• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Al-Fe-P三元系的熱力學(xué)優(yōu)化

    2013-10-18 05:27:14曹戰(zhàn)民王昆鵬牛春菊杜廣巍喬芝郁
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:北京科技大學(xué)材料科學(xué)工程學(xué)院

    曹戰(zhàn)民 謝 偉 王昆鵬 牛春菊 杜廣巍 喬芝郁

    (1北京科技大學(xué)鋼鐵冶金新技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,冶金與生態(tài)工程學(xué)院,北京 100083;2北京科技大學(xué)材料科學(xué)與工程學(xué)院,北京 100083)

    1 Introduction

    Phosphorus has known to be an essential metalloid element in forming an amorphous phase exhibiting useful engineering properties,such as,the Invar effect,1corrosion resistance,2and catalysis.3The Al-Fe-P ternary system has drawn more and more attention due to that amorphous phase formation has been found in the Al-Fe-P system by using a melt-spinning technique.4The evaluation of the glass-forming ability(GFA)of alloys is of great importance by judging in advance whether amorphous phases could be formed at given conditions.The successful evaluation5-7of GFA of some alloys indicates that the expressions of the Gibbs energies of the phases are very powerful in qualitatively analyzing the composition dependency of the GFA.The Al-Fe-P system is also a fundamental ternary system of the Fe-based and P-containing multi-component alloys,which are very important for the advanced metallurgy and materials.Knowledge of the thermodynamic properties of the Al-Fe-P system is significant for the development of Fe-based and P-containing multi-component alloys by providing information regarding the phases that are present at service temperature,their compositions and volume fractions and so on.Therefore,the interest in this system is increasing,as shown by a recent publication,8in which,however,the researchers only gave a description of the Fe rich side and merely accounted for one isothermal section at 723 K during the calculation.

    Thus,our study was aimed to give a thermodynamic optimization of the Al-Fe-P system over the whole composition range based on all available experimental information in the literature by using CALPHAD(CALculation of PHAse Diagram)approach with Thermo-Calc software package.9The optimized self-consistent thermodynamic parameters of the Al-Fe-P system are expected to be helpful for both the better understanding of the composition dependency of the GFA in the Al-Fe-P system and the development of the Fe-based and P-containing multi-component alloy thermodynamic database.

    2 Information on the binary and the ternary systems

    2.1 Al-P system

    The Al-P system was extensively investigated by many researchers.White et al.10released the existence of only one intermediate phase,AlP,which was further confirmed by Panish and Ilegems11,12during the study of the Ga-rich corner of the Ga-Al-P ternary system.Tu et al.13confirmed the existence of AlP again in the investigation of the 723 K isothermal section of the Al-P-Zn ternary system with the help of combined techniques of optical microscopy,scanning electron microscopy coupled with energy dispersive X-ray spectroscopy(SEMEDS),and X-ray diffraction(XRD).Kischio14reported the melting point of AlP to be(2803±50)K without experimental detail.Czochrallski15established a possible upper limit to the solubility of P in γ-Al of 0.0007 at mole fraction of P.

    Several researchers experimentally measured the heat of formation of AlP using different methods and large difference existed among the experimental results.Kischio14obtained ΔfH295K(AlP)=(-82630±1050)J·mol-1·atom-1from the heat of dissolution of AlP in aqueous HCl and the known formation of the products.Wang and Zaheervuddin16measured the heats of combustion of AlP and equal mol mixtures of Al and red P.Adjusting their results to white P as reference state,ΔfH298K(AlP)=(-69500±4600)J·mol-1·atom-1was obtained.Maria et al.17measured the partial pressures of Al and P2vapor equilibrium with AlP,from 1270 to 1800 K using the Knudsen effusion method in combination with mass spectrometry,and ΔfH298K(AlP)=(-59000±6700)J·mol-1·atom-1was obtained.A second law fit to Maria′s experimental results17was carried out by McAlister18and ΔfH298K(AlP)=(-57600±17700)J·mol-1·atom-1with statistical error was yielded.Martosudirdjo and Pratt19reported ΔfH(AlP)=(-74000±900)J·mol-1·atom-1using precipitation calorimetry in liquid Sn at 582 K.

    Tu et al.13gave a description of the Al-P binary system during the thermodynamic analysis of the Al-P-Zn ternary system.Unfortunately,their description could not reflect the phase relation of AlP with other phases correctly when extrapolating the parameters into the Al-Fe-P ternary system.Therefore,the thermodynamic parameters of the Al-P system were re-optimized in this work.

    2.2 Al-Fe and Fe-P binary systems

    In the Al-Fe system the equilibrium phases are the liquid,the α-Fe solid solution based on body-centered cubic(bcc)Fe,the γ-Fe solid solution based on face-centered cubic(fcc)Fe,the AlFe formed through ordering of α-Fe,Al13Fe4,Al5Fe2,Al2Fe,Al5Fe4,and the γ-Al based on fcc Al.Many researchers,including Kaufman and Nesor,20Saunders and Rivlin21and Seierstein22,optimized the Al-Fe binary system.The assessment by Seierstein22is the first consistent description of the Al-Fe phase diagram and has been successfully extrapolated to the related ternary system by many researchers.23-25Thus,the parameters optimized by Seierstein22have been adopted in present assessment,except that the thermodynamic parameters of Al2Fe phase have been slightly modified to ensure the Al2Fe phase be stable in the Al-Fe-P ternary system.The optimized parameters are shown in Table 1,and the calculated Al-Fe phase diagram is shown in Fig.1(a).

    The Fe-P system is composed of the liquid,the α-Fe solid solution based on bcc Fe,the γ-Fe solid solution based on fcc Fe,Fe3P,Fe2P,FeP,FeP2,FeP4,and P(red and white P).A critical assessment of the Fe-P system has been carried out by Okamoto,26Ohtani27and Tokunaga28et al.However,in all these evaluations the valuable thermodynamic properties in the Fe-P system measured by Zaitsev et al.29using differential scanning calorimetry and Knudsen effusion method with mass-spectrometric analysis of the gaseous phase were omitted.Most recently,a thermodynamic re-optimization of the Fe-P system has been carried out by Cao et al.,30and satisfactorily reproduced most experimental phase diagram and thermodynamic properties.Hence,the parameters assessed by Cao et al.30with minor modification were used in present work.The modified parameters and calculated phase diagram of Fe-P system are shown in Table 1 and Fig.1b,respectively.

    2.3 Al-Fe-P ternary system

    Because of the high volatilization of P,the Al-Fe-P ternary phase diagram has been studied only for the Fe rich corner of this system.Vogel and Klose31studied the phase equilibria in the Fe-Fe2P-AlP-Fe50Al50region of the Al-Fe-P ternary system using differential thermal analysis(DTA)and metallographyanalysis.The vertical sections of w(P)=6%,9%(mass fraction)and w(Al)=10%,25%were determined.The isothermal section at room temperature and the liquidus surface in the Fe-Fe2PAlP-Fe50Al50region were also investigated experimentally.There was found that the AlP-Fe2P and AlP-Fe50Al50sections are the quasi-binaries of the simple eutectic type.Kaneko et al.32investigated the phase relationships between phosphide-phase and iron-phase in the Al-Fe-P system by chemical and X-ray examinations and the obtained results agree with those reported by Vogel and Klose.31Limited thermodynamic properties relevant to the Al-Fe-P system are reported.Yamada and Kato33,34determined the activity interaction coefficients of phosphorus in the Fe-P-i system at 1873 K using a Knudsen cell-mass spectrometer combination with the computation from the ratio of the intensities of P+and Fe+peaks,and=4.6±0.7 was obtained.Based on the Miedema model and Toop equation Ding et al.35thermodynamically predicted the activity interaction coefficients between alloying elements and P in liquid Fe at 1873 K and the value of predictedis 8.78,which is much larger than the measured mentioned above.On the basis of the above mentioned information,the phase equilibria in the Al-Fe-P ternary system were reviewed in references.36-38

    Table 1 Optimized thermodynamic parameters for the binary and ternary systems

    Most recently,Wu et al.8investigated the phase equilibrium in the Al-Fe-P system when the P content was below 20%(mass fraction)with SEM-EDS and XRD and released an isothermal section at 723 K of the Al-Fe-P system at low phosphorus contents.And up to now,no ternary phase has been found in this ternary system.

    3 Thermodynamic models

    The thermodynamic models adopted here for the phases of the Al-Fe-P system are summarized in Table 1 and briefly introduced below.

    3.1 Pure elements

    3.2 Solution phases

    The solution phases are modeled by the substitutional solution model and their Gibbs energies are described by the following expression:

    where the three terms assume different forms according to the nature of the phase.Substitutional solutions are represented by only one sublattice where all the atoms mix randomly.In the binary case(A,B)1,the three contributions to the Gibbs energy are:

    Fig.1 Calculated binary phase diagrams

    In the case of ternary solutions,the expressions ofrefGφandare easily derived from the binary ones.As for the excess Gibbs energy,it is obtained by combing the binary excess Gibbs energies according to the Muggianu extrapolation formula40and adding a ternary excess term:

    and the L functions have the form shown in Eq.(4).

    This model has been adopted for the following phases:liquid,α,γ,and Al5Fe4(see Table 1).

    3.3 Ordered/disordered phases

    The ordered AlFe phase with bcc_B2 structure is modeled as(Al,Fe)0.5(Al,Fe)0.5in the Al-Fe system.22In order to represent the Gibbs energy of the ordered/disordered transitions using a single function,the disordered α-Fe phase with bcc_A2 structure is described by(Al,Fe)1.Ansara et al.41,42have derived an equation which allows the thermodynamic properties of the disordered phase to be evaluated independently.This is done by resolving the Gibbs energy into three terms as following:

    in which yi′is the site fraction of i(i=Al and Fe)in the first sublattice,and yi″in the second one.(xi)is the Gibbs energy of the disordered α-Fe phase.The second term(yi′,yi″)is described by the sublattice model and implicitly contains a contribution from the disordered state.The last term(xi)represents the contribution from the disordered state to the ordered one.When the site fractions are equal,i.e.yi′=yi″,the last two terms cancel each other.The ordered AlFe phase with bcc_B2 structure and the disordered α-Fe phase with bcc_A2 structure are modeled as(Al,Fe,P)0.5(Al,Fe,P)0.5and(Al,Fe,P)1in the Al-Fe-P ternary system,respectively.Due to lack of the experimental information on the ordered/disordered transition in the Al-Fe-P ternary system the ternary interaction parameters are assumed to be zero.

    3.4 Intermetallic compounds

    Stoichiometric compounds are represented with as many sublattices as the number of component elements,with only one atom type in each sublattice.In the binary case the model is(A)u(B)1-uand the Gibbs energies are given by

    The Eq.(7)was adopted to describe the Gibbs energies of the stoichiometric compounds that were lack of heat capacity data:Al5Fe2,Al2Fe,FeP2,FeP4,and AlP(see Table 1).

    For Fe3P,Fe2P,and FeP phases,the heat capacity data are available in a wide temperature range29and their Gibbs energies are given by

    Table 2 Lattice stability parameters used in the present optimization39

    where ΔfH298Kand S298Kare the enthalpy of formation and the entropy at 298 K,and Cpis the heat capacities at constant pressure.

    In Seierstein′s study,22non-stoichiometric compound,Al13Fe4,was modeled with three sublattices:(Al)0.6275(Fe)0.235(Al,Va)0.1375in order to account for its binary solubility range.The Gibbs energy is given by

    where the superscript?denotes the third sublattice of the presented model,is the site fraction of i in the third sublattice,Va is the vacancy in the third sublattice.andare the Gibbs energy of the two end members(Al)0.6275(Fe)0.235(Al)0.1375and(Al)0.6275(Fe)0.235(Va)0.1375.

    No ternary intermetallic compounds have been reported in previous study and all binary intermetallic phases were treated to have zero ternary solubility in the Al-Fe-P system in present work.

    4 Optimization results and discussion

    The binary and ternary interaction parameters have been optimized using the PARROT module included in the Thermo-Calc software package.9The phase diagram data and experimental thermodynamic information were used as the input to the program.Each datum value was given a certain weight by our personal evaluation of the datum source and considering the consistency between the phase diagram and the thermodynamic properties.The interaction parameters have been evaluated by trial and error method during the course of the optimization until most of the selected experimental information is reproduced within the expected uncertainty limits.As a result,a complete list of the thermodynamic parameters describing the Al-Fe-P system is summarized in Table 1.Computed phase equilibria are compared to the selected experimental information reviewed in Sections 2.1 and 2.3.And a brief discussion is given as below.

    4.1 Al-P binary system

    The calculated phase diagram of Al-P system is shown in Fig.1(c).The evaluated melting point of AlP is 2803 K,which agrees well with the experimental value(2803±50)K.14As mentioned in Section 2.1,there are large differences among the experimental values of enthalpy formation of AlP determined by different researchers.The calculated ΔfH298K(AlP)=-74.0 kJ·mol-1·atom-1,is close to the value measured by Wang and Zaheervuddin.16

    4.2 Al-Fe-P ternary system

    By using the present optimized parameters of the Al-P system along with the reported parameters of the Al-Fe22and Fe-P30systems,and based on the vertical section and isothermal section diagram information,the Al-Fe-P ternary system is further optimized.The parameters of the Al-Fe and Fe-P system were slightly modified in order to fit the experimental data better.

    Fig.2 (a)Isothermal section diagram of the Al-Fe-P system at room temperature determined by Vogel and Klose31 and redrawn by Schmid-Fetzer and Tomashik38 and(b)calculated isothermal section diagram at room temperature in this work

    Fig.3 Calculated vertical section diagrams compared with the experimental data31

    The experimental and calculated isothermal section diagrams at room temperature are shown in Fig.2.It is easy to see that most of the phase relations have been well reproduced.The representative calculated vertical section diagrams with experimental data are illustrated in Fig.3.Although there is,in general,a satisfactory agreement between the experimental data reported by Vogel and Klose31for the phase diagram,some differences still exist,e.g.a relative discrepancy on the liquidus line between the calculated and the experimental data was observed.Actually,great care has been taken to reduce these discrepancies in our assessment,but it was found that it is difficult to fit these experimental data very well.It is still necessary to get more new experimental data to solve this problem.Additionally,some of the equilibria with respect to the bcc phase are inconsistent with the measured vertical sections by Vogel and Klose,31e.g.in our assessment,bcc phase is respectively in equilibrium with Fe2P and liq+Fe2P in the dashed regions,as shown in Fig.3(d),rather than AlP and liq+AlP reported by Vogel and Klose.31

    It was worthy to point out that we calculated the isothermal section diagram of the Al-Fe-P system at 723 K and compared with the latest experimental data,8which was published after the present assessment had been finished,and a good agreement between them was obtained,as shown in Fig.4.It proved that the thermodynamic parameters gained in our optimization are reliable.

    Fig.4 Calculated isothermal section diagram of the Al-Fe-P system at 723 K compared with the experimental data8

    Fig.5 Calculated liquidus projection of the Al-Fe-P system

    Table 3 Present calculated values for the invariant reactions in the Al-Fe-P system with the experimental data31

    Taking into account the available information on the binary and ternary systems,the complete liquidus projection for the whole Al-Fe-P system are illustrated in Fig.5.The calculated and experimental invariant temperatures and the corresponding compositions for the various invariant reactions are summarized in Table 3.Although the temperatures are generally in good agreement with the experimental values,there are still some differences in the compositions.Invariant reactions E7 and E8 are very near to the binary subsystems,so these two invariant reactions cannot be visible in Fig.5.Necessary experiments are also needed to validate the liquidus projection in the Al-Fe-P system.

    5 Explanation on the glass-forming ability

    Fig.6 Calculated driving force(DF)surface projection at 973 K superimposed with iso-DF lines and the experimental glass compositions denoted by Inoue4

    The driving force(DF)criterion5,6is based on the assumption that the phase having the highest driving force is most like-ly to form first.Considering that the formation of an amorphous phase would be favored when the nucleation and growth of crystalline phases are retarded,then the composition with the highest glass-forming ability can be the one with the lowest driving force of formation of crystalline phases.In order to analyze the composition dependency of the glass-forming ability,the initial crystallization driving force,which can be regarded as a representation of the nucleation ability of the crystalline phases,was employed in this work.The initial driving forces of all crystalline phases under every specified liquid composition at 973 K were first calculated and then the maximal values under each composition were chosen to construct the DF surface projection,as shown in Fig.6.Iso-DF lines and the experimental glass compositions are superimposed on it.All the experimental data are in the region where the driving forces are lower than 0.9.This is in accordance with the driving force criterion:alloys having lower driving forces possess higher glassforming abilities.This proves that the driving force criterion can be used as an index to predict the composition field most likely having the best glass-forming ability before any experiments.

    6 Conclusions

    Based on the available experimental information on the Al-P and the Al-Fe-P systems as well as the published assessment of the Al-Fe and the Fe-P binary systems,a critical assessment of the Al-P binary and the Al-Fe-P ternary system was carried out and a consistent thermodynamic description for describing all the phases in the Al-Fe-P system was obtained.The phase diagrams of the Al-Fe-P system over the entire composition range,including the vertical sections for w(P)=6%,9%,and w(Al)=10%,25%,the isothermal section at room temperature as well as the liquidus projection was constructed from present thermodynamic calculation.Most reported compositions of amorphous phase lie in the regions with low initial driving forces for the crystalline phases,which soundly proves the reasonability and reliability of the present thermodynamic description.

    (1)Fukamichi,K.;Kikuchi,M.;Hiroyoshi,H.;Masumoto,T.Anomalous Thermal Expansion,ΔE Effect,Invar and Elinvar Characteristics of Some Fe-based Amorphous Alloys.In Rapidly Quenched Metals III;Cantor,B.Ed.;The Metals Society:London,1978.

    (2)Masumoto,T.;Hashimoto,K.;Naka,M.Corrosion Behavior of Amorphous Metals.In Ra pidly Quench ed Metals III;Cantor,B.Ed.;The Metals Society:London,1978.

    (3)Yokoyama,A.;Komiyama,H.;Inoue,H.;Masumoto,T.;Kimura,H.M.S cripta Met.1981,15,365.

    (4)Inoue,A.;Kitamura,A.;Masumoto,T.Mater.Sci.1983,18,753.doi:10.1007/BF00745573

    (5)Kim,D.;Lee,B.J.;Kim,N.J.Intermetallics 2004,12,1103.doi:10.1016/j.intermet.2004.04.001

    (6)Kim,D.;Lee,B.J.;Kim,N.J.Scripta Mater.2005,52,969.doi:10.1016/j.scriptamat.2005.01.038

    (7)Bo,H.;Wang,J.;Jin,S.;Qi,H.Y.;Yuan,X.L.;Liu,L.B.;Jin,Z.P.Intermetallics 2010,18,2322.doi:10.1016/j.intermet.2010.08.002

    (8)Wu,C.J.;Huang,W.M.;Su,X.P.;Peng,H.P.;Wang,J.H.;Liu,Y.CAL PH AD 2012,38,1.doi:10.1016/j.calphad.2012.03.005

    (9)Sundman,B.;Jansson,B.;Andersson,J.O.CALPHAD 1985,9,153.doi:10.1016/0364-5916(85)90021-5

    (10)White,W.E.;Bushey,A.H.J.Am.Chem.Soc.1944,66,1666.doi:10.1021/ja01238a018

    (11)Panish,M.B.;Ilegems,M.Prog.S olid State Chem.1972,7,39.doi:10.1016/0079-6786(72)90004-0

    (12)Ilegems,M.;Panish,M.B.Crys.Growth 1973,20,77.doi:10.1016/0022-0248(73)90117-6

    (13)Tu,H.;Yin,F.C.;Su,X.P.;Liu,Y.;Wang,X.M.C ALP H AD 2009,33,755.doi:10.1016/j.calphad.2009.10.003

    (15)Czochrallski,J.Z.Metallkd.1923,15,273.

    (16)Wang,C.C.;Zaheervuddin,M.Inorg.Nucl.Ch em.1963,25,326.doi:10.1016/0022-1902(63)80071-8

    (17)de Maria,G.;Gingerich,K.A.;Piacente,V.Chem.Phys.1968,49,4705.

    (18)McAlister,A.J.Alloy P hase Diagrams 1985,6(3),222.doi:10.1007/BF02880402

    (19)Martosudirdjo,S.;Pratt,J.N.T h ermochim.A cta 1974,10,23.doi:10.1016/0040-6031(74)85019-7

    (20)Kaufman,L.;Nesor,H.CA LPHA D 1978,2,325.doi:10.1016/0364-5916(78)90020-2

    (21)Saunders,N.;Rivlin,V.G.Z.Metallkd.1987,78,795.

    (22)Seierstein,M.The Al-Fe System.In COST 507,T hermoch emical Database for Light Metal Alloys;Ansara,I.,Dinsdale,A.T.,Rand,M.H.Eds.;Office for Official Publications of the European Communities:Luxembourg,1998.

    (23)Zhang,L.J.;Du,Y.CAL PHAD 2007,31,529.doi:10.1016/j.calphad.2007.03.003

    (24)Du,Y.;Schuster,J.C.;Liu,Z.K.;Hu,R.X.;Nash,P.;Sun,W.H.;Zhang,W.W.;Wang,J.;Zhang,L.J.;Tang,C.Y.;Zhu,Z.J.;Liu,S.H.;Ouyang,Y.F.;Zhang,W.Q.;Krendelsberger,N.Intermetallics 2008,16(4),554.doi:10.1016/j.intermet.2008.01.003

    (25)Guo,C.P.;Du,Z.M.;Li,C.R.;Zhang,B.L.;Tao,M.C ALP H AD 2008,32,637.doi:10.1016/j.calphad.2008.08.007

    (26)Okamoto,H.B ull.Alloy Phase Diagrams 1990,11,404.doi:10.1007/BF02843320

    (27)Ohtani,H.;Hanaya,N.;Hasebe,M.;Teraoka,S.;Abe,M.C ALP H AD 2006,30,147.doi:10.1016/j.calphad.2005.09.006

    (28)Tokunaga,T.;Hanaya,N.;Ohtani,H.;Hasebe,M.ISIJ International 2009,49(7),947.doi:10.2355/isijinternational.49.947

    (29)Zaitsev,A.I.;Dobrokhotova,Z.V.;Litvina,A.D.;Mogutnov,B.M.Chem.S oc.Faraday Trans.1995,91(4),703.doi:10.1039/ft9959100703

    (30)Cao,Z.M.;Wang,K.P.;Qiao,Z.Y.;Du,G.W.A cta Phys.-Chim.Sin.2012,28(1),37.[曹戰(zhàn)民,王昆鵬,喬芝郁,杜廣巍.物理化學(xué)學(xué)報(bào),2012,28(1),37.]doi:10.3866/PKU.WHXB201111172

    (31)Vogel,R.;Klose,H.Arch.Eisenhuttenwesen 1952,23(7),287.

    (32)Kaneko,H.;Nishizawa,T.;Tamaki,K.Nippon Kinzoku Gakkai-shi 1965,29(2),159.

    (33)Yamada,K.;Kato,E.Tetsu-to-Hagane(J.Iron Steel Inst.Jap.)1979,65(2),273.

    (34)Yamada,K.;Kato,E.Trans.Iron Steel Inst.Jap.1983,23(1),51.doi:10.2355/isijinternational1966.23.51

    (35)Ding,X.;Wang,W.;Han,Q.Acta Metall.S in.1993,29(12),B527.

    (36)Raghavan,V.The Al-Fe-P System(Aluminium-Iron-Phosphorus).In Phase Diagrams of Ternary Iron Alloys,Part 3,Ternary Systems Containing Iron and P hosphorus;Indian Institute of Metals:Calcutta,1988.

    (37)Raghavan,V.Alloy P hase Dia grams 1989,5(1),32.

    (38)Schmid-Fetzer,R.;Tomashik,V.A.L andolt-B R nstein-Group IV P hysical Chemistry 2008,11D1(1),172.

    (39)Dinsdale,A.T.CAL PHAD 1991,15,317.doi:10.1016/0364-5916(91)90030-N

    (40)Muggianu,Y.M.;Gambino,M.;Bros,J.P.Chim.Ph ys.1975,72,83.

    (41)Ansara,I.;Dupin,N.;Lukas,H.L.;Sundman,B.J.Alloy.Compd.1997,247,20.doi:10.1016/S0925-8388(96)02652-7

    (42)Dupin,N.;Ansara,I.;Sundman,B.CAL PH AD 2001,25,279.doi:10.1016/S0364-5916(01)00049-9

    猜你喜歡
    北京科技大學(xué)材料科學(xué)工程學(xué)院
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    中海油化工與新材料科學(xué)研究院
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    福建工程學(xué)院
    福建工程學(xué)院
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    久久国产精品大桥未久av | 久久精品国产亚洲av天美| 深爱激情五月婷婷| 26uuu在线亚洲综合色| 三级国产精品欧美在线观看| 免费黄频网站在线观看国产| 高清不卡的av网站| 国产精品秋霞免费鲁丝片| 国产女主播在线喷水免费视频网站| 五月开心婷婷网| 不卡视频在线观看欧美| 丝袜喷水一区| 欧美成人精品欧美一级黄| 男人爽女人下面视频在线观看| 大片电影免费在线观看免费| 只有这里有精品99| 波野结衣二区三区在线| 久久亚洲国产成人精品v| 女的被弄到高潮叫床怎么办| 夜夜骑夜夜射夜夜干| 最近中文字幕高清免费大全6| 一级毛片 在线播放| 国产真实伦视频高清在线观看| 高清午夜精品一区二区三区| 久久毛片免费看一区二区三区| videos熟女内射| 青春草国产在线视频| 亚洲综合精品二区| 免费观看无遮挡的男女| 在线观看美女被高潮喷水网站| 日本av免费视频播放| 精品国产露脸久久av麻豆| 黄色欧美视频在线观看| 热99国产精品久久久久久7| 国产精品女同一区二区软件| 久久久久久伊人网av| 亚洲电影在线观看av| 国产精品蜜桃在线观看| 嫩草影院新地址| 七月丁香在线播放| 美女国产视频在线观看| 男女边摸边吃奶| 97超碰精品成人国产| 久久久久国产精品人妻一区二区| 亚洲欧美日韩卡通动漫| 一级毛片 在线播放| 免费观看av网站的网址| 一个人看视频在线观看www免费| 97在线人人人人妻| 国产 精品1| 国模一区二区三区四区视频| 久久ye,这里只有精品| 国内揄拍国产精品人妻在线| 欧美xxⅹ黑人| 成人亚洲精品一区在线观看 | 久久久久久久亚洲中文字幕| 最近2019中文字幕mv第一页| 国产精品久久久久久av不卡| 亚洲av.av天堂| 黄片无遮挡物在线观看| 亚洲精品久久久久久婷婷小说| 中文天堂在线官网| 国产黄片美女视频| 欧美97在线视频| 秋霞在线观看毛片| 亚洲综合精品二区| 国产免费视频播放在线视频| 精品久久久久久久久av| 欧美精品一区二区免费开放| 免费大片黄手机在线观看| 成人美女网站在线观看视频| 亚洲国产成人一精品久久久| 国产精品久久久久久久久免| 国产精品国产三级国产专区5o| 亚洲精品日本国产第一区| 日韩欧美精品免费久久| 美女cb高潮喷水在线观看| 中文字幕精品免费在线观看视频 | 国产精品精品国产色婷婷| 国国产精品蜜臀av免费| 大码成人一级视频| 国产一区二区在线观看日韩| 自拍偷自拍亚洲精品老妇| 只有这里有精品99| 午夜福利在线在线| 国产免费一级a男人的天堂| 国产精品一区二区三区四区免费观看| 国产免费又黄又爽又色| 香蕉精品网在线| 国产精品国产三级国产专区5o| 国产精品熟女久久久久浪| 亚洲欧美清纯卡通| 嫩草影院入口| 91精品伊人久久大香线蕉| 性色avwww在线观看| 成年人午夜在线观看视频| 插阴视频在线观看视频| 18禁在线无遮挡免费观看视频| 18禁在线无遮挡免费观看视频| 视频中文字幕在线观看| 男男h啪啪无遮挡| 日本爱情动作片www.在线观看| 国产黄片视频在线免费观看| 国产亚洲最大av| 91久久精品国产一区二区三区| 2018国产大陆天天弄谢| 国产国拍精品亚洲av在线观看| 一边亲一边摸免费视频| 五月玫瑰六月丁香| 99久久精品热视频| 大香蕉久久网| 久久久久久久亚洲中文字幕| 中文资源天堂在线| 亚洲精品国产av成人精品| 日本色播在线视频| 亚洲精品日韩在线中文字幕| 国产乱人视频| 一区二区三区精品91| 少妇丰满av| 日本wwww免费看| 久久99热这里只有精品18| 亚洲av成人精品一二三区| 在线观看三级黄色| 亚洲av福利一区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一及| 在线天堂最新版资源| 777米奇影视久久| 97超视频在线观看视频| 97在线视频观看| 国产男人的电影天堂91| 在线观看三级黄色| 亚洲国产欧美人成| 日韩强制内射视频| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜爱| 国产精品嫩草影院av在线观看| 狂野欧美激情性bbbbbb| 超碰97精品在线观看| 亚洲国产成人一精品久久久| 久久久久久久亚洲中文字幕| 国产成人午夜福利电影在线观看| 国产在线视频一区二区| 欧美xxⅹ黑人| 中文字幕av成人在线电影| 亚洲天堂av无毛| 亚洲av福利一区| 国产av国产精品国产| av不卡在线播放| 亚洲成人一二三区av| 国产 一区 欧美 日韩| 成人综合一区亚洲| 亚洲欧美成人精品一区二区| 女性生殖器流出的白浆| www.av在线官网国产| a级一级毛片免费在线观看| 成人午夜精彩视频在线观看| 国产高清三级在线| 国产探花极品一区二区| 成人亚洲精品一区在线观看 | 久久久久精品久久久久真实原创| 爱豆传媒免费全集在线观看| 激情五月婷婷亚洲| 好男人视频免费观看在线| 一级黄片播放器| 免费黄网站久久成人精品| 国产在线男女| 欧美日韩综合久久久久久| 国产免费福利视频在线观看| 只有这里有精品99| 高清日韩中文字幕在线| 久久影院123| 国产亚洲精品久久久com| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人爽人人夜夜| 成人毛片a级毛片在线播放| 国产 一区精品| 日本vs欧美在线观看视频 | 亚洲欧洲国产日韩| 国产男人的电影天堂91| 久久精品久久精品一区二区三区| 美女内射精品一级片tv| 亚洲精品成人av观看孕妇| 蜜桃亚洲精品一区二区三区| 老师上课跳d突然被开到最大视频| 久久av网站| 国产精品一区二区性色av| 视频区图区小说| 日韩av免费高清视频| 观看美女的网站| 国产黄色视频一区二区在线观看| 中文字幕制服av| 亚洲av成人精品一区久久| 国产成人精品福利久久| 中文欧美无线码| 精品久久久久久久久av| 亚洲精品国产av成人精品| 国产欧美日韩一区二区三区在线 | 久久99热这里只有精品18| 91久久精品国产一区二区三区| 美女福利国产在线 | 亚洲图色成人| 人妻 亚洲 视频| 欧美xxⅹ黑人| 日韩精品有码人妻一区| 亚洲av电影在线观看一区二区三区| 97热精品久久久久久| 晚上一个人看的免费电影| 国产av一区二区精品久久 | 免费观看a级毛片全部| 一边亲一边摸免费视频| 毛片一级片免费看久久久久| 久久精品国产亚洲网站| 涩涩av久久男人的天堂| 不卡视频在线观看欧美| 人妻夜夜爽99麻豆av| 99热国产这里只有精品6| 男女国产视频网站| 一级毛片我不卡| 国产精品久久久久久久久免| 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 美女主播在线视频| 国产精品一区二区在线不卡| 国产 精品1| 亚洲av成人精品一区久久| 免费看光身美女| 91午夜精品亚洲一区二区三区| 97超视频在线观看视频| 国产精品久久久久成人av| 丝瓜视频免费看黄片| 亚洲美女搞黄在线观看| 欧美日韩视频精品一区| 美女国产视频在线观看| 成人漫画全彩无遮挡| 亚洲国产色片| 丝袜喷水一区| 亚洲最大成人中文| 只有这里有精品99| 久久ye,这里只有精品| 国产在视频线精品| 亚洲精品中文字幕在线视频 | 天天躁日日操中文字幕| 特大巨黑吊av在线直播| 中文字幕久久专区| av天堂中文字幕网| 汤姆久久久久久久影院中文字幕| 日韩中文字幕视频在线看片 | 日韩成人伦理影院| 在线观看av片永久免费下载| 亚洲精品乱久久久久久| 日韩欧美精品免费久久| 亚洲图色成人| 国产白丝娇喘喷水9色精品| av在线观看视频网站免费| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 乱码一卡2卡4卡精品| .国产精品久久| 日韩精品有码人妻一区| 国产av国产精品国产| 国产v大片淫在线免费观看| 精品99又大又爽又粗少妇毛片| 日韩欧美一区视频在线观看 | 在线观看人妻少妇| 夜夜看夜夜爽夜夜摸| 哪个播放器可以免费观看大片| 男女边吃奶边做爰视频| 精品一区二区三区视频在线| 国产免费又黄又爽又色| 大陆偷拍与自拍| 久久久久视频综合| 久久久色成人| 国产成人a区在线观看| 国产高清不卡午夜福利| 日本wwww免费看| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 日韩,欧美,国产一区二区三区| 最黄视频免费看| 欧美成人a在线观看| 亚洲图色成人| 色网站视频免费| 成人国产av品久久久| 国产精品.久久久| 男人舔奶头视频| 国产欧美另类精品又又久久亚洲欧美| 欧美xxxx黑人xx丫x性爽| 国产爽快片一区二区三区| 欧美激情国产日韩精品一区| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜 | 黄色欧美视频在线观看| 亚洲国产高清在线一区二区三| 日本av免费视频播放| 国产精品女同一区二区软件| 亚洲精品第二区| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久久久久婷婷小说| 亚洲精品乱久久久久久| 亚洲精品日本国产第一区| 黄色欧美视频在线观看| 亚洲电影在线观看av| 亚州av有码| 成年人午夜在线观看视频| 午夜免费观看性视频| 日韩av在线免费看完整版不卡| 精品久久国产蜜桃| 建设人人有责人人尽责人人享有的 | 亚洲国产色片| 精品视频人人做人人爽| 国产免费一级a男人的天堂| 少妇人妻久久综合中文| 久久韩国三级中文字幕| 高清毛片免费看| 黑丝袜美女国产一区| 久久久久久久久大av| 春色校园在线视频观看| 国产色婷婷99| 2022亚洲国产成人精品| 精品少妇久久久久久888优播| 女的被弄到高潮叫床怎么办| 99精国产麻豆久久婷婷| 少妇的逼好多水| 人妻系列 视频| 日韩,欧美,国产一区二区三区| 搡女人真爽免费视频火全软件| 精品久久久久久久末码| 又黄又爽又刺激的免费视频.| 制服丝袜香蕉在线| 夫妻午夜视频| 亚洲成人一二三区av| 成人亚洲精品一区在线观看 | 国产成人a∨麻豆精品| av线在线观看网站| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 国产精品久久久久久久久免| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| av国产免费在线观看| 久久国产亚洲av麻豆专区| 国产日韩欧美亚洲二区| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| 最近中文字幕高清免费大全6| 香蕉精品网在线| 久久久a久久爽久久v久久| 赤兔流量卡办理| 寂寞人妻少妇视频99o| 日韩强制内射视频| 亚洲国产成人一精品久久久| 全区人妻精品视频| 欧美国产精品一级二级三级 | 亚洲欧美日韩另类电影网站 | 久久热精品热| 国产高清国产精品国产三级 | 国产一区二区在线观看日韩| 精品久久久久久久末码| 一级毛片aaaaaa免费看小| 街头女战士在线观看网站| 嫩草影院入口| 久久久精品免费免费高清| 99热国产这里只有精品6| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| av线在线观看网站| 肉色欧美久久久久久久蜜桃| a级毛片免费高清观看在线播放| 久久精品久久久久久久性| 国模一区二区三区四区视频| 人人妻人人爽人人添夜夜欢视频 | 99久久精品一区二区三区| 精品国产乱码久久久久久小说| 亚洲综合精品二区| 亚洲欧美成人精品一区二区| 看非洲黑人一级黄片| 久久久久精品性色| 久久久久国产网址| 亚洲自偷自拍三级| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区久久久樱花 | 日韩三级伦理在线观看| 久久精品夜色国产| 国产白丝娇喘喷水9色精品| 国产男女内射视频| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 大片免费播放器 马上看| 国产免费又黄又爽又色| 国产精品无大码| 亚洲欧美清纯卡通| 在线精品无人区一区二区三 | 亚洲精品乱码久久久v下载方式| 国产免费一级a男人的天堂| 国产精品女同一区二区软件| 极品少妇高潮喷水抽搐| 蜜臀久久99精品久久宅男| 毛片一级片免费看久久久久| 国产伦精品一区二区三区四那| 少妇人妻 视频| 免费黄色在线免费观看| 亚洲成色77777| 精品一区在线观看国产| 精品亚洲成a人片在线观看 | 午夜激情福利司机影院| 看十八女毛片水多多多| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| av福利片在线观看| 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 欧美日韩综合久久久久久| 激情 狠狠 欧美| 最近最新中文字幕大全电影3| 黄片无遮挡物在线观看| 热99国产精品久久久久久7| 国产欧美亚洲国产| 中国三级夫妇交换| 韩国av在线不卡| 欧美最新免费一区二区三区| 亚洲内射少妇av| 中文字幕制服av| 久久热精品热| 99久久综合免费| 人人妻人人看人人澡| 日韩制服骚丝袜av| 日韩一区二区三区影片| 国产有黄有色有爽视频| 深爱激情五月婷婷| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| 男男h啪啪无遮挡| 人妻少妇偷人精品九色| 在线精品无人区一区二区三 | 老女人水多毛片| 国产午夜精品久久久久久一区二区三区| 美女cb高潮喷水在线观看| 十八禁网站网址无遮挡 | 91久久精品国产一区二区三区| 中文在线观看免费www的网站| 亚洲天堂av无毛| 51国产日韩欧美| .国产精品久久| 超碰av人人做人人爽久久| 日韩视频在线欧美| 看非洲黑人一级黄片| 国产美女午夜福利| 人体艺术视频欧美日本| 欧美日韩视频高清一区二区三区二| 高清在线视频一区二区三区| 日韩伦理黄色片| 免费看日本二区| 三级国产精品欧美在线观看| 91精品伊人久久大香线蕉| 网址你懂的国产日韩在线| 大片电影免费在线观看免费| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 最近2019中文字幕mv第一页| 国产精品一区二区三区四区免费观看| 97在线视频观看| 国产日韩欧美亚洲二区| 中文欧美无线码| 免费黄色在线免费观看| 亚洲欧美一区二区三区黑人 | 久久国产乱子免费精品| av不卡在线播放| 人体艺术视频欧美日本| 男男h啪啪无遮挡| 欧美+日韩+精品| xxx大片免费视频| 久久久久久久久久久丰满| 成人黄色视频免费在线看| 国产中年淑女户外野战色| 亚洲av日韩在线播放| 18禁在线无遮挡免费观看视频| 在线精品无人区一区二区三 | 国产精品国产av在线观看| 国产欧美另类精品又又久久亚洲欧美| 直男gayav资源| 日本av免费视频播放| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| 亚洲色图av天堂| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 激情五月婷婷亚洲| 国产欧美日韩精品一区二区| 各种免费的搞黄视频| 国产乱人偷精品视频| 国产一区二区在线观看日韩| 99热全是精品| 国产黄色免费在线视频| a 毛片基地| 亚洲久久久国产精品| 色婷婷av一区二区三区视频| 尤物成人国产欧美一区二区三区| 永久免费av网站大全| 免费大片18禁| 久久av网站| 舔av片在线| 日韩在线高清观看一区二区三区| 九色成人免费人妻av| 亚洲国产毛片av蜜桃av| 各种免费的搞黄视频| 国产 一区 欧美 日韩| 国产伦精品一区二区三区视频9| 如何舔出高潮| 国产 一区精品| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 狂野欧美白嫩少妇大欣赏| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 久久久久网色| 国产成人精品久久久久久| 日本欧美国产在线视频| 久久久久久久久久久免费av| 久久 成人 亚洲| 精品酒店卫生间| 91精品伊人久久大香线蕉| 三级经典国产精品| 亚洲成人手机| 欧美日韩综合久久久久久| 六月丁香七月| www.av在线官网国产| 美女福利国产在线 | 国产精品无大码| 国产精品一二三区在线看| 少妇人妻一区二区三区视频| 超碰97精品在线观看| 男女啪啪激烈高潮av片| 少妇 在线观看| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 99视频精品全部免费 在线| 高清视频免费观看一区二区| 18禁裸乳无遮挡动漫免费视频| 国产91av在线免费观看| 亚洲精品视频女| 久久人人爽av亚洲精品天堂 | 亚洲av.av天堂| 国产 精品1| 亚洲成人av在线免费| 久久人人爽av亚洲精品天堂 | 国产精品一及| 狠狠精品人妻久久久久久综合| 久久热精品热| 亚洲欧美清纯卡通| 九九在线视频观看精品| 一本久久精品| 波野结衣二区三区在线| 少妇裸体淫交视频免费看高清| 日韩电影二区| 一区二区av电影网| 99热全是精品| 肉色欧美久久久久久久蜜桃| 在线观看免费高清a一片| 91精品一卡2卡3卡4卡| 国产视频首页在线观看| av专区在线播放| 大码成人一级视频| 欧美极品一区二区三区四区| 国产精品无大码| 免费黄色在线免费观看| 男的添女的下面高潮视频| 夜夜骑夜夜射夜夜干| 黄色日韩在线| 久久国产亚洲av麻豆专区| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡免费网站照片| 日韩,欧美,国产一区二区三区| 亚洲国产精品一区三区| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久国产电影| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 高清午夜精品一区二区三区| 亚洲高清免费不卡视频| 九草在线视频观看| 一级二级三级毛片免费看| 在线播放无遮挡| 激情 狠狠 欧美| 18+在线观看网站| 多毛熟女@视频| 中国美白少妇内射xxxbb| av一本久久久久| 国产在线男女| 亚洲精品国产色婷婷电影| 久久久精品免费免费高清| 97在线视频观看| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 亚洲人成网站高清观看| 亚洲一级一片aⅴ在线观看| 夜夜爽夜夜爽视频| 日韩强制内射视频|