费观看视频| 亚洲精品av麻豆狂野| 亚洲狠狠婷婷综合久久图片| 欧美国产精品va在线观看不卡| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 久久久久九九精品影院| 纯流量卡能插随身wifi吗| 日韩一卡2卡3卡4卡2021年| 一级a爱片免费观看的视频| 免费av中文字幕在线| 日韩欧美三级三区| 久久久久久久久中文| 香蕉丝袜av| 欧美日韩精品网址| 国产乱人伦免费视频| 在线av久久热| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜制服| 香蕉久久夜色| 亚洲黑人精品在线| 超碰97精品在线观看| 18禁黄网站禁片午夜丰满| 色在线成人网| 欧洲精品卡2卡3卡4卡5卡区| a级片在线免费高清观看视频| 日韩大尺度精品在线看网址 | 免费观看人在逋| 老熟妇乱子伦视频在线观看| 一区二区三区精品91| ponron亚洲| 日本撒尿小便嘘嘘汇集6| 国产又爽黄色视频| 久久久久久亚洲精品国产蜜桃av| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 成人永久免费在线观看视频| 长腿黑丝高跟| 久久人妻av系列| 国产xxxxx性猛交| 午夜老司机福利片| 午夜激情av网站| 久久精品影院6| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 两人在一起打扑克的视频| 好男人电影高清在线观看| 99在线视频只有这里精品首页| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 亚洲专区国产一区二区| cao死你这个sao货| 99国产精品一区二区三区| 99国产综合亚洲精品| 国产精品野战在线观看 | 亚洲一区高清亚洲精品| 午夜精品国产一区二区电影| 桃红色精品国产亚洲av| 国产精品98久久久久久宅男小说| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品综合一区在线观看 | 欧美成狂野欧美在线观看| 国产精品亚洲一级av第二区| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 国产精品香港三级国产av潘金莲| 日韩一卡2卡3卡4卡2021年| 18禁观看日本| 国产熟女午夜一区二区三区| 妹子高潮喷水视频| 高清毛片免费观看视频网站 | 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲综合一区二区三区_| 国产精品99久久99久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰97精品在线观看| av超薄肉色丝袜交足视频| 曰老女人黄片| 黄频高清免费视频| 亚洲av片天天在线观看| 亚洲中文av在线| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看| 精品久久久久久久久久免费视频 | 亚洲欧美精品综合久久99| av中文乱码字幕在线| bbb黄色大片| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站 | 18禁国产床啪视频网站| 丰满迷人的少妇在线观看| 亚洲第一青青草原| 91大片在线观看| 日本精品一区二区三区蜜桃| av天堂久久9| 88av欧美| xxx96com| 日韩三级视频一区二区三区| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 国产激情欧美一区二区| 国产精品九九99| 麻豆一二三区av精品| 日韩视频一区二区在线观看| 国产熟女xx| 欧美日韩亚洲综合一区二区三区_| 不卡av一区二区三区| 香蕉国产在线看| 搡老岳熟女国产| 脱女人内裤的视频| 久久久久久久精品吃奶| 国产精品综合久久久久久久免费 | 欧美久久黑人一区二区| 亚洲九九香蕉| 欧美日韩黄片免| 欧美一级毛片孕妇| 久久精品影院6| 亚洲午夜精品一区,二区,三区| 精品熟女少妇八av免费久了| avwww免费| 精品高清国产在线一区| 久久亚洲真实| 黑人巨大精品欧美一区二区mp4| 久久久久九九精品影院| 国产极品粉嫩免费观看在线| 黄色成人免费大全| a在线观看视频网站| 夜夜看夜夜爽夜夜摸 | www国产在线视频色| 日韩精品免费视频一区二区三区| 多毛熟女@视频| 亚洲av美国av| 国产成人免费无遮挡视频| 久久久久久久午夜电影 | 精品国产乱码久久久久久男人| 色婷婷久久久亚洲欧美| 午夜福利在线观看吧| 欧美亚洲日本最大视频资源| 美女 人体艺术 gogo| 国产精品久久久av美女十八| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 午夜福利在线免费观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品日韩av在线免费观看 | 国产xxxxx性猛交| 国产成人免费无遮挡视频| 中国美女看黄片| 精品久久久久久,| 亚洲色图综合在线观看| 中亚洲国语对白在线视频| 欧美日本亚洲视频在线播放| xxxhd国产人妻xxx| a级毛片在线看网站| 村上凉子中文字幕在线| 亚洲 欧美一区二区三区| 中亚洲国语对白在线视频| 亚洲伊人色综图| 91老司机精品| 母亲3免费完整高清在线观看| 婷婷精品国产亚洲av在线| 丰满人妻熟妇乱又伦精品不卡| 国产有黄有色有爽视频| 亚洲成人久久性| 国产片内射在线| 天堂中文最新版在线下载| 亚洲 国产 在线| 久久热在线av| 国产精品久久久久久人妻精品电影| 欧美+亚洲+日韩+国产| 国产精品一区二区免费欧美| 啪啪无遮挡十八禁网站| 午夜免费成人在线视频| 人妻丰满熟妇av一区二区三区| av超薄肉色丝袜交足视频| 精品久久久久久,| 99国产精品99久久久久| 中文欧美无线码| 婷婷六月久久综合丁香| 亚洲自偷自拍图片 自拍| bbb黄色大片|