• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水團(tuán)簇構(gòu)象穩(wěn)定性起源和本質(zhì)的密度泛函理論與量子分子動(dòng)力學(xué)研究

    2013-10-18 05:27:18王友娟趙東波榮春英劉述斌
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:化工學(xué)院湖南師范大學(xué)物理化學(xué)

    王友娟 趙東波 榮春英,* 劉述斌,2,*

    (1湖南師范大學(xué)化學(xué)化工學(xué)院,資源精細(xì)化與先進(jìn)材料湖南省高校重點(diǎn)實(shí)驗(yàn)室,化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410081; 2 Research Computing Center,University of North Carolina,Chapel Hill,North Carolina 27599-3420,U.S.A.)

    1 Introduction

    For a given polyatomic molecule,there often exist a few experimentally accessible conformations.As the number of atoms in a molecule increases,the total number of local minima skyrockets exponentially,thus impossible to enumerate them exhaustively.Natural questions to ask are which one is most stable,why,and what factor or factors dictate the relative stability of these local conformational minima.A convincing answer to these questions is not easy,even for the simplest molecules like ethane and hydrogen peroxide.1With the tools available it is now straightforward to identify which conformation has a lower energy,but to find out what factor or factors contribute to or dominate in its stability is controversial.2-6This is often where disagreements arise.From the physicochemical viewpoint,however,to have a definite and well-accepted answer is essential for our understanding.

    In this work,using the octamer water cluster as an example,we investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability.To that end,we employ quantum molecular dynamics to generate a large number of conformations for octamer water clusters and then employ two energy partition schemes recently established from density functional theory(DFT)to pinpoint the principles governing the stability of these species.The key question we want to answer is which interaction or interactions determine the molecular stability.Water clusters are bound together through hydrogen bonds.It is generally believed that the nature of hydrogen bonding is predominantly electrostatic,even though quantum contributions through covalent bonding could also be important.Is it really true that the electrostatic interaction is the dominant factor in a water cluster?Do other effects such as steric and exchange-correlation contributions play a role as well?We will provide our answer to these questions in this study.

    2 Methodology and computational details

    From the theoretical point of view,using virial theorem,the energy difference ΔE between two stable isomers should satisfy7

    where T and V denote the kinetic and potential energies,respectively,of the system in concern.Eq.(1)suggests that the stability difference between two conformers is equal to either the entire kinetic energy difference or half of the total potential energy difference.These energy components are,however,not chemically meaningful.We often wish to obtain insights from such effects as steric,electrostatic,or quantum,which are missing in Eq.(1).More importantly,Eq.(1)does not work for density functional theory,7-9because a portion of the kinetic energy,Tc[ρ],has already been incorporated in the exchange-correlation energy Exc,making the DFT version of the viral theorem much more complicated.10-13

    In DFT,the total energy of a system comes from five different contributions:

    where Ts,Vne,J,Exc,and Vnnrepresent the non-interacting kinetic,nuclear-electron attraction,classical electron-electron repulsion,exchange-correlation,and nuclear-nuclear repulsion interactions,respectively.Since Vne,J,and Vnnare electrostatic in nature,these three components can be bundled together,yielding Ee[ρ]=Vne[ρ]+J[ρ]+Vnn.Therefore,the conventional approach to perform the decomposition for the total energy difference in DFT is the following,7-9

    where Eestands for the electrostatic energy components.

    Recently,we proposed an alternative scheme to perform energy difference partition in the framework of DFT,14

    where the total energy difference ΔE comes from the contribution of three independent effects,steric ΔEs,electrostatic ΔEe,and fermionic quantum ΔEq,which results from the exchange and correlation effects among electrons.It has been shown that the energy contribution from the steric effect can simply be expressed by the Weizs?cker kinetic energy,Es≡Tw,with

    where ρ(r)and ?ρ(r)are the total electron density and its gradient,respectively.Also,the fermionic quantum energy contribution due to the exchange-correlation effect(because electrons are fermions),Eq[ρ],is the sum of the conventional exchangecorrelation energy Exc[ρ],which includes a kinetic counterpart of the dynamic electron correlation,and the Pauli energy,15,16EPauli[ρ],which is the contribution to the kinetic energy from the antisymmetric requirement of the many-body wave function required by the Pauli Exclusion Principle.10,11,13It is known in the literature that the Pauli energy is the difference between the non-interacting kinetic energy Tsand the Weizs?cker kinetic energy Tw.17Therefore,

    The physical meaning of this new quantification of the steric contribution,Eq.(5),is based on the introduction of a new reference state,where electrons in atoms and molecules are assumed to behave like bosons.If the density of the hypothetical boson state is the same as that of the fermionic state,ρ(r),the total wave function of the hypothetical state will be(ρ(r)/N)1/2,where N is the number of electrons.The total kinetic energy of the hypothetical state,from which Weisskopf′s“kinetic energy pressure”14,18for the steric effect is calculated,is simply Eq.(5).

    A few prominent features and properties of this novel quantification of steric contribution have been revealed.For instance,the integrand of Eq.(5)is non-negative everywhere,and thus repulsive in nature.It vanishes for the case of a homogeneous electron gas.It is extensive because it is homogeneous of degree one in density scaling,11,19,20so the larger the system,the larger the steric repulsion.If Bader′s atoms-in-molecules approach is adopted,the steric energy can be partitioned at the atomic and functional group levels as well.Its corresponding steric potential,steric charge,and steric force have been defined and evaluated.14,21Its relationship with information theory has been investigated.22,23This approach has been applied to a number of systems,such as conformational changes of small molecules,1,24,25SN2 reactions,26chained and branched alkanes,27and other systems.28-30Reasonably good trends and linear relationships between theoretical and experimental scales (by Taft)of the steric effect have recently been observed at both group and entire molecular levels.31

    In this work,we take the octamer water cluster,(H2O)8,as an example and investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability and to address which interaction or interactions determine the molecular stability of these species.To that end,a large number of conformations for octamer water clusters are needed to perform the two energy partition schemes discussed above.To generate as many different local minima as possible,we employ the quantum molecular dynamics(QMD)approach,which has successfully been used for other purposes elsewhere.32In QMD simulations,which were performed with the NWChem package,33atomic nuclei are treated as Newtonian particles whose forces are obtained from the fully converged electronic structure calculation in the Born-Oppenheimer approximation.The simulation protocol is the following.We start the QMD simulations with a few structures from the literature.After an initial structure optimization of 120 steps,each structure is undergone QMD simulations under 300 K for 100 ps with a step size of 0.5 fs and the leapfrog integration algorithm.We employ a constant temperature ensemble using Berendsen′s thermostat with the temperature relaxation time set to be 2 fs.The cutoff radius for short range interactions is 2.8 nm.SHAKE is disabled and thus all bonding interactions are treated according to the force calculated from quantum mechanics.Trajectories are saved in every 50 femtoseconds.A shell script has been written to extract distinct conformations with a total of at least 0.8 nm derivations from the last selected local minimum.The initial structure was from the literature.34A total of 185 distinct isomers have been obtained from these processes.A few selected low-energy local minima from QMD simulations are shown in Scheme 1.For each structure extracted by the post-processing script,a full geometrical optimization is performed at the level of M062X/aug-cc-PVTZ theory35using the Gaussian 09 package36with tight SCF convergence and ultrafine integration grids.Energy partition analyses are ensued after the optimized structure is obtained at the same level of theory.Different approximate exchange-correlation functionals and basis sets were tested and no substantially different results were obtained(results not shown).

    3 Results and discussion

    Fig.1 shows three strong correlations obtained for these systems between the total energy difference ΔE of different octamer water clusters and their energy components.Our first observation is that all these two energy components,ΔExc,ΔEe,and ΔEs,are negative in sign,indicating that they are contributing positively to the molecular stability,because ΔE<0.In Figs.1(a)and 1(c),we find that the relative stability ΔE of the water cluster is proportional to the exchange-correlation energy difference ΔExcand to the steric effect difference ΔEs,with the correlation coefficient equal to 0.954 and 0.987,respectively.A less significant correlation between the relative stability and the total electrostatic interaction difference ΔEewith the correlation coefficient R2=0.767 was also observed.The positive slope in these three relationships suggests that these energy components all contribute positively to the relative stability.The less than unit slope in these correlations indicates that these energy components are larger in magnitude than the total energy difference itself.

    Scheme 1 A few low-energy structures obtained from QMD simulations in this study

    Fig.1 Three strong linear correlations between the total energy difference,ΔE,and three energy components,

    A few working principles about the relative stability of this molecular system can be obtained from Fig.1.Notice that in magnitude Eq>0,Es>0,Exc<0,Ee<0,and E<0.First,a strong linear correlation between ΔE and ΔEsin Fig.1(c)shows that the more stable a water octamer cluster,the smaller its steric repulsion,suggesting that for a lower energy cluster structure,its steric repulsion should be smaller.Since a smaller steric repulsion also implies smaller size,29this result suggests that more stable clusters are often compact and possess smaller sizes.This working principle of molecular stability can be called the minimum steric repulsion principle.Another principle is from Fig.1(a),where the exchange-correlation difference ΔExcis proportional to the relative stability ΔE,meaning that the more stable an isomer,the larger its exchange-correlation interaction.This result indicates that stable water clusters prefer to have strong exchange-correlation interactions.This can be called the maximum exchange-correlation interaction principle.For the relationship in Fig.1(b),the correlation is not as strong as the other two energy components,yet it still appears that the electrostatic interaction in a lower energy structure possesses a stronger electrostatic interaction.This latter point answers the question where or not the electrostatic interactions in water cluster is predominant.What we observe in this study is that the electrostatic interaction is indeed a strong,positive contribution to the stability of water clusters,but its correlation with the relative stability,ΔE,is not as strong as the steric repulsion ΔEsand the exchange-correlation interaction ΔExc.These results also provide inputs for other questions.For example,is the quantum effect(exchange-correlation interactions)important?The answer is certainly yes,as illustrated in Fig.1(a).In addition,Fig.1(c)adds another factor into the picture of our consideration,that is,the steric effect.This effect has not been previously taken into consideration,but our present results clearly showcased its relevance.Put together,our results in Fig.1 suggest that more stable structures of water clusters prefer to have smaller size and smaller steric repulsion,and at the same time,strong exchange-correlation and electrostatic interactions.

    Shown in Fig.2 are two strong correlations between energy components.The first one is between the electrostatic interaction energy difference ΔEeand the total noninteracting kinetic energy difference ΔTswith the correlation coefficient equal to 0.976,and the other is between the Fermionic quantum energy difference ΔEqand the steric energy difference ΔEswith R2=0.999.The second correlation has already been discovered elsewhere,24-28whereas the first one is peculiar only to this system.The two relationships are converse correlations,each with a negative slope,meaning that(i)the non-interacting kinetic energy difference ΔTsand the Fermionic quantum energy difference ΔEqare both positive quantities,contributing negatively to the molecular stability,and(ii)the two energy components involved are canceling one another because ΔEeand ΔEsare negative values.

    With the fitted formulas from Fig.2,we have

    Together with Eqs.(3)and(4),there result

    Eq.(8)shows that ΔEeis the dominant contributor to ΔE<0 because the second quantity in this equation is positive(since ΔEs<0),whereas in Eq.(7)the contribution comes from both terms,with the governing contributor from ΔExcbut the remnant of ΔEe/ΔTsalso contributing positively to ΔE.The correlation coefficients for Eqs.(7)and(8)are found to be 0.96 and 0.77,respectively.These equations provide us with two different approaches to find out which energy component is the dictating factor in governing the relative molecular stability.

    Fig.2 Strong linear correlations(a)between total electrostatic energy difference ΔE eand the kinetic energy difference ΔT s,and(b)between Fermionic quantum energy difference ΔE qand the steric repulsion ΔE s

    Fig.3 Correlations between the calculated relative stability of water clusters and the two fitted models using two-variable least-square fitting from the energy decomposition schemes in density functional theory

    Given the strong correlations in Fig.2,another way to simplify Eqs.(3)and(4)is to use two of the three quantities in Fig.1,which are found to be positively proportional to the relative stability ΔE,to perform least-square fittings.Fig.3 shows the twovariable fitting results in this manner.Using ΔEeplus ΔExcor ΔEs,much better fits can be obtained,with all quantities contributing positively to ΔE and R2equal to or better than 0.99.In Fig.3(a),the fitted formula is

    where we find that the dominant contribution is from the exchange-correlation interaction with the latter possessing a larger coefficient,whereas in Fig.3(b),

    where we see that the electrostatic terms possesses a larger coefficient than the steric repulsion term and thus ΔEeis the dominant contributor.These results are consistent with what we found in Eqs.(7)and(8),where ΔExcand ΔEewere shown to play dominant roles in the two energy partition schemes,respectively.

    Put together,our present results unambiguously show that there exist clear working principles governing the relative stability for such molecular systems as water clusters.Three energy components,electrostatic,steric,and exchange-correlation,are found to all contribute positively to the molecular stability,with the correlation coefficient of the last two correlations better than 0.95.These relationships demonstrate that a more stable structure possesses less steric repulsion,and stronger Fermionic and exchange-correlation interactions.We also found that there exist strong correlations between energy components,such as ΔEevs ΔTs,and ΔEsvs ΔEq.These relationships enable us to simplify the two energy partition schemes in Eqs.(3)and(4)and to obtain either Eqs.(7)and(8)or Eqs.(9)and(10),where ΔEeand ΔExcare found to be the dominant contributor,respectively.

    Our current results also shed new light on how to account for the origin of molecular stability for systems like water clusters.Same as other systems,1the relative stability of an isomer comes from the net contribution from all energetic effects involved.These effects,including electrostatic,steric,kinetic,exchange-correlation,and Fermionic quantum interactions,have different values for different isomers and they follow different trends in the conformation space.Some effects contribute positively to the molecular stability,while others do so negatively,canceling contributions from other interactions.One of the main results in this work is the finding that exchange-correlation interaction and steric repulsion are strongly correlated to the relative stability of water clusters,whereas for the electrostatic interaction,a less strong correlation has been observed.Even though in Eqs.(8)and(10),the electrostatic interaction is dominant,Fig.1(b)shows that its correlation with molecular stability is weaker than the exchange-correlation interaction or steric repulsion.Using Eq.(7)or(9),where ΔExcis dominant,much stronger correlation with relative molecular stability can be obtained.

    4 Conclusions

    To summarize,in this work,we employ quantum molecular dynamics to obtain a large number of distinct structures for the octamer water cluster and then perform energy partition studies using two approaches from density functional theory to identify working principles governing the relative molecular stability for these water clusters.We find that the exchange-correlation interaction and steric repulsion are two strong indicators of their relative conformation stability.We also identify strong correlations between energy components.It appears that a more stable structure possesses a smaller size and less steric repulsion,and at the meantime it has stronger electrostatic and exchange-correlation interactions.Two strong linear correlations using two different quantities are subsequently proposed to account for their relative stability,each with the correlation coefficient larger than 0.99.This work should shed new light to our fundamental understanding about the origin and nature of molecular stability for systems like water clusters as well as other similar molecular complexes formed through intermolecular interactions.

    Finally,we mention in passing that our present approach is different from others scheme in performing energy decomposition analysis,such as the one by Morokuma,37where its focus is on the total interaction energy.In our case,we consider the total energy of the system instead.Also,what we have obtained in this work is only for the octamer.Are our conclusions applicable to other sizes of the water cluster as well?How sensitive are they to the choice of basis sets or density functionals?More interestingly,even though our approach is different from the other energy partition scheme(by Morokuma and others)in the literature,is there any correlation from the terms obtained these different approaches applied to the same systems?More systematic studies are in progress.These and other questions will be addressed elsewhere.

    (2)Pophristic,V.;Goodman,L.Nature 2001,411,565.doi:10.1038/35079036

    (3)Bickelhaupt,F.M.;Baerends,E.J.An gew.Chem.Int.Edit.2003,42,4183.

    (4)Weinhold,F.Angew.Ch em.Int.E dit.2003,42,4188.

    (5)Mo,Y.R.Nat.Chem.2010,2,666.doi:10.1038/nchem.721

    (6)Mo,Y.;Gao,J.Accounts Chem.R es.2007,40,113.doi:10.1021/ar068073w

    (7)Parr,R.G.;Yang,W.Density Functional Theory of Atoms Molecules;Oxford University Press:New York,1989.

    (8)Geerlings,P.;De Proft,F.;Langenaeker,W.Chem.Rev.2003,103,1793.doi:10.1021/cr990029p

    (9)Liu,S.B.Acta P hys.-Chim.Sin.2009,25,590.[劉述斌.物理化學(xué)學(xué)報(bào),2009,25,590.]doi:10.3866/PKU.WHXB20090332

    (10)Levy,M.;Perdew,J.P.Ph ys.Rev.A 1985,32,2010.doi:10.1103/PhysRevA.32.2010

    (11)Liu,S.B.;Parr,R.G.P hys.R ev.A 1996,53,2211.doi:10.1103/PhysRevA.53.2211

    (12)Liu,S.B.;Nagy,A.;Parr,R.G.Phys.Rev.A 1999,59,1131.doi:10.1103/PhysRevA.59.1131

    (13)Liu,S.B.;Morrison,R.C.;Parr,R.G.J.Ch em.Phys.2006,125,174109.doi:10.1063/1.2378769

    (14)Liu,S.B.J.Chem.Ph ys.2007,126,244103.doi:10.1063/1.2747247

    (15)March,N.H.Phys.L ett.A 1986,113,476.doi:10.1016/0375-9601(86)90123-4

    (16)Holas,A.;March,N.H.Phys.R ev.A 1991,44,5521.doi:10.1103/PhysRevA.44.5521

    (17)von Weizs?cker,C.F.Z.Phys.1935,96,431.doi:10.1007/BF01337700

    (18)Weisskopf,V.F.Science 1975,187,605.doi:10.1126/science.187.4177.605

    (19)Liu,S.B.Phys.R ev.A 1996,54,4863.doi:10.1103/PhysRevA.54.4863

    (20)Liu,S.B.;Parr,R.G.P hys.Rev.A 1997,55,1792.doi:10.1103/PhysRevA.55.1792

    (21)Tsirelson,V.G.;Stash,A.I.;Liu,S.B.J.Chem.P hys.2010,133,114110.doi:10.1063/1.3492377

    (22)Liu,S.B.J.Chem.P hys.2007,126,191107.doi:10.1063/1.2741244

    (23)Esquivel,R.O.;Liu,S.B.;Angulo,J.C.;Dehesa,J.S.;Antolín,J.;Molina-Espíritu,M.J.Phys.Chem.A 2011,115,4406.doi:10.1021/jp1095272

    (24)Liu,S.B.;Govind,N.J.Phys.Chem.A 2008,112,6690.doi:10.1021/jp800376a

    (25)Liu,S.B.;Govind,N.;Pedersen,L.G.J.Chem.Phys.2008,129,094104.doi:10.1063/1.2976767

    (26)Liu,S.B.;Hu,H.;Pedersen,L.G.J.Phys.Chem.A 2010,114,5913.doi:10.1021/jp101329f

    (27)Ess,D.H.;Liu,S.B.;De Proft,F.J.Phys.Chem.A 2010,114,12952.doi:10.1021/jp108577g

    (28)Huang,Y.;Zhong,A.G.;Yang,Q.;Liu,S.B.J.Chem.P hys.2011,134,084103.doi:10.1063/1.3555760

    (29)Zhao,D.B.;Rong,C.Y.;Jenkins,S.;Kirk,S.R.;Yin,D.L.;Liu,S.B.Acta Phys.-Chim.Sin.2013,29,43.[趙東波,榮春英,蘇 曼,蘇 文,尹篤林,劉述斌.物理化學(xué)學(xué)報(bào),2013,29,43.]doi:10.3866/PKU.WHXB201211121

    (30)Tsirelson,V.G.;Stash,A.I.;Karasiev,V.V.;Liu,S.B.Comp.T heor.Chem.2013,1006,92.doi:10.1016/j.comptc.2012.11.015

    (31)Torrent-Sucarrat,M.;Liu,S.B.;De Proft,F.J.Ph ys.Ch em.A 2009,113,3698.doi:10.1021/jp8096583

    (32)Liu,S.B.J.Chem.Sci.2005,117,477;Zhong,A.G.;Rong,C.Y.;Liu,S.B.J.Phys.Chem.A 2007,111,3132.doi:10.1007/BF02708352

    (33)Valiev,M.;Bylaska,E.J.;Govind,N.;Kowalski,K.;Straatsma,T.P.;Van Dam,H.J.J.;Wang,D.;Nieplocha,J.;Apra,E.;Windus,T.L.;de Jong,W.Comput.Phys.Commun.2010,181,1477.

    (34)Maeda,S.;Ohno,K.J.P hys.Chem.A 2007,111,4527.doi:10.1021/jp070606a

    (35)Zhao,Y.;Truhlar,D.G.T h eor.Ch em.A cc.2008,120,215.doi:10.1007/s00214-007-0310-x

    (36)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision C.01;Gaussian,Inc.:Wallingford,CT,2009.

    (37)Kitaura,K.;Morokuma,K.Int.J.Quantum Chem.1976,10,325.

    猜你喜歡
    化工學(xué)院湖南師范大學(xué)物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    湖南師范大學(xué)作品
    大眾文藝(2021年8期)2021-05-27 14:05:54
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    湖南師范大學(xué)美術(shù)作品
    大眾文藝(2020年11期)2020-06-28 11:26:50
    湖南師范大學(xué)作品
    大眾文藝(2019年16期)2019-08-24 07:54:00
    湖南師范大學(xué)作品欣賞
    大眾文藝(2019年10期)2019-06-05 05:55:32
    Chemical Concepts from Density Functional Theory
    国产片特级美女逼逼视频| 亚洲精品国产成人久久av| 免费av毛片视频| 亚洲av.av天堂| 国产欧美日韩精品亚洲av| 免费人成视频x8x8入口观看| av女优亚洲男人天堂| 国产成人影院久久av| 日本黄色片子视频| 亚洲国产精品国产精品| av在线老鸭窝| 熟女电影av网| 国产精品人妻久久久久久| 亚洲性久久影院| 一本精品99久久精品77| 又黄又爽又刺激的免费视频.| 午夜免费男女啪啪视频观看 | 日韩一本色道免费dvd| 亚洲欧美日韩无卡精品| av免费在线看不卡| 性色avwww在线观看| 欧美xxxx性猛交bbbb| 女人被狂操c到高潮| 成人美女网站在线观看视频| 国产黄片美女视频| 91av网一区二区| 成人漫画全彩无遮挡| 午夜亚洲福利在线播放| 亚洲国产色片| 欧美成人精品欧美一级黄| 日韩成人伦理影院| 变态另类成人亚洲欧美熟女| 悠悠久久av| 久久精品国产清高在天天线| 一夜夜www| 国产黄色小视频在线观看| 午夜免费激情av| 最近视频中文字幕2019在线8| 成人二区视频| 成人午夜高清在线视频| 亚洲av熟女| 露出奶头的视频| 亚洲成人中文字幕在线播放| 日本黄大片高清| 免费观看在线日韩| 欧美不卡视频在线免费观看| 免费人成在线观看视频色| 99久国产av精品| 男人狂女人下面高潮的视频| 国产成人影院久久av| 禁无遮挡网站| 在线免费十八禁| 欧美3d第一页| 淫妇啪啪啪对白视频| 九色成人免费人妻av| 久久精品国产清高在天天线| 久久久久久久久大av| 大型黄色视频在线免费观看| 午夜福利在线在线| 国产午夜福利久久久久久| 你懂的网址亚洲精品在线观看 | 亚洲国产日韩欧美精品在线观看| 又黄又爽又刺激的免费视频.| 真实男女啪啪啪动态图| 欧美国产日韩亚洲一区| 禁无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久久久成人| 国产亚洲精品av在线| 久久亚洲国产成人精品v| 国产成人a区在线观看| 最近最新中文字幕大全电影3| 欧美高清性xxxxhd video| 国产 一区 欧美 日韩| 国产亚洲欧美98| 在现免费观看毛片| 国模一区二区三区四区视频| 亚洲精品久久国产高清桃花| 九色成人免费人妻av| 免费不卡的大黄色大毛片视频在线观看 | 看免费成人av毛片| 欧美高清成人免费视频www| 亚洲人成网站高清观看| 成人精品一区二区免费| 蜜桃亚洲精品一区二区三区| 国产成人影院久久av| 最近2019中文字幕mv第一页| 毛片女人毛片| 欧美成人一区二区免费高清观看| 最近视频中文字幕2019在线8| 一区二区三区四区激情视频 | 亚洲人成网站高清观看| 青春草视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 在线观看午夜福利视频| 综合色丁香网| 我要看日韩黄色一级片| 国产午夜精品久久久久久一区二区三区 | 亚州av有码| 欧美性猛交╳xxx乱大交人| av在线播放精品| 亚洲高清免费不卡视频| 精品久久久久久久久久免费视频| 一区二区三区免费毛片| 在线看三级毛片| 国产又黄又爽又无遮挡在线| 欧美日本视频| 亚洲精品一卡2卡三卡4卡5卡| 免费看a级黄色片| 久久这里只有精品中国| 99久久精品热视频| 免费看美女性在线毛片视频| 非洲黑人性xxxx精品又粗又长| 秋霞在线观看毛片| 成人亚洲精品av一区二区| aaaaa片日本免费| 午夜激情福利司机影院| 成人国产麻豆网| 久久这里只有精品中国| 在线观看免费视频日本深夜| 亚洲国产精品合色在线| 淫妇啪啪啪对白视频| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久久免| 久久99热6这里只有精品| 成熟少妇高潮喷水视频| 欧洲精品卡2卡3卡4卡5卡区| 一卡2卡三卡四卡精品乱码亚洲| 国产91av在线免费观看| 99久国产av精品| 亚洲图色成人| 色尼玛亚洲综合影院| 欧美色欧美亚洲另类二区| 精品欧美国产一区二区三| 亚洲国产精品成人久久小说 | 最近中文字幕高清免费大全6| 亚洲av第一区精品v没综合| 女生性感内裤真人,穿戴方法视频| 欧美bdsm另类| 久久国产乱子免费精品| 日韩欧美精品v在线| 天天躁夜夜躁狠狠久久av| 一进一出抽搐gif免费好疼| 免费看光身美女| av在线老鸭窝| 午夜老司机福利剧场| 97热精品久久久久久| 毛片女人毛片| 久久久久性生活片| 国产精华一区二区三区| 亚洲欧美日韩高清专用| 午夜激情欧美在线| 男人狂女人下面高潮的视频| 又爽又黄无遮挡网站| 在现免费观看毛片| 给我免费播放毛片高清在线观看| 亚洲欧美清纯卡通| 97热精品久久久久久| 99热全是精品| 在线播放国产精品三级| 淫妇啪啪啪对白视频| 天堂影院成人在线观看| a级一级毛片免费在线观看| av在线亚洲专区| 小蜜桃在线观看免费完整版高清| 成人一区二区视频在线观看| 欧美潮喷喷水| 国产激情偷乱视频一区二区| 日韩成人伦理影院| 中文资源天堂在线| 伊人久久精品亚洲午夜| 亚洲性久久影院| 免费一级毛片在线播放高清视频| 免费观看精品视频网站| 人妻制服诱惑在线中文字幕| 日本黄色视频三级网站网址| 国产视频一区二区在线看| 无遮挡黄片免费观看| 精品一区二区免费观看| 日韩中字成人| 国产一区二区在线观看日韩| avwww免费| 国产精品av视频在线免费观看| 久久久久久伊人网av| 久久精品综合一区二区三区| 国产精品一区二区三区四区久久| АⅤ资源中文在线天堂| 黄色视频,在线免费观看| 亚洲内射少妇av| 欧美成人a在线观看| 我要搜黄色片| 亚洲国产精品成人综合色| 天天躁日日操中文字幕| 99久国产av精品国产电影| 免费看av在线观看网站| 淫妇啪啪啪对白视频| 久久亚洲国产成人精品v| 九九爱精品视频在线观看| av专区在线播放| 在线天堂最新版资源| 国产精品福利在线免费观看| 97超视频在线观看视频| or卡值多少钱| 久久6这里有精品| 国产成人a∨麻豆精品| 一边摸一边抽搐一进一小说| 午夜福利视频1000在线观看| 美女cb高潮喷水在线观看| 欧美中文日本在线观看视频| 国产久久久一区二区三区| 国产大屁股一区二区在线视频| 国产精品人妻久久久久久| 国产精品国产高清国产av| 国产精品一区二区性色av| 嫩草影视91久久| 国产高清视频在线观看网站| 最近视频中文字幕2019在线8| 毛片一级片免费看久久久久| 99在线视频只有这里精品首页| 干丝袜人妻中文字幕| 黄色欧美视频在线观看| 欧美最新免费一区二区三区| 久久精品人妻少妇| 最好的美女福利视频网| 丰满人妻一区二区三区视频av| 国产精品三级大全| 一级毛片久久久久久久久女| 18禁裸乳无遮挡免费网站照片| 国内精品宾馆在线| 成年免费大片在线观看| 啦啦啦啦在线视频资源| 国产色爽女视频免费观看| av在线老鸭窝| 搞女人的毛片| 中文亚洲av片在线观看爽| 成人三级黄色视频| 亚洲成人精品中文字幕电影| 色吧在线观看| 日本免费a在线| 偷拍熟女少妇极品色| 午夜福利视频1000在线观看| 亚洲人成网站在线播| 久久久精品大字幕| 亚洲精华国产精华液的使用体验 | 国产一区二区三区av在线 | 亚洲精华国产精华液的使用体验 | 高清毛片免费看| 国产精品国产高清国产av| 国产精品久久久久久久电影| 嫩草影视91久久| 国产精品一区二区免费欧美| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 久久久久久久久久黄片| 18禁在线播放成人免费| 欧美色视频一区免费| 最近手机中文字幕大全| 97超级碰碰碰精品色视频在线观看| 99久久成人亚洲精品观看| 国产在视频线在精品| 久久久久国产精品人妻aⅴ院| 人妻夜夜爽99麻豆av| 色噜噜av男人的天堂激情| 国产黄a三级三级三级人| 欧美日韩乱码在线| 男女视频在线观看网站免费| 一级av片app| 亚洲人成网站高清观看| 国产午夜精品论理片| 我的老师免费观看完整版| 国产av在哪里看| 色噜噜av男人的天堂激情| 亚洲熟妇中文字幕五十中出| 午夜a级毛片| 国产成人福利小说| 嫩草影院入口| 麻豆av噜噜一区二区三区| 精品久久久久久久久久免费视频| 欧美高清成人免费视频www| 国产亚洲精品久久久久久毛片| 人人妻,人人澡人人爽秒播| 亚洲综合色惰| 丰满人妻一区二区三区视频av| 国产黄色小视频在线观看| 国产成人a∨麻豆精品| 久久久久性生活片| .国产精品久久| 97超视频在线观看视频| 少妇人妻精品综合一区二区 | 99久久精品国产国产毛片| 在线观看午夜福利视频| 亚洲美女搞黄在线观看 | 在现免费观看毛片| 午夜免费男女啪啪视频观看 | 欧美3d第一页| h日本视频在线播放| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| 亚洲精华国产精华液的使用体验 | 91久久精品电影网| 国产精品女同一区二区软件| 久久久久久久亚洲中文字幕| av天堂在线播放| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| 国产成人精品久久久久久| 成年女人永久免费观看视频| 如何舔出高潮| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 精品欧美国产一区二区三| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 六月丁香七月| 赤兔流量卡办理| 18禁黄网站禁片免费观看直播| 一级毛片我不卡| 中文字幕av在线有码专区| 五月伊人婷婷丁香| av女优亚洲男人天堂| 欧美日本视频| 国产精品,欧美在线| 麻豆乱淫一区二区| 成年版毛片免费区| 亚州av有码| a级毛色黄片| 黄色日韩在线| 久久久精品94久久精品| 国产亚洲欧美98| 波野结衣二区三区在线| 噜噜噜噜噜久久久久久91| 如何舔出高潮| 91久久精品电影网| 日韩欧美三级三区| 国产单亲对白刺激| 身体一侧抽搐| 女人十人毛片免费观看3o分钟| 乱码一卡2卡4卡精品| 嫩草影视91久久| 色播亚洲综合网| 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜| 国产片特级美女逼逼视频| 免费看光身美女| 免费高清视频大片| 精品午夜福利视频在线观看一区| 黄色日韩在线| 国产精品爽爽va在线观看网站| 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 欧美性猛交╳xxx乱大交人| 老师上课跳d突然被开到最大视频| 波野结衣二区三区在线| 亚洲精品粉嫩美女一区| 又爽又黄a免费视频| 蜜臀久久99精品久久宅男| 午夜老司机福利剧场| 看黄色毛片网站| 草草在线视频免费看| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 免费看日本二区| 小说图片视频综合网站| 日韩成人av中文字幕在线观看 | 亚洲精品日韩在线中文字幕 | 国产一区二区在线av高清观看| 亚洲成a人片在线一区二区| 在线天堂最新版资源| 国产一区二区三区在线臀色熟女| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 在线播放无遮挡| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看 | 亚洲国产欧洲综合997久久,| 亚洲美女视频黄频| 亚洲国产色片| 亚洲成人av在线免费| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 国产精品久久久久久久电影| 91久久精品国产一区二区三区| 校园春色视频在线观看| 12—13女人毛片做爰片一| 能在线免费观看的黄片| 你懂的网址亚洲精品在线观看 | 中文字幕免费在线视频6| 国产精品国产高清国产av| 色哟哟·www| 男人狂女人下面高潮的视频| 亚洲国产高清在线一区二区三| 亚洲国产欧洲综合997久久,| 日本撒尿小便嘘嘘汇集6| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx在线观看| 狂野欧美白嫩少妇大欣赏| 老熟妇乱子伦视频在线观看| 亚洲国产欧美人成| 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 欧美zozozo另类| 欧美潮喷喷水| 国产精品久久久久久精品电影| 国产视频内射| 国产高清视频在线播放一区| 六月丁香七月| 国产午夜精品论理片| 免费高清视频大片| 乱码一卡2卡4卡精品| 日本五十路高清| 久久精品国产99精品国产亚洲性色| 少妇高潮的动态图| 亚洲欧美清纯卡通| av.在线天堂| 国产黄色小视频在线观看| 99久久精品一区二区三区| 精品一区二区免费观看| 精品日产1卡2卡| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久久久免| 一进一出好大好爽视频| 又黄又爽又刺激的免费视频.| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 午夜亚洲福利在线播放| 变态另类成人亚洲欧美熟女| 欧美色视频一区免费| 久久精品人妻少妇| 国产v大片淫在线免费观看| 国产不卡一卡二| 精品人妻一区二区三区麻豆 | av女优亚洲男人天堂| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 国产免费一级a男人的天堂| 午夜激情福利司机影院| www日本黄色视频网| 国内久久婷婷六月综合欲色啪| 黑人高潮一二区| 午夜视频国产福利| 91在线精品国自产拍蜜月| h日本视频在线播放| 国产亚洲av嫩草精品影院| 亚洲成人久久性| 日韩 亚洲 欧美在线| 国产欧美日韩精品亚洲av| 久久久成人免费电影| 国产成人aa在线观看| 亚洲成人久久性| 插阴视频在线观看视频| 联通29元200g的流量卡| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频| 99热只有精品国产| 欧美一级a爱片免费观看看| 亚洲欧美成人综合另类久久久 | 国产一区二区在线观看日韩| 热99re8久久精品国产| 国产精品一区二区三区四区免费观看 | 欧美日韩乱码在线| 免费av观看视频| 天堂√8在线中文| 日本在线视频免费播放| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 国产成人91sexporn| 欧美丝袜亚洲另类| 久久热精品热| 亚洲国产精品成人久久小说 | 嫩草影视91久久| 国产亚洲av嫩草精品影院| 欧美区成人在线视频| 99国产精品一区二区蜜桃av| 亚洲电影在线观看av| 亚洲精品国产av成人精品 | 久久综合国产亚洲精品| 日本一本二区三区精品| 免费av毛片视频| 成年女人毛片免费观看观看9| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 看黄色毛片网站| 国产av不卡久久| 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av| 久久精品国产亚洲av天美| 久久国产乱子免费精品| 精品无人区乱码1区二区| 不卡一级毛片| 国产亚洲av嫩草精品影院| 久久久久久久久中文| 99热只有精品国产| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 亚洲欧美精品综合久久99| 日日啪夜夜撸| 久久久色成人| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 成人永久免费在线观看视频| 综合色av麻豆| 麻豆一二三区av精品| 天堂动漫精品| 中文字幕久久专区| 亚洲国产欧洲综合997久久,| 日本一本二区三区精品| av免费在线看不卡| 天堂影院成人在线观看| 日韩精品有码人妻一区| 色av中文字幕| 深夜a级毛片| 国产69精品久久久久777片| 国产精品久久久久久亚洲av鲁大| 麻豆乱淫一区二区| 国产三级在线视频| 国产亚洲欧美98| 精品熟女少妇av免费看| 国产黄a三级三级三级人| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 日韩大尺度精品在线看网址| 黑人高潮一二区| 黄色欧美视频在线观看| 床上黄色一级片| 成人一区二区视频在线观看| 国产av不卡久久| 国产精品一区二区免费欧美| 亚洲自偷自拍三级| 联通29元200g的流量卡| 天堂动漫精品| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 黄片wwwwww| 麻豆精品久久久久久蜜桃| 村上凉子中文字幕在线| 桃色一区二区三区在线观看| 蜜臀久久99精品久久宅男| 精品久久久久久久末码| 国产毛片a区久久久久| а√天堂www在线а√下载| 亚洲欧美日韩东京热| 欧美激情在线99| 亚洲av二区三区四区| 久久久久国内视频| 熟女电影av网| 国产亚洲av嫩草精品影院| 人妻夜夜爽99麻豆av| 岛国在线免费视频观看| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看| 少妇的逼水好多| 18禁在线播放成人免费| 日本熟妇午夜| 美女内射精品一级片tv| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| 中文字幕av在线有码专区| 欧美zozozo另类| 一进一出抽搐gif免费好疼| 能在线免费观看的黄片| 搡老岳熟女国产| 国产精品久久电影中文字幕| 日韩精品有码人妻一区| 国产在线男女| 欧美一区二区亚洲| 色5月婷婷丁香| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 欧美成人a在线观看| 大香蕉久久网| 久久韩国三级中文字幕| 国产精品1区2区在线观看.| 毛片一级片免费看久久久久| 91久久精品电影网| 最后的刺客免费高清国语| 黄色配什么色好看| videossex国产| 内射极品少妇av片p| 亚洲性夜色夜夜综合| 99热精品在线国产| 99在线人妻在线中文字幕| 黄色一级大片看看| 美女cb高潮喷水在线观看| 老熟妇仑乱视频hdxx| 亚洲精品久久国产高清桃花| av天堂在线播放| 人妻久久中文字幕网| 香蕉av资源在线| 国产在视频线在精品| 亚洲av.av天堂| 国产精品电影一区二区三区| 淫秽高清视频在线观看| 日韩欧美在线乱码| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 中文字幕av成人在线电影| 最近2019中文字幕mv第一页| 日韩欧美精品v在线| 亚洲不卡免费看| 在线免费观看的www视频| 成人一区二区视频在线观看| 丰满的人妻完整版| 国产精品电影一区二区三区| 我要看日韩黄色一级片|