• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水團(tuán)簇構(gòu)象穩(wěn)定性起源和本質(zhì)的密度泛函理論與量子分子動(dòng)力學(xué)研究

    2013-10-18 05:27:18王友娟趙東波榮春英劉述斌
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:化工學(xué)院湖南師范大學(xué)物理化學(xué)

    王友娟 趙東波 榮春英,* 劉述斌,2,*

    (1湖南師范大學(xué)化學(xué)化工學(xué)院,資源精細(xì)化與先進(jìn)材料湖南省高校重點(diǎn)實(shí)驗(yàn)室,化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410081; 2 Research Computing Center,University of North Carolina,Chapel Hill,North Carolina 27599-3420,U.S.A.)

    1 Introduction

    For a given polyatomic molecule,there often exist a few experimentally accessible conformations.As the number of atoms in a molecule increases,the total number of local minima skyrockets exponentially,thus impossible to enumerate them exhaustively.Natural questions to ask are which one is most stable,why,and what factor or factors dictate the relative stability of these local conformational minima.A convincing answer to these questions is not easy,even for the simplest molecules like ethane and hydrogen peroxide.1With the tools available it is now straightforward to identify which conformation has a lower energy,but to find out what factor or factors contribute to or dominate in its stability is controversial.2-6This is often where disagreements arise.From the physicochemical viewpoint,however,to have a definite and well-accepted answer is essential for our understanding.

    In this work,using the octamer water cluster as an example,we investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability.To that end,we employ quantum molecular dynamics to generate a large number of conformations for octamer water clusters and then employ two energy partition schemes recently established from density functional theory(DFT)to pinpoint the principles governing the stability of these species.The key question we want to answer is which interaction or interactions determine the molecular stability.Water clusters are bound together through hydrogen bonds.It is generally believed that the nature of hydrogen bonding is predominantly electrostatic,even though quantum contributions through covalent bonding could also be important.Is it really true that the electrostatic interaction is the dominant factor in a water cluster?Do other effects such as steric and exchange-correlation contributions play a role as well?We will provide our answer to these questions in this study.

    2 Methodology and computational details

    From the theoretical point of view,using virial theorem,the energy difference ΔE between two stable isomers should satisfy7

    where T and V denote the kinetic and potential energies,respectively,of the system in concern.Eq.(1)suggests that the stability difference between two conformers is equal to either the entire kinetic energy difference or half of the total potential energy difference.These energy components are,however,not chemically meaningful.We often wish to obtain insights from such effects as steric,electrostatic,or quantum,which are missing in Eq.(1).More importantly,Eq.(1)does not work for density functional theory,7-9because a portion of the kinetic energy,Tc[ρ],has already been incorporated in the exchange-correlation energy Exc,making the DFT version of the viral theorem much more complicated.10-13

    In DFT,the total energy of a system comes from five different contributions:

    where Ts,Vne,J,Exc,and Vnnrepresent the non-interacting kinetic,nuclear-electron attraction,classical electron-electron repulsion,exchange-correlation,and nuclear-nuclear repulsion interactions,respectively.Since Vne,J,and Vnnare electrostatic in nature,these three components can be bundled together,yielding Ee[ρ]=Vne[ρ]+J[ρ]+Vnn.Therefore,the conventional approach to perform the decomposition for the total energy difference in DFT is the following,7-9

    where Eestands for the electrostatic energy components.

    Recently,we proposed an alternative scheme to perform energy difference partition in the framework of DFT,14

    where the total energy difference ΔE comes from the contribution of three independent effects,steric ΔEs,electrostatic ΔEe,and fermionic quantum ΔEq,which results from the exchange and correlation effects among electrons.It has been shown that the energy contribution from the steric effect can simply be expressed by the Weizs?cker kinetic energy,Es≡Tw,with

    where ρ(r)and ?ρ(r)are the total electron density and its gradient,respectively.Also,the fermionic quantum energy contribution due to the exchange-correlation effect(because electrons are fermions),Eq[ρ],is the sum of the conventional exchangecorrelation energy Exc[ρ],which includes a kinetic counterpart of the dynamic electron correlation,and the Pauli energy,15,16EPauli[ρ],which is the contribution to the kinetic energy from the antisymmetric requirement of the many-body wave function required by the Pauli Exclusion Principle.10,11,13It is known in the literature that the Pauli energy is the difference between the non-interacting kinetic energy Tsand the Weizs?cker kinetic energy Tw.17Therefore,

    The physical meaning of this new quantification of the steric contribution,Eq.(5),is based on the introduction of a new reference state,where electrons in atoms and molecules are assumed to behave like bosons.If the density of the hypothetical boson state is the same as that of the fermionic state,ρ(r),the total wave function of the hypothetical state will be(ρ(r)/N)1/2,where N is the number of electrons.The total kinetic energy of the hypothetical state,from which Weisskopf′s“kinetic energy pressure”14,18for the steric effect is calculated,is simply Eq.(5).

    A few prominent features and properties of this novel quantification of steric contribution have been revealed.For instance,the integrand of Eq.(5)is non-negative everywhere,and thus repulsive in nature.It vanishes for the case of a homogeneous electron gas.It is extensive because it is homogeneous of degree one in density scaling,11,19,20so the larger the system,the larger the steric repulsion.If Bader′s atoms-in-molecules approach is adopted,the steric energy can be partitioned at the atomic and functional group levels as well.Its corresponding steric potential,steric charge,and steric force have been defined and evaluated.14,21Its relationship with information theory has been investigated.22,23This approach has been applied to a number of systems,such as conformational changes of small molecules,1,24,25SN2 reactions,26chained and branched alkanes,27and other systems.28-30Reasonably good trends and linear relationships between theoretical and experimental scales (by Taft)of the steric effect have recently been observed at both group and entire molecular levels.31

    In this work,we take the octamer water cluster,(H2O)8,as an example and investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability and to address which interaction or interactions determine the molecular stability of these species.To that end,a large number of conformations for octamer water clusters are needed to perform the two energy partition schemes discussed above.To generate as many different local minima as possible,we employ the quantum molecular dynamics(QMD)approach,which has successfully been used for other purposes elsewhere.32In QMD simulations,which were performed with the NWChem package,33atomic nuclei are treated as Newtonian particles whose forces are obtained from the fully converged electronic structure calculation in the Born-Oppenheimer approximation.The simulation protocol is the following.We start the QMD simulations with a few structures from the literature.After an initial structure optimization of 120 steps,each structure is undergone QMD simulations under 300 K for 100 ps with a step size of 0.5 fs and the leapfrog integration algorithm.We employ a constant temperature ensemble using Berendsen′s thermostat with the temperature relaxation time set to be 2 fs.The cutoff radius for short range interactions is 2.8 nm.SHAKE is disabled and thus all bonding interactions are treated according to the force calculated from quantum mechanics.Trajectories are saved in every 50 femtoseconds.A shell script has been written to extract distinct conformations with a total of at least 0.8 nm derivations from the last selected local minimum.The initial structure was from the literature.34A total of 185 distinct isomers have been obtained from these processes.A few selected low-energy local minima from QMD simulations are shown in Scheme 1.For each structure extracted by the post-processing script,a full geometrical optimization is performed at the level of M062X/aug-cc-PVTZ theory35using the Gaussian 09 package36with tight SCF convergence and ultrafine integration grids.Energy partition analyses are ensued after the optimized structure is obtained at the same level of theory.Different approximate exchange-correlation functionals and basis sets were tested and no substantially different results were obtained(results not shown).

    3 Results and discussion

    Fig.1 shows three strong correlations obtained for these systems between the total energy difference ΔE of different octamer water clusters and their energy components.Our first observation is that all these two energy components,ΔExc,ΔEe,and ΔEs,are negative in sign,indicating that they are contributing positively to the molecular stability,because ΔE<0.In Figs.1(a)and 1(c),we find that the relative stability ΔE of the water cluster is proportional to the exchange-correlation energy difference ΔExcand to the steric effect difference ΔEs,with the correlation coefficient equal to 0.954 and 0.987,respectively.A less significant correlation between the relative stability and the total electrostatic interaction difference ΔEewith the correlation coefficient R2=0.767 was also observed.The positive slope in these three relationships suggests that these energy components all contribute positively to the relative stability.The less than unit slope in these correlations indicates that these energy components are larger in magnitude than the total energy difference itself.

    Scheme 1 A few low-energy structures obtained from QMD simulations in this study

    Fig.1 Three strong linear correlations between the total energy difference,ΔE,and three energy components,

    A few working principles about the relative stability of this molecular system can be obtained from Fig.1.Notice that in magnitude Eq>0,Es>0,Exc<0,Ee<0,and E<0.First,a strong linear correlation between ΔE and ΔEsin Fig.1(c)shows that the more stable a water octamer cluster,the smaller its steric repulsion,suggesting that for a lower energy cluster structure,its steric repulsion should be smaller.Since a smaller steric repulsion also implies smaller size,29this result suggests that more stable clusters are often compact and possess smaller sizes.This working principle of molecular stability can be called the minimum steric repulsion principle.Another principle is from Fig.1(a),where the exchange-correlation difference ΔExcis proportional to the relative stability ΔE,meaning that the more stable an isomer,the larger its exchange-correlation interaction.This result indicates that stable water clusters prefer to have strong exchange-correlation interactions.This can be called the maximum exchange-correlation interaction principle.For the relationship in Fig.1(b),the correlation is not as strong as the other two energy components,yet it still appears that the electrostatic interaction in a lower energy structure possesses a stronger electrostatic interaction.This latter point answers the question where or not the electrostatic interactions in water cluster is predominant.What we observe in this study is that the electrostatic interaction is indeed a strong,positive contribution to the stability of water clusters,but its correlation with the relative stability,ΔE,is not as strong as the steric repulsion ΔEsand the exchange-correlation interaction ΔExc.These results also provide inputs for other questions.For example,is the quantum effect(exchange-correlation interactions)important?The answer is certainly yes,as illustrated in Fig.1(a).In addition,Fig.1(c)adds another factor into the picture of our consideration,that is,the steric effect.This effect has not been previously taken into consideration,but our present results clearly showcased its relevance.Put together,our results in Fig.1 suggest that more stable structures of water clusters prefer to have smaller size and smaller steric repulsion,and at the same time,strong exchange-correlation and electrostatic interactions.

    Shown in Fig.2 are two strong correlations between energy components.The first one is between the electrostatic interaction energy difference ΔEeand the total noninteracting kinetic energy difference ΔTswith the correlation coefficient equal to 0.976,and the other is between the Fermionic quantum energy difference ΔEqand the steric energy difference ΔEswith R2=0.999.The second correlation has already been discovered elsewhere,24-28whereas the first one is peculiar only to this system.The two relationships are converse correlations,each with a negative slope,meaning that(i)the non-interacting kinetic energy difference ΔTsand the Fermionic quantum energy difference ΔEqare both positive quantities,contributing negatively to the molecular stability,and(ii)the two energy components involved are canceling one another because ΔEeand ΔEsare negative values.

    With the fitted formulas from Fig.2,we have

    Together with Eqs.(3)and(4),there result

    Eq.(8)shows that ΔEeis the dominant contributor to ΔE<0 because the second quantity in this equation is positive(since ΔEs<0),whereas in Eq.(7)the contribution comes from both terms,with the governing contributor from ΔExcbut the remnant of ΔEe/ΔTsalso contributing positively to ΔE.The correlation coefficients for Eqs.(7)and(8)are found to be 0.96 and 0.77,respectively.These equations provide us with two different approaches to find out which energy component is the dictating factor in governing the relative molecular stability.

    Fig.2 Strong linear correlations(a)between total electrostatic energy difference ΔE eand the kinetic energy difference ΔT s,and(b)between Fermionic quantum energy difference ΔE qand the steric repulsion ΔE s

    Fig.3 Correlations between the calculated relative stability of water clusters and the two fitted models using two-variable least-square fitting from the energy decomposition schemes in density functional theory

    Given the strong correlations in Fig.2,another way to simplify Eqs.(3)and(4)is to use two of the three quantities in Fig.1,which are found to be positively proportional to the relative stability ΔE,to perform least-square fittings.Fig.3 shows the twovariable fitting results in this manner.Using ΔEeplus ΔExcor ΔEs,much better fits can be obtained,with all quantities contributing positively to ΔE and R2equal to or better than 0.99.In Fig.3(a),the fitted formula is

    where we find that the dominant contribution is from the exchange-correlation interaction with the latter possessing a larger coefficient,whereas in Fig.3(b),

    where we see that the electrostatic terms possesses a larger coefficient than the steric repulsion term and thus ΔEeis the dominant contributor.These results are consistent with what we found in Eqs.(7)and(8),where ΔExcand ΔEewere shown to play dominant roles in the two energy partition schemes,respectively.

    Put together,our present results unambiguously show that there exist clear working principles governing the relative stability for such molecular systems as water clusters.Three energy components,electrostatic,steric,and exchange-correlation,are found to all contribute positively to the molecular stability,with the correlation coefficient of the last two correlations better than 0.95.These relationships demonstrate that a more stable structure possesses less steric repulsion,and stronger Fermionic and exchange-correlation interactions.We also found that there exist strong correlations between energy components,such as ΔEevs ΔTs,and ΔEsvs ΔEq.These relationships enable us to simplify the two energy partition schemes in Eqs.(3)and(4)and to obtain either Eqs.(7)and(8)or Eqs.(9)and(10),where ΔEeand ΔExcare found to be the dominant contributor,respectively.

    Our current results also shed new light on how to account for the origin of molecular stability for systems like water clusters.Same as other systems,1the relative stability of an isomer comes from the net contribution from all energetic effects involved.These effects,including electrostatic,steric,kinetic,exchange-correlation,and Fermionic quantum interactions,have different values for different isomers and they follow different trends in the conformation space.Some effects contribute positively to the molecular stability,while others do so negatively,canceling contributions from other interactions.One of the main results in this work is the finding that exchange-correlation interaction and steric repulsion are strongly correlated to the relative stability of water clusters,whereas for the electrostatic interaction,a less strong correlation has been observed.Even though in Eqs.(8)and(10),the electrostatic interaction is dominant,Fig.1(b)shows that its correlation with molecular stability is weaker than the exchange-correlation interaction or steric repulsion.Using Eq.(7)or(9),where ΔExcis dominant,much stronger correlation with relative molecular stability can be obtained.

    4 Conclusions

    To summarize,in this work,we employ quantum molecular dynamics to obtain a large number of distinct structures for the octamer water cluster and then perform energy partition studies using two approaches from density functional theory to identify working principles governing the relative molecular stability for these water clusters.We find that the exchange-correlation interaction and steric repulsion are two strong indicators of their relative conformation stability.We also identify strong correlations between energy components.It appears that a more stable structure possesses a smaller size and less steric repulsion,and at the meantime it has stronger electrostatic and exchange-correlation interactions.Two strong linear correlations using two different quantities are subsequently proposed to account for their relative stability,each with the correlation coefficient larger than 0.99.This work should shed new light to our fundamental understanding about the origin and nature of molecular stability for systems like water clusters as well as other similar molecular complexes formed through intermolecular interactions.

    Finally,we mention in passing that our present approach is different from others scheme in performing energy decomposition analysis,such as the one by Morokuma,37where its focus is on the total interaction energy.In our case,we consider the total energy of the system instead.Also,what we have obtained in this work is only for the octamer.Are our conclusions applicable to other sizes of the water cluster as well?How sensitive are they to the choice of basis sets or density functionals?More interestingly,even though our approach is different from the other energy partition scheme(by Morokuma and others)in the literature,is there any correlation from the terms obtained these different approaches applied to the same systems?More systematic studies are in progress.These and other questions will be addressed elsewhere.

    (2)Pophristic,V.;Goodman,L.Nature 2001,411,565.doi:10.1038/35079036

    (3)Bickelhaupt,F.M.;Baerends,E.J.An gew.Chem.Int.Edit.2003,42,4183.

    (4)Weinhold,F.Angew.Ch em.Int.E dit.2003,42,4188.

    (5)Mo,Y.R.Nat.Chem.2010,2,666.doi:10.1038/nchem.721

    (6)Mo,Y.;Gao,J.Accounts Chem.R es.2007,40,113.doi:10.1021/ar068073w

    (7)Parr,R.G.;Yang,W.Density Functional Theory of Atoms Molecules;Oxford University Press:New York,1989.

    (8)Geerlings,P.;De Proft,F.;Langenaeker,W.Chem.Rev.2003,103,1793.doi:10.1021/cr990029p

    (9)Liu,S.B.Acta P hys.-Chim.Sin.2009,25,590.[劉述斌.物理化學(xué)學(xué)報(bào),2009,25,590.]doi:10.3866/PKU.WHXB20090332

    (10)Levy,M.;Perdew,J.P.Ph ys.Rev.A 1985,32,2010.doi:10.1103/PhysRevA.32.2010

    (11)Liu,S.B.;Parr,R.G.P hys.R ev.A 1996,53,2211.doi:10.1103/PhysRevA.53.2211

    (12)Liu,S.B.;Nagy,A.;Parr,R.G.Phys.Rev.A 1999,59,1131.doi:10.1103/PhysRevA.59.1131

    (13)Liu,S.B.;Morrison,R.C.;Parr,R.G.J.Ch em.Phys.2006,125,174109.doi:10.1063/1.2378769

    (14)Liu,S.B.J.Chem.Ph ys.2007,126,244103.doi:10.1063/1.2747247

    (15)March,N.H.Phys.L ett.A 1986,113,476.doi:10.1016/0375-9601(86)90123-4

    (16)Holas,A.;March,N.H.Phys.R ev.A 1991,44,5521.doi:10.1103/PhysRevA.44.5521

    (17)von Weizs?cker,C.F.Z.Phys.1935,96,431.doi:10.1007/BF01337700

    (18)Weisskopf,V.F.Science 1975,187,605.doi:10.1126/science.187.4177.605

    (19)Liu,S.B.Phys.R ev.A 1996,54,4863.doi:10.1103/PhysRevA.54.4863

    (20)Liu,S.B.;Parr,R.G.P hys.Rev.A 1997,55,1792.doi:10.1103/PhysRevA.55.1792

    (21)Tsirelson,V.G.;Stash,A.I.;Liu,S.B.J.Chem.P hys.2010,133,114110.doi:10.1063/1.3492377

    (22)Liu,S.B.J.Chem.P hys.2007,126,191107.doi:10.1063/1.2741244

    (23)Esquivel,R.O.;Liu,S.B.;Angulo,J.C.;Dehesa,J.S.;Antolín,J.;Molina-Espíritu,M.J.Phys.Chem.A 2011,115,4406.doi:10.1021/jp1095272

    (24)Liu,S.B.;Govind,N.J.Phys.Chem.A 2008,112,6690.doi:10.1021/jp800376a

    (25)Liu,S.B.;Govind,N.;Pedersen,L.G.J.Chem.Phys.2008,129,094104.doi:10.1063/1.2976767

    (26)Liu,S.B.;Hu,H.;Pedersen,L.G.J.Phys.Chem.A 2010,114,5913.doi:10.1021/jp101329f

    (27)Ess,D.H.;Liu,S.B.;De Proft,F.J.Phys.Chem.A 2010,114,12952.doi:10.1021/jp108577g

    (28)Huang,Y.;Zhong,A.G.;Yang,Q.;Liu,S.B.J.Chem.P hys.2011,134,084103.doi:10.1063/1.3555760

    (29)Zhao,D.B.;Rong,C.Y.;Jenkins,S.;Kirk,S.R.;Yin,D.L.;Liu,S.B.Acta Phys.-Chim.Sin.2013,29,43.[趙東波,榮春英,蘇 曼,蘇 文,尹篤林,劉述斌.物理化學(xué)學(xué)報(bào),2013,29,43.]doi:10.3866/PKU.WHXB201211121

    (30)Tsirelson,V.G.;Stash,A.I.;Karasiev,V.V.;Liu,S.B.Comp.T heor.Chem.2013,1006,92.doi:10.1016/j.comptc.2012.11.015

    (31)Torrent-Sucarrat,M.;Liu,S.B.;De Proft,F.J.Ph ys.Ch em.A 2009,113,3698.doi:10.1021/jp8096583

    (32)Liu,S.B.J.Chem.Sci.2005,117,477;Zhong,A.G.;Rong,C.Y.;Liu,S.B.J.Phys.Chem.A 2007,111,3132.doi:10.1007/BF02708352

    (33)Valiev,M.;Bylaska,E.J.;Govind,N.;Kowalski,K.;Straatsma,T.P.;Van Dam,H.J.J.;Wang,D.;Nieplocha,J.;Apra,E.;Windus,T.L.;de Jong,W.Comput.Phys.Commun.2010,181,1477.

    (34)Maeda,S.;Ohno,K.J.P hys.Chem.A 2007,111,4527.doi:10.1021/jp070606a

    (35)Zhao,Y.;Truhlar,D.G.T h eor.Ch em.A cc.2008,120,215.doi:10.1007/s00214-007-0310-x

    (36)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision C.01;Gaussian,Inc.:Wallingford,CT,2009.

    (37)Kitaura,K.;Morokuma,K.Int.J.Quantum Chem.1976,10,325.

    猜你喜歡
    化工學(xué)院湖南師范大學(xué)物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    湖南師范大學(xué)作品
    大眾文藝(2021年8期)2021-05-27 14:05:54
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    湖南師范大學(xué)美術(shù)作品
    大眾文藝(2020年11期)2020-06-28 11:26:50
    湖南師范大學(xué)作品
    大眾文藝(2019年16期)2019-08-24 07:54:00
    湖南師范大學(xué)作品欣賞
    大眾文藝(2019年10期)2019-06-05 05:55:32
    Chemical Concepts from Density Functional Theory
    av国产免费在线观看| 久久草成人影院| 久久午夜亚洲精品久久| 观看美女的网站| 免费不卡的大黄色大毛片视频在线观看 | 别揉我奶头 嗯啊视频| 欧美丝袜亚洲另类| 久久久欧美国产精品| 亚洲中文字幕日韩| 在线观看一区二区三区| 99久久精品热视频| 亚洲精品色激情综合| 午夜福利在线在线| 身体一侧抽搐| av.在线天堂| 99久久久亚洲精品蜜臀av| 欧美色欧美亚洲另类二区| 精品无人区乱码1区二区| 老司机福利观看| 午夜亚洲福利在线播放| 青春草亚洲视频在线观看| 国产精品,欧美在线| eeuss影院久久| 3wmmmm亚洲av在线观看| 日韩精品青青久久久久久| 亚洲真实伦在线观看| 国产乱人视频| 日本与韩国留学比较| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 久久精品国产亚洲av天美| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 丰满乱子伦码专区| 一个人观看的视频www高清免费观看| 97热精品久久久久久| 久久久久久久午夜电影| 97在线视频观看| 一边亲一边摸免费视频| 色哟哟·www| 国产不卡一卡二| 日韩制服骚丝袜av| 日韩av在线大香蕉| 国产在视频线在精品| 亚洲av二区三区四区| 日韩精品有码人妻一区| 久久久久九九精品影院| 成人欧美大片| 久久99蜜桃精品久久| 欧美性猛交╳xxx乱大交人| 简卡轻食公司| 精品国内亚洲2022精品成人| 黄色一级大片看看| 久久精品91蜜桃| av福利片在线观看| h日本视频在线播放| 国产亚洲精品av在线| 少妇的逼水好多| 一个人看视频在线观看www免费| 国产精品综合久久久久久久免费| 亚洲一级一片aⅴ在线观看| 久久综合国产亚洲精品| 18禁在线播放成人免费| 亚洲av男天堂| 欧美日韩精品成人综合77777| 亚洲国产精品sss在线观看| 美女大奶头视频| 婷婷六月久久综合丁香| 综合色av麻豆| 午夜福利在线观看吧| 亚洲av第一区精品v没综合| av在线天堂中文字幕| 男女边吃奶边做爰视频| 亚洲精品国产成人久久av| 欧美在线一区亚洲| 国产精品永久免费网站| 久久精品国产亚洲av涩爱 | 99热只有精品国产| 少妇被粗大猛烈的视频| 一进一出抽搐gif免费好疼| 国产精品久久久久久亚洲av鲁大| 午夜福利在线在线| 99久久精品热视频| 嫩草影院精品99| 亚洲va在线va天堂va国产| 国产亚洲欧美98| 国产成人a区在线观看| 欧美变态另类bdsm刘玥| 国产大屁股一区二区在线视频| 国产综合懂色| 午夜精品国产一区二区电影 | 69人妻影院| 午夜福利视频1000在线观看| 能在线免费看毛片的网站| 夜夜爽天天搞| 亚洲七黄色美女视频| 一本久久精品| av女优亚洲男人天堂| 啦啦啦啦在线视频资源| 精品久久久噜噜| 22中文网久久字幕| 日韩强制内射视频| 国产精品久久电影中文字幕| 日本黄色视频三级网站网址| 亚洲精品国产成人久久av| 三级毛片av免费| 观看免费一级毛片| 免费一级毛片在线播放高清视频| 国产精品久久久久久久久免| 中文字幕制服av| 日本一本二区三区精品| 欧美极品一区二区三区四区| 国产欧美日韩精品一区二区| 九九在线视频观看精品| 亚洲国产精品sss在线观看| 欧美bdsm另类| 深夜a级毛片| 欧美又色又爽又黄视频| 九九久久精品国产亚洲av麻豆| 国产成人freesex在线| 国产老妇女一区| 久久99精品国语久久久| 亚洲av成人av| 国产视频内射| 亚洲丝袜综合中文字幕| 亚洲成人av在线免费| av.在线天堂| 亚洲一区二区三区色噜噜| 免费观看在线日韩| 亚洲国产精品sss在线观看| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 嫩草影院入口| 欧美丝袜亚洲另类| 老司机福利观看| 亚洲国产精品久久男人天堂| 在线播放国产精品三级| 日韩欧美在线乱码| 99久久九九国产精品国产免费| 国产极品天堂在线| 国产黄a三级三级三级人| 一本久久精品| 午夜激情欧美在线| 免费看av在线观看网站| 如何舔出高潮| 日韩一区二区视频免费看| 国产精品一区二区三区四区免费观看| 亚洲一区二区三区色噜噜| 久久久成人免费电影| 久久九九热精品免费| 麻豆一二三区av精品| 只有这里有精品99| 最近视频中文字幕2019在线8| 国产老妇伦熟女老妇高清| 婷婷色av中文字幕| 国产视频内射| 国产精品蜜桃在线观看 | av在线老鸭窝| 国产成人freesex在线| av在线观看视频网站免费| 丰满乱子伦码专区| 一本久久中文字幕| 国产精品嫩草影院av在线观看| 久久久国产成人免费| 亚洲成a人片在线一区二区| 国产亚洲av片在线观看秒播厂 | www日本黄色视频网| 性色avwww在线观看| 99久久精品一区二区三区| 亚洲成人久久性| 丰满人妻一区二区三区视频av| 国产精品爽爽va在线观看网站| 日韩欧美精品免费久久| 三级毛片av免费| 成人综合一区亚洲| 国产毛片a区久久久久| 日韩欧美精品v在线| 淫秽高清视频在线观看| 夜夜爽天天搞| 中出人妻视频一区二区| 欧美最新免费一区二区三区| 精品久久久久久久久av| 国产淫片久久久久久久久| 久久人妻av系列| 亚洲欧美成人精品一区二区| 国产精品乱码一区二三区的特点| 国产一级毛片七仙女欲春2| 最好的美女福利视频网| 91麻豆精品激情在线观看国产| 深爱激情五月婷婷| 人妻久久中文字幕网| 不卡一级毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品1区2区在线观看.| 国产伦理片在线播放av一区 | 2021天堂中文幕一二区在线观| 亚洲国产欧洲综合997久久,| 69av精品久久久久久| 国产精品蜜桃在线观看 | 一级二级三级毛片免费看| 热99re8久久精品国产| 老女人水多毛片| 国产精品人妻久久久久久| 国产老妇女一区| 精品人妻偷拍中文字幕| 亚洲熟妇中文字幕五十中出| 69人妻影院| 亚洲精品456在线播放app| 精品少妇黑人巨大在线播放 | 国产成人午夜福利电影在线观看| 特级一级黄色大片| 亚洲国产高清在线一区二区三| 婷婷色综合大香蕉| 亚洲国产欧美人成| 国产淫片久久久久久久久| 日韩一区二区视频免费看| 村上凉子中文字幕在线| 少妇裸体淫交视频免费看高清| 人妻系列 视频| 亚洲天堂国产精品一区在线| 看片在线看免费视频| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品sss在线观看| 99在线人妻在线中文字幕| 午夜福利视频1000在线观看| 丝袜喷水一区| 国产精品无大码| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜 | 小说图片视频综合网站| 边亲边吃奶的免费视频| 国产精品,欧美在线| 中国美女看黄片| 久久人妻av系列| 天堂中文最新版在线下载 | 久久久久久久久中文| 内射极品少妇av片p| 国产三级中文精品| 国产男人的电影天堂91| 国产亚洲av嫩草精品影院| 成人综合一区亚洲| 国内少妇人妻偷人精品xxx网站| 久久久久久伊人网av| АⅤ资源中文在线天堂| 好男人视频免费观看在线| 老司机福利观看| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 在线播放无遮挡| 亚洲精品色激情综合| 国产精品蜜桃在线观看 | 日韩av在线大香蕉| 成人综合一区亚洲| av天堂在线播放| 嫩草影院精品99| 亚洲四区av| 亚洲美女搞黄在线观看| 国产成人一区二区在线| 国产亚洲5aaaaa淫片| 乱人视频在线观看| 成人亚洲精品av一区二区| av天堂中文字幕网| 国产成年人精品一区二区| 麻豆国产av国片精品| 成人欧美大片| 我的老师免费观看完整版| 免费电影在线观看免费观看| 嘟嘟电影网在线观看| 男的添女的下面高潮视频| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱 | 国产激情偷乱视频一区二区| 亚洲自偷自拍三级| 成熟少妇高潮喷水视频| 国产精品久久久久久久电影| 又粗又爽又猛毛片免费看| 日韩av不卡免费在线播放| 99九九线精品视频在线观看视频| 国产精品蜜桃在线观看 | 亚洲精品日韩在线中文字幕 | 免费一级毛片在线播放高清视频| 亚洲欧美精品专区久久| 国模一区二区三区四区视频| 免费观看精品视频网站| 久久国产乱子免费精品| 国产亚洲av嫩草精品影院| 亚洲无线观看免费| 国产成人福利小说| 乱码一卡2卡4卡精品| 日韩av不卡免费在线播放| 成人特级av手机在线观看| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 中文欧美无线码| 色综合站精品国产| 又爽又黄无遮挡网站| 国产精品99久久久久久久久| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 欧美激情久久久久久爽电影| 久久久久久九九精品二区国产| 日韩强制内射视频| 亚洲国产精品国产精品| 久久99蜜桃精品久久| 观看美女的网站| 国产精品蜜桃在线观看 | 国产精品国产三级国产av玫瑰| 亚洲av第一区精品v没综合| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 国产大屁股一区二区在线视频| 一区二区三区高清视频在线| 狂野欧美激情性xxxx在线观看| 午夜激情福利司机影院| 插逼视频在线观看| 色综合站精品国产| 麻豆av噜噜一区二区三区| 国产白丝娇喘喷水9色精品| 99热网站在线观看| 久久久久免费精品人妻一区二区| 亚洲精品国产av成人精品| 国内精品久久久久精免费| 日韩精品青青久久久久久| 我要搜黄色片| 午夜视频国产福利| 一区福利在线观看| 美女cb高潮喷水在线观看| 久久久欧美国产精品| 亚洲成人中文字幕在线播放| 日日干狠狠操夜夜爽| 久久久a久久爽久久v久久| 2021天堂中文幕一二区在线观| 一个人免费在线观看电影| 麻豆一二三区av精品| 亚洲综合色惰| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 岛国毛片在线播放| 国产成人福利小说| 精品日产1卡2卡| 欧美日韩一区二区视频在线观看视频在线 | 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 午夜久久久久精精品| 99热网站在线观看| 久久人妻av系列| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| 亚洲18禁久久av| 亚洲av成人精品一区久久| 亚州av有码| 国产高清三级在线| av又黄又爽大尺度在线免费看 | 亚洲精华国产精华液的使用体验 | 黄色配什么色好看| 亚洲婷婷狠狠爱综合网| 熟女电影av网| 1024手机看黄色片| 男的添女的下面高潮视频| 成人av在线播放网站| 两个人的视频大全免费| 午夜激情欧美在线| 国产精品福利在线免费观看| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 直男gayav资源| 丰满的人妻完整版| av在线老鸭窝| 久久精品久久久久久噜噜老黄 | 伦精品一区二区三区| av在线天堂中文字幕| 国产伦在线观看视频一区| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 综合色丁香网| 国产白丝娇喘喷水9色精品| 亚洲精品影视一区二区三区av| 亚洲av二区三区四区| 欧美xxxx黑人xx丫x性爽| 一级黄色大片毛片| 久久午夜亚洲精品久久| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看 | 最近视频中文字幕2019在线8| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 日本熟妇午夜| 欧美成人一区二区免费高清观看| 国产极品精品免费视频能看的| 好男人在线观看高清免费视频| 一进一出抽搐gif免费好疼| 51国产日韩欧美| 久久久午夜欧美精品| 青春草国产在线视频 | 午夜激情福利司机影院| 国产一区二区三区av在线 | 中文精品一卡2卡3卡4更新| 国产精品电影一区二区三区| 青春草亚洲视频在线观看| 国产免费男女视频| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 亚洲四区av| 国产爱豆传媒在线观看| 日本撒尿小便嘘嘘汇集6| 村上凉子中文字幕在线| 欧美高清性xxxxhd video| www.色视频.com| 老女人水多毛片| 久久精品影院6| 麻豆一二三区av精品| 美女xxoo啪啪120秒动态图| 国产成人freesex在线| 天天躁日日操中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人久久小说 | 日本三级黄在线观看| 我的女老师完整版在线观看| av专区在线播放| 99九九线精品视频在线观看视频| 欧美不卡视频在线免费观看| 亚洲欧美清纯卡通| 亚洲精品亚洲一区二区| 91精品国产九色| 亚洲欧美成人综合另类久久久 | 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 国产三级在线视频| 别揉我奶头 嗯啊视频| 久久中文看片网| 国产欧美日韩精品一区二区| 欧美日韩乱码在线| 欧美日韩综合久久久久久| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 欧美成人免费av一区二区三区| 国产成人91sexporn| 天堂网av新在线| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看| 中国美女看黄片| 悠悠久久av| 久久久久性生活片| 成人国产麻豆网| 国产色爽女视频免费观看| 成年女人永久免费观看视频| 天天一区二区日本电影三级| 男人的好看免费观看在线视频| 午夜福利高清视频| 亚洲欧美精品综合久久99| 久久久久久伊人网av| 欧美潮喷喷水| 日本av手机在线免费观看| av福利片在线观看| 可以在线观看的亚洲视频| 黄片无遮挡物在线观看| 又爽又黄a免费视频| 久久人人爽人人爽人人片va| 欧美日韩国产亚洲二区| 成人无遮挡网站| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 成人三级黄色视频| 久久精品国产亚洲网站| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 99九九线精品视频在线观看视频| av福利片在线观看| 久久久国产成人免费| 亚洲乱码一区二区免费版| 日本在线视频免费播放| 有码 亚洲区| 欧美日韩国产亚洲二区| 日韩高清综合在线| 久久久午夜欧美精品| 亚洲人成网站在线播| 日韩三级伦理在线观看| 亚洲无线观看免费| 插阴视频在线观看视频| 波多野结衣高清无吗| 亚洲欧美精品综合久久99| 亚洲一级一片aⅴ在线观看| 午夜免费男女啪啪视频观看| 免费搜索国产男女视频| 欧美一区二区精品小视频在线| 成人二区视频| 黑人高潮一二区| 日韩成人伦理影院| 性色avwww在线观看| 日韩精品青青久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一级一片aⅴ在线观看| 免费av观看视频| 美女内射精品一级片tv| 天天躁夜夜躁狠狠久久av| 午夜福利成人在线免费观看| 长腿黑丝高跟| 国产成人freesex在线| 毛片女人毛片| 国产 一区精品| 老师上课跳d突然被开到最大视频| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| 成人av在线播放网站| 婷婷色综合大香蕉| 联通29元200g的流量卡| 狠狠狠狠99中文字幕| 亚洲国产高清在线一区二区三| a级毛色黄片| 国产欧美日韩精品一区二区| 日韩av在线大香蕉| 国内少妇人妻偷人精品xxx网站| 欧美成人免费av一区二区三区| 国产精品一区二区三区四区久久| 不卡视频在线观看欧美| 在现免费观看毛片| 久久国产乱子免费精品| 国产成人精品一,二区 | 赤兔流量卡办理| 色播亚洲综合网| 99久久久亚洲精品蜜臀av| 老司机福利观看| 国产av不卡久久| 欧美激情久久久久久爽电影| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品专区久久| 精品久久久久久久久久免费视频| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 女的被弄到高潮叫床怎么办| 又粗又硬又长又爽又黄的视频 | 国产精品精品国产色婷婷| 欧美区成人在线视频| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 成人永久免费在线观看视频| 一本一本综合久久| 欧美日韩精品成人综合77777| 啦啦啦观看免费观看视频高清| 岛国在线免费视频观看| 一进一出抽搐gif免费好疼| 国产91av在线免费观看| 国产精品三级大全| 免费av不卡在线播放| 中文字幕精品亚洲无线码一区| 免费av毛片视频| 在线播放无遮挡| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 青春草视频在线免费观看| 亚洲av熟女| 大型黄色视频在线免费观看| 在线播放国产精品三级| 青春草亚洲视频在线观看| 亚洲电影在线观看av| 国产69精品久久久久777片| 国产一区亚洲一区在线观看| 岛国毛片在线播放| 美女 人体艺术 gogo| 我的女老师完整版在线观看| 亚洲在久久综合| 国产真实乱freesex| 成人国产麻豆网| 日韩在线高清观看一区二区三区| 日韩高清综合在线| 美女大奶头视频| 久久这里有精品视频免费| 好男人视频免费观看在线| 只有这里有精品99| 成人综合一区亚洲| av卡一久久| 日日啪夜夜撸| 亚洲在线观看片| 亚洲国产精品成人综合色| 日韩av不卡免费在线播放| 一本精品99久久精品77| 日本免费a在线| 一区二区三区高清视频在线| 久久久久久久久久久丰满| 欧美性感艳星| 亚洲一区二区三区色噜噜| 亚洲美女搞黄在线观看| 成人漫画全彩无遮挡| 国产精品一区二区性色av| 日本三级黄在线观看| 免费看美女性在线毛片视频| 人妻夜夜爽99麻豆av| 色尼玛亚洲综合影院| 免费观看人在逋| 22中文网久久字幕| 国产av一区在线观看免费| 国产黄色小视频在线观看| 久久久久久九九精品二区国产| av黄色大香蕉| 91在线精品国自产拍蜜月| 此物有八面人人有两片| 国产成人精品一,二区 | 精品人妻偷拍中文字幕| 亚洲天堂国产精品一区在线| av在线播放精品| 亚洲av中文av极速乱| 精品久久久噜噜| 亚洲婷婷狠狠爱综合网| 成人三级黄色视频| 中文字幕av在线有码专区| 午夜福利视频1000在线观看|