• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Al-Fe-P三元系的熱力學(xué)優(yōu)化

    2013-10-18 05:27:14曹戰(zhàn)民王昆鵬牛春菊杜廣巍喬芝郁
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:北京科技大學(xué)材料科學(xué)工程學(xué)院

    曹戰(zhàn)民 謝 偉 王昆鵬 牛春菊 杜廣巍 喬芝郁

    (1北京科技大學(xué)鋼鐵冶金新技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,冶金與生態(tài)工程學(xué)院,北京 100083;2北京科技大學(xué)材料科學(xué)與工程學(xué)院,北京 100083)

    1 Introduction

    Phosphorus has known to be an essential metalloid element in forming an amorphous phase exhibiting useful engineering properties,such as,the Invar effect,1corrosion resistance,2and catalysis.3The Al-Fe-P ternary system has drawn more and more attention due to that amorphous phase formation has been found in the Al-Fe-P system by using a melt-spinning technique.4The evaluation of the glass-forming ability(GFA)of alloys is of great importance by judging in advance whether amorphous phases could be formed at given conditions.The successful evaluation5-7of GFA of some alloys indicates that the expressions of the Gibbs energies of the phases are very powerful in qualitatively analyzing the composition dependency of the GFA.The Al-Fe-P system is also a fundamental ternary system of the Fe-based and P-containing multi-component alloys,which are very important for the advanced metallurgy and materials.Knowledge of the thermodynamic properties of the Al-Fe-P system is significant for the development of Fe-based and P-containing multi-component alloys by providing information regarding the phases that are present at service temperature,their compositions and volume fractions and so on.Therefore,the interest in this system is increasing,as shown by a recent publication,8in which,however,the researchers only gave a description of the Fe rich side and merely accounted for one isothermal section at 723 K during the calculation.

    Thus,our study was aimed to give a thermodynamic optimization of the Al-Fe-P system over the whole composition range based on all available experimental information in the literature by using CALPHAD(CALculation of PHAse Diagram)approach with Thermo-Calc software package.9The optimized self-consistent thermodynamic parameters of the Al-Fe-P system are expected to be helpful for both the better understanding of the composition dependency of the GFA in the Al-Fe-P system and the development of the Fe-based and P-containing multi-component alloy thermodynamic database.

    2 Information on the binary and the ternary systems

    2.1 Al-P system

    The Al-P system was extensively investigated by many researchers.White et al.10released the existence of only one intermediate phase,AlP,which was further confirmed by Panish and Ilegems11,12during the study of the Ga-rich corner of the Ga-Al-P ternary system.Tu et al.13confirmed the existence of AlP again in the investigation of the 723 K isothermal section of the Al-P-Zn ternary system with the help of combined techniques of optical microscopy,scanning electron microscopy coupled with energy dispersive X-ray spectroscopy(SEMEDS),and X-ray diffraction(XRD).Kischio14reported the melting point of AlP to be(2803±50)K without experimental detail.Czochrallski15established a possible upper limit to the solubility of P in γ-Al of 0.0007 at mole fraction of P.

    Several researchers experimentally measured the heat of formation of AlP using different methods and large difference existed among the experimental results.Kischio14obtained ΔfH295K(AlP)=(-82630±1050)J·mol-1·atom-1from the heat of dissolution of AlP in aqueous HCl and the known formation of the products.Wang and Zaheervuddin16measured the heats of combustion of AlP and equal mol mixtures of Al and red P.Adjusting their results to white P as reference state,ΔfH298K(AlP)=(-69500±4600)J·mol-1·atom-1was obtained.Maria et al.17measured the partial pressures of Al and P2vapor equilibrium with AlP,from 1270 to 1800 K using the Knudsen effusion method in combination with mass spectrometry,and ΔfH298K(AlP)=(-59000±6700)J·mol-1·atom-1was obtained.A second law fit to Maria′s experimental results17was carried out by McAlister18and ΔfH298K(AlP)=(-57600±17700)J·mol-1·atom-1with statistical error was yielded.Martosudirdjo and Pratt19reported ΔfH(AlP)=(-74000±900)J·mol-1·atom-1using precipitation calorimetry in liquid Sn at 582 K.

    Tu et al.13gave a description of the Al-P binary system during the thermodynamic analysis of the Al-P-Zn ternary system.Unfortunately,their description could not reflect the phase relation of AlP with other phases correctly when extrapolating the parameters into the Al-Fe-P ternary system.Therefore,the thermodynamic parameters of the Al-P system were re-optimized in this work.

    2.2 Al-Fe and Fe-P binary systems

    In the Al-Fe system the equilibrium phases are the liquid,the α-Fe solid solution based on body-centered cubic(bcc)Fe,the γ-Fe solid solution based on face-centered cubic(fcc)Fe,the AlFe formed through ordering of α-Fe,Al13Fe4,Al5Fe2,Al2Fe,Al5Fe4,and the γ-Al based on fcc Al.Many researchers,including Kaufman and Nesor,20Saunders and Rivlin21and Seierstein22,optimized the Al-Fe binary system.The assessment by Seierstein22is the first consistent description of the Al-Fe phase diagram and has been successfully extrapolated to the related ternary system by many researchers.23-25Thus,the parameters optimized by Seierstein22have been adopted in present assessment,except that the thermodynamic parameters of Al2Fe phase have been slightly modified to ensure the Al2Fe phase be stable in the Al-Fe-P ternary system.The optimized parameters are shown in Table 1,and the calculated Al-Fe phase diagram is shown in Fig.1(a).

    The Fe-P system is composed of the liquid,the α-Fe solid solution based on bcc Fe,the γ-Fe solid solution based on fcc Fe,Fe3P,Fe2P,FeP,FeP2,FeP4,and P(red and white P).A critical assessment of the Fe-P system has been carried out by Okamoto,26Ohtani27and Tokunaga28et al.However,in all these evaluations the valuable thermodynamic properties in the Fe-P system measured by Zaitsev et al.29using differential scanning calorimetry and Knudsen effusion method with mass-spectrometric analysis of the gaseous phase were omitted.Most recently,a thermodynamic re-optimization of the Fe-P system has been carried out by Cao et al.,30and satisfactorily reproduced most experimental phase diagram and thermodynamic properties.Hence,the parameters assessed by Cao et al.30with minor modification were used in present work.The modified parameters and calculated phase diagram of Fe-P system are shown in Table 1 and Fig.1b,respectively.

    2.3 Al-Fe-P ternary system

    Because of the high volatilization of P,the Al-Fe-P ternary phase diagram has been studied only for the Fe rich corner of this system.Vogel and Klose31studied the phase equilibria in the Fe-Fe2P-AlP-Fe50Al50region of the Al-Fe-P ternary system using differential thermal analysis(DTA)and metallographyanalysis.The vertical sections of w(P)=6%,9%(mass fraction)and w(Al)=10%,25%were determined.The isothermal section at room temperature and the liquidus surface in the Fe-Fe2PAlP-Fe50Al50region were also investigated experimentally.There was found that the AlP-Fe2P and AlP-Fe50Al50sections are the quasi-binaries of the simple eutectic type.Kaneko et al.32investigated the phase relationships between phosphide-phase and iron-phase in the Al-Fe-P system by chemical and X-ray examinations and the obtained results agree with those reported by Vogel and Klose.31Limited thermodynamic properties relevant to the Al-Fe-P system are reported.Yamada and Kato33,34determined the activity interaction coefficients of phosphorus in the Fe-P-i system at 1873 K using a Knudsen cell-mass spectrometer combination with the computation from the ratio of the intensities of P+and Fe+peaks,and=4.6±0.7 was obtained.Based on the Miedema model and Toop equation Ding et al.35thermodynamically predicted the activity interaction coefficients between alloying elements and P in liquid Fe at 1873 K and the value of predictedis 8.78,which is much larger than the measured mentioned above.On the basis of the above mentioned information,the phase equilibria in the Al-Fe-P ternary system were reviewed in references.36-38

    Table 1 Optimized thermodynamic parameters for the binary and ternary systems

    Most recently,Wu et al.8investigated the phase equilibrium in the Al-Fe-P system when the P content was below 20%(mass fraction)with SEM-EDS and XRD and released an isothermal section at 723 K of the Al-Fe-P system at low phosphorus contents.And up to now,no ternary phase has been found in this ternary system.

    3 Thermodynamic models

    The thermodynamic models adopted here for the phases of the Al-Fe-P system are summarized in Table 1 and briefly introduced below.

    3.1 Pure elements

    3.2 Solution phases

    The solution phases are modeled by the substitutional solution model and their Gibbs energies are described by the following expression:

    where the three terms assume different forms according to the nature of the phase.Substitutional solutions are represented by only one sublattice where all the atoms mix randomly.In the binary case(A,B)1,the three contributions to the Gibbs energy are:

    Fig.1 Calculated binary phase diagrams

    In the case of ternary solutions,the expressions ofrefGφandare easily derived from the binary ones.As for the excess Gibbs energy,it is obtained by combing the binary excess Gibbs energies according to the Muggianu extrapolation formula40and adding a ternary excess term:

    and the L functions have the form shown in Eq.(4).

    This model has been adopted for the following phases:liquid,α,γ,and Al5Fe4(see Table 1).

    3.3 Ordered/disordered phases

    The ordered AlFe phase with bcc_B2 structure is modeled as(Al,Fe)0.5(Al,Fe)0.5in the Al-Fe system.22In order to represent the Gibbs energy of the ordered/disordered transitions using a single function,the disordered α-Fe phase with bcc_A2 structure is described by(Al,Fe)1.Ansara et al.41,42have derived an equation which allows the thermodynamic properties of the disordered phase to be evaluated independently.This is done by resolving the Gibbs energy into three terms as following:

    in which yi′is the site fraction of i(i=Al and Fe)in the first sublattice,and yi″in the second one.(xi)is the Gibbs energy of the disordered α-Fe phase.The second term(yi′,yi″)is described by the sublattice model and implicitly contains a contribution from the disordered state.The last term(xi)represents the contribution from the disordered state to the ordered one.When the site fractions are equal,i.e.yi′=yi″,the last two terms cancel each other.The ordered AlFe phase with bcc_B2 structure and the disordered α-Fe phase with bcc_A2 structure are modeled as(Al,Fe,P)0.5(Al,Fe,P)0.5and(Al,Fe,P)1in the Al-Fe-P ternary system,respectively.Due to lack of the experimental information on the ordered/disordered transition in the Al-Fe-P ternary system the ternary interaction parameters are assumed to be zero.

    3.4 Intermetallic compounds

    Stoichiometric compounds are represented with as many sublattices as the number of component elements,with only one atom type in each sublattice.In the binary case the model is(A)u(B)1-uand the Gibbs energies are given by

    The Eq.(7)was adopted to describe the Gibbs energies of the stoichiometric compounds that were lack of heat capacity data:Al5Fe2,Al2Fe,FeP2,FeP4,and AlP(see Table 1).

    For Fe3P,Fe2P,and FeP phases,the heat capacity data are available in a wide temperature range29and their Gibbs energies are given by

    Table 2 Lattice stability parameters used in the present optimization39

    where ΔfH298Kand S298Kare the enthalpy of formation and the entropy at 298 K,and Cpis the heat capacities at constant pressure.

    In Seierstein′s study,22non-stoichiometric compound,Al13Fe4,was modeled with three sublattices:(Al)0.6275(Fe)0.235(Al,Va)0.1375in order to account for its binary solubility range.The Gibbs energy is given by

    where the superscript?denotes the third sublattice of the presented model,is the site fraction of i in the third sublattice,Va is the vacancy in the third sublattice.andare the Gibbs energy of the two end members(Al)0.6275(Fe)0.235(Al)0.1375and(Al)0.6275(Fe)0.235(Va)0.1375.

    No ternary intermetallic compounds have been reported in previous study and all binary intermetallic phases were treated to have zero ternary solubility in the Al-Fe-P system in present work.

    4 Optimization results and discussion

    The binary and ternary interaction parameters have been optimized using the PARROT module included in the Thermo-Calc software package.9The phase diagram data and experimental thermodynamic information were used as the input to the program.Each datum value was given a certain weight by our personal evaluation of the datum source and considering the consistency between the phase diagram and the thermodynamic properties.The interaction parameters have been evaluated by trial and error method during the course of the optimization until most of the selected experimental information is reproduced within the expected uncertainty limits.As a result,a complete list of the thermodynamic parameters describing the Al-Fe-P system is summarized in Table 1.Computed phase equilibria are compared to the selected experimental information reviewed in Sections 2.1 and 2.3.And a brief discussion is given as below.

    4.1 Al-P binary system

    The calculated phase diagram of Al-P system is shown in Fig.1(c).The evaluated melting point of AlP is 2803 K,which agrees well with the experimental value(2803±50)K.14As mentioned in Section 2.1,there are large differences among the experimental values of enthalpy formation of AlP determined by different researchers.The calculated ΔfH298K(AlP)=-74.0 kJ·mol-1·atom-1,is close to the value measured by Wang and Zaheervuddin.16

    4.2 Al-Fe-P ternary system

    By using the present optimized parameters of the Al-P system along with the reported parameters of the Al-Fe22and Fe-P30systems,and based on the vertical section and isothermal section diagram information,the Al-Fe-P ternary system is further optimized.The parameters of the Al-Fe and Fe-P system were slightly modified in order to fit the experimental data better.

    Fig.2 (a)Isothermal section diagram of the Al-Fe-P system at room temperature determined by Vogel and Klose31 and redrawn by Schmid-Fetzer and Tomashik38 and(b)calculated isothermal section diagram at room temperature in this work

    Fig.3 Calculated vertical section diagrams compared with the experimental data31

    The experimental and calculated isothermal section diagrams at room temperature are shown in Fig.2.It is easy to see that most of the phase relations have been well reproduced.The representative calculated vertical section diagrams with experimental data are illustrated in Fig.3.Although there is,in general,a satisfactory agreement between the experimental data reported by Vogel and Klose31for the phase diagram,some differences still exist,e.g.a relative discrepancy on the liquidus line between the calculated and the experimental data was observed.Actually,great care has been taken to reduce these discrepancies in our assessment,but it was found that it is difficult to fit these experimental data very well.It is still necessary to get more new experimental data to solve this problem.Additionally,some of the equilibria with respect to the bcc phase are inconsistent with the measured vertical sections by Vogel and Klose,31e.g.in our assessment,bcc phase is respectively in equilibrium with Fe2P and liq+Fe2P in the dashed regions,as shown in Fig.3(d),rather than AlP and liq+AlP reported by Vogel and Klose.31

    It was worthy to point out that we calculated the isothermal section diagram of the Al-Fe-P system at 723 K and compared with the latest experimental data,8which was published after the present assessment had been finished,and a good agreement between them was obtained,as shown in Fig.4.It proved that the thermodynamic parameters gained in our optimization are reliable.

    Fig.4 Calculated isothermal section diagram of the Al-Fe-P system at 723 K compared with the experimental data8

    Fig.5 Calculated liquidus projection of the Al-Fe-P system

    Table 3 Present calculated values for the invariant reactions in the Al-Fe-P system with the experimental data31

    Taking into account the available information on the binary and ternary systems,the complete liquidus projection for the whole Al-Fe-P system are illustrated in Fig.5.The calculated and experimental invariant temperatures and the corresponding compositions for the various invariant reactions are summarized in Table 3.Although the temperatures are generally in good agreement with the experimental values,there are still some differences in the compositions.Invariant reactions E7 and E8 are very near to the binary subsystems,so these two invariant reactions cannot be visible in Fig.5.Necessary experiments are also needed to validate the liquidus projection in the Al-Fe-P system.

    5 Explanation on the glass-forming ability

    Fig.6 Calculated driving force(DF)surface projection at 973 K superimposed with iso-DF lines and the experimental glass compositions denoted by Inoue4

    The driving force(DF)criterion5,6is based on the assumption that the phase having the highest driving force is most like-ly to form first.Considering that the formation of an amorphous phase would be favored when the nucleation and growth of crystalline phases are retarded,then the composition with the highest glass-forming ability can be the one with the lowest driving force of formation of crystalline phases.In order to analyze the composition dependency of the glass-forming ability,the initial crystallization driving force,which can be regarded as a representation of the nucleation ability of the crystalline phases,was employed in this work.The initial driving forces of all crystalline phases under every specified liquid composition at 973 K were first calculated and then the maximal values under each composition were chosen to construct the DF surface projection,as shown in Fig.6.Iso-DF lines and the experimental glass compositions are superimposed on it.All the experimental data are in the region where the driving forces are lower than 0.9.This is in accordance with the driving force criterion:alloys having lower driving forces possess higher glassforming abilities.This proves that the driving force criterion can be used as an index to predict the composition field most likely having the best glass-forming ability before any experiments.

    6 Conclusions

    Based on the available experimental information on the Al-P and the Al-Fe-P systems as well as the published assessment of the Al-Fe and the Fe-P binary systems,a critical assessment of the Al-P binary and the Al-Fe-P ternary system was carried out and a consistent thermodynamic description for describing all the phases in the Al-Fe-P system was obtained.The phase diagrams of the Al-Fe-P system over the entire composition range,including the vertical sections for w(P)=6%,9%,and w(Al)=10%,25%,the isothermal section at room temperature as well as the liquidus projection was constructed from present thermodynamic calculation.Most reported compositions of amorphous phase lie in the regions with low initial driving forces for the crystalline phases,which soundly proves the reasonability and reliability of the present thermodynamic description.

    (1)Fukamichi,K.;Kikuchi,M.;Hiroyoshi,H.;Masumoto,T.Anomalous Thermal Expansion,ΔE Effect,Invar and Elinvar Characteristics of Some Fe-based Amorphous Alloys.In Rapidly Quenched Metals III;Cantor,B.Ed.;The Metals Society:London,1978.

    (2)Masumoto,T.;Hashimoto,K.;Naka,M.Corrosion Behavior of Amorphous Metals.In Ra pidly Quench ed Metals III;Cantor,B.Ed.;The Metals Society:London,1978.

    (3)Yokoyama,A.;Komiyama,H.;Inoue,H.;Masumoto,T.;Kimura,H.M.S cripta Met.1981,15,365.

    (4)Inoue,A.;Kitamura,A.;Masumoto,T.Mater.Sci.1983,18,753.doi:10.1007/BF00745573

    (5)Kim,D.;Lee,B.J.;Kim,N.J.Intermetallics 2004,12,1103.doi:10.1016/j.intermet.2004.04.001

    (6)Kim,D.;Lee,B.J.;Kim,N.J.Scripta Mater.2005,52,969.doi:10.1016/j.scriptamat.2005.01.038

    (7)Bo,H.;Wang,J.;Jin,S.;Qi,H.Y.;Yuan,X.L.;Liu,L.B.;Jin,Z.P.Intermetallics 2010,18,2322.doi:10.1016/j.intermet.2010.08.002

    (8)Wu,C.J.;Huang,W.M.;Su,X.P.;Peng,H.P.;Wang,J.H.;Liu,Y.CAL PH AD 2012,38,1.doi:10.1016/j.calphad.2012.03.005

    (9)Sundman,B.;Jansson,B.;Andersson,J.O.CALPHAD 1985,9,153.doi:10.1016/0364-5916(85)90021-5

    (10)White,W.E.;Bushey,A.H.J.Am.Chem.Soc.1944,66,1666.doi:10.1021/ja01238a018

    (11)Panish,M.B.;Ilegems,M.Prog.S olid State Chem.1972,7,39.doi:10.1016/0079-6786(72)90004-0

    (12)Ilegems,M.;Panish,M.B.Crys.Growth 1973,20,77.doi:10.1016/0022-0248(73)90117-6

    (13)Tu,H.;Yin,F.C.;Su,X.P.;Liu,Y.;Wang,X.M.C ALP H AD 2009,33,755.doi:10.1016/j.calphad.2009.10.003

    (15)Czochrallski,J.Z.Metallkd.1923,15,273.

    (16)Wang,C.C.;Zaheervuddin,M.Inorg.Nucl.Ch em.1963,25,326.doi:10.1016/0022-1902(63)80071-8

    (17)de Maria,G.;Gingerich,K.A.;Piacente,V.Chem.Phys.1968,49,4705.

    (18)McAlister,A.J.Alloy P hase Diagrams 1985,6(3),222.doi:10.1007/BF02880402

    (19)Martosudirdjo,S.;Pratt,J.N.T h ermochim.A cta 1974,10,23.doi:10.1016/0040-6031(74)85019-7

    (20)Kaufman,L.;Nesor,H.CA LPHA D 1978,2,325.doi:10.1016/0364-5916(78)90020-2

    (21)Saunders,N.;Rivlin,V.G.Z.Metallkd.1987,78,795.

    (22)Seierstein,M.The Al-Fe System.In COST 507,T hermoch emical Database for Light Metal Alloys;Ansara,I.,Dinsdale,A.T.,Rand,M.H.Eds.;Office for Official Publications of the European Communities:Luxembourg,1998.

    (23)Zhang,L.J.;Du,Y.CAL PHAD 2007,31,529.doi:10.1016/j.calphad.2007.03.003

    (24)Du,Y.;Schuster,J.C.;Liu,Z.K.;Hu,R.X.;Nash,P.;Sun,W.H.;Zhang,W.W.;Wang,J.;Zhang,L.J.;Tang,C.Y.;Zhu,Z.J.;Liu,S.H.;Ouyang,Y.F.;Zhang,W.Q.;Krendelsberger,N.Intermetallics 2008,16(4),554.doi:10.1016/j.intermet.2008.01.003

    (25)Guo,C.P.;Du,Z.M.;Li,C.R.;Zhang,B.L.;Tao,M.C ALP H AD 2008,32,637.doi:10.1016/j.calphad.2008.08.007

    (26)Okamoto,H.B ull.Alloy Phase Diagrams 1990,11,404.doi:10.1007/BF02843320

    (27)Ohtani,H.;Hanaya,N.;Hasebe,M.;Teraoka,S.;Abe,M.C ALP H AD 2006,30,147.doi:10.1016/j.calphad.2005.09.006

    (28)Tokunaga,T.;Hanaya,N.;Ohtani,H.;Hasebe,M.ISIJ International 2009,49(7),947.doi:10.2355/isijinternational.49.947

    (29)Zaitsev,A.I.;Dobrokhotova,Z.V.;Litvina,A.D.;Mogutnov,B.M.Chem.S oc.Faraday Trans.1995,91(4),703.doi:10.1039/ft9959100703

    (30)Cao,Z.M.;Wang,K.P.;Qiao,Z.Y.;Du,G.W.A cta Phys.-Chim.Sin.2012,28(1),37.[曹戰(zhàn)民,王昆鵬,喬芝郁,杜廣巍.物理化學(xué)學(xué)報(bào),2012,28(1),37.]doi:10.3866/PKU.WHXB201111172

    (31)Vogel,R.;Klose,H.Arch.Eisenhuttenwesen 1952,23(7),287.

    (32)Kaneko,H.;Nishizawa,T.;Tamaki,K.Nippon Kinzoku Gakkai-shi 1965,29(2),159.

    (33)Yamada,K.;Kato,E.Tetsu-to-Hagane(J.Iron Steel Inst.Jap.)1979,65(2),273.

    (34)Yamada,K.;Kato,E.Trans.Iron Steel Inst.Jap.1983,23(1),51.doi:10.2355/isijinternational1966.23.51

    (35)Ding,X.;Wang,W.;Han,Q.Acta Metall.S in.1993,29(12),B527.

    (36)Raghavan,V.The Al-Fe-P System(Aluminium-Iron-Phosphorus).In Phase Diagrams of Ternary Iron Alloys,Part 3,Ternary Systems Containing Iron and P hosphorus;Indian Institute of Metals:Calcutta,1988.

    (37)Raghavan,V.Alloy P hase Dia grams 1989,5(1),32.

    (38)Schmid-Fetzer,R.;Tomashik,V.A.L andolt-B R nstein-Group IV P hysical Chemistry 2008,11D1(1),172.

    (39)Dinsdale,A.T.CAL PHAD 1991,15,317.doi:10.1016/0364-5916(91)90030-N

    (40)Muggianu,Y.M.;Gambino,M.;Bros,J.P.Chim.Ph ys.1975,72,83.

    (41)Ansara,I.;Dupin,N.;Lukas,H.L.;Sundman,B.J.Alloy.Compd.1997,247,20.doi:10.1016/S0925-8388(96)02652-7

    (42)Dupin,N.;Ansara,I.;Sundman,B.CAL PH AD 2001,25,279.doi:10.1016/S0364-5916(01)00049-9

    猜你喜歡
    北京科技大學(xué)材料科學(xué)工程學(xué)院
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    中海油化工與新材料科學(xué)研究院
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    福建工程學(xué)院
    福建工程學(xué)院
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    一级片免费观看大全| 日本三级黄在线观看| 9191精品国产免费久久| 波多野结衣高清无吗| 亚洲,欧美精品.| av视频在线观看入口| 国产成人av教育| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久久毛片| av在线播放免费不卡| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 99国产精品99久久久久| 神马国产精品三级电影在线观看 | 亚洲精品国产精品久久久不卡| 一本久久中文字幕| svipshipincom国产片| 日本熟妇午夜| 午夜a级毛片| 性色av乱码一区二区三区2| 老司机午夜十八禁免费视频| 婷婷丁香在线五月| 欧美激情久久久久久爽电影| 久热这里只有精品99| 日韩欧美免费精品| 国产极品粉嫩免费观看在线| 波多野结衣巨乳人妻| 老汉色∧v一级毛片| 亚洲第一青青草原| 一边摸一边抽搐一进一小说| 淫妇啪啪啪对白视频| 亚洲熟女毛片儿| 婷婷六月久久综合丁香| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩瑟瑟在线播放| 国产免费av片在线观看野外av| 亚洲国产精品成人综合色| 婷婷丁香在线五月| 在线观看66精品国产| 日韩精品免费视频一区二区三区| 久久精品91无色码中文字幕| 男女那种视频在线观看| 国产成人欧美| 一个人免费在线观看的高清视频| 亚洲成人久久爱视频| 脱女人内裤的视频| www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 国产区一区二久久| 曰老女人黄片| 国产一卡二卡三卡精品| 麻豆成人午夜福利视频| 9191精品国产免费久久| 午夜福利欧美成人| 夜夜爽天天搞| 男女那种视频在线观看| 自线自在国产av| 成人免费观看视频高清| 日本撒尿小便嘘嘘汇集6| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 久久久国产精品麻豆| 免费在线观看黄色视频的| 欧美最黄视频在线播放免费| av天堂在线播放| 精品久久久久久久毛片微露脸| 久久这里只有精品19| 精品卡一卡二卡四卡免费| 99国产极品粉嫩在线观看| 国产精品精品国产色婷婷| 精品无人区乱码1区二区| 精品高清国产在线一区| 97人妻精品一区二区三区麻豆 | 久久 成人 亚洲| 日本免费一区二区三区高清不卡| 亚洲av日韩精品久久久久久密| 亚洲成人久久爱视频| 久久久久久久久中文| 神马国产精品三级电影在线观看 | 叶爱在线成人免费视频播放| 亚洲九九香蕉| 国产一区二区激情短视频| 国产精品自产拍在线观看55亚洲| 一本久久中文字幕| 亚洲精华国产精华精| 亚洲一码二码三码区别大吗| 久久精品国产亚洲av高清一级| 亚洲五月婷婷丁香| 在线看三级毛片| 中文字幕最新亚洲高清| 黑人操中国人逼视频| 久久国产精品影院| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 久久中文字幕一级| 满18在线观看网站| av超薄肉色丝袜交足视频| 在线观看免费午夜福利视频| 亚洲成国产人片在线观看| 中文在线观看免费www的网站 | 一卡2卡三卡四卡精品乱码亚洲| 成人18禁高潮啪啪吃奶动态图| 韩国av一区二区三区四区| 国产伦在线观看视频一区| 久久香蕉精品热| 日本五十路高清| 亚洲av成人不卡在线观看播放网| 亚洲国产毛片av蜜桃av| 美女午夜性视频免费| 午夜福利18| 在线观看www视频免费| 久久精品国产综合久久久| 中文字幕最新亚洲高清| 成人一区二区视频在线观看| 日韩精品中文字幕看吧| 欧美性长视频在线观看| 国产aⅴ精品一区二区三区波| 丁香六月欧美| 亚洲国产欧美网| 正在播放国产对白刺激| 在线av久久热| 亚洲一卡2卡3卡4卡5卡精品中文| 一夜夜www| 美女高潮到喷水免费观看| 香蕉av资源在线| 波多野结衣av一区二区av| 国产一级毛片七仙女欲春2 | 91麻豆精品激情在线观看国产| 俄罗斯特黄特色一大片| 欧美日韩亚洲综合一区二区三区_| 亚洲av电影在线进入| cao死你这个sao货| bbb黄色大片| cao死你这个sao货| 亚洲色图 男人天堂 中文字幕| 国内精品久久久久久久电影| 中文字幕精品亚洲无线码一区 | 精品久久蜜臀av无| 国产亚洲欧美精品永久| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 12—13女人毛片做爰片一| 欧美在线黄色| 久久狼人影院| 色综合亚洲欧美另类图片| 亚洲激情在线av| 黄频高清免费视频| 国产精品美女特级片免费视频播放器 | 麻豆久久精品国产亚洲av| 久久亚洲精品不卡| 精品久久久久久久毛片微露脸| tocl精华| 欧美另类亚洲清纯唯美| 国内精品久久久久精免费| 成人永久免费在线观看视频| 午夜日韩欧美国产| 国语自产精品视频在线第100页| 欧美又色又爽又黄视频| 一二三四社区在线视频社区8| 欧美成人一区二区免费高清观看 | 777久久人妻少妇嫩草av网站| 色在线成人网| 天天添夜夜摸| 国产极品粉嫩免费观看在线| 免费在线观看日本一区| 中文亚洲av片在线观看爽| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 老司机福利观看| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观 | 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 国产在线精品亚洲第一网站| 久久国产精品男人的天堂亚洲| 成人手机av| 久久久久免费精品人妻一区二区 | 久久草成人影院| 一区二区三区激情视频| 日本a在线网址| 国产精品一区二区免费欧美| 搡老岳熟女国产| 在线观看免费日韩欧美大片| 岛国在线观看网站| videosex国产| 国产亚洲欧美精品永久| 免费在线观看影片大全网站| 久久精品91无色码中文字幕| 精品久久久久久久人妻蜜臀av| 97人妻精品一区二区三区麻豆 | 黄色成人免费大全| 日本免费a在线| 久久国产精品人妻蜜桃| 男人舔女人下体高潮全视频| 在线看三级毛片| 亚洲午夜精品一区,二区,三区| 亚洲美女黄片视频| 中出人妻视频一区二区| 欧美国产日韩亚洲一区| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 精品久久久久久成人av| 美女国产高潮福利片在线看| 精品国产一区二区三区四区第35| 一夜夜www| 欧美成人免费av一区二区三区| www日本在线高清视频| 啦啦啦免费观看视频1| 亚洲精品中文字幕一二三四区| 亚洲成国产人片在线观看| 欧美绝顶高潮抽搐喷水| 丁香欧美五月| 啪啪无遮挡十八禁网站| 午夜福利成人在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 日本熟妇午夜| 国产精品精品国产色婷婷| 成人18禁高潮啪啪吃奶动态图| 亚洲美女黄片视频| 欧美乱妇无乱码| 又黄又粗又硬又大视频| 美女高潮到喷水免费观看| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 麻豆国产av国片精品| 婷婷亚洲欧美| 制服丝袜大香蕉在线| 高潮久久久久久久久久久不卡| 啦啦啦免费观看视频1| 在线观看免费午夜福利视频| 精品国产亚洲在线| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| 最新美女视频免费是黄的| 在线视频色国产色| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 国产黄色小视频在线观看| 窝窝影院91人妻| 久久婷婷人人爽人人干人人爱| 99久久精品国产亚洲精品| 精品国产亚洲在线| 日韩高清综合在线| 亚洲av五月六月丁香网| 亚洲精品中文字幕一二三四区| 日日摸夜夜添夜夜添小说| 在线永久观看黄色视频| 可以免费在线观看a视频的电影网站| 日韩欧美 国产精品| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 99精品欧美一区二区三区四区| 特大巨黑吊av在线直播 | tocl精华| 精品国产亚洲在线| 亚洲精华国产精华精| 亚洲专区字幕在线| 日韩视频一区二区在线观看| 久久 成人 亚洲| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 神马国产精品三级电影在线观看 | 脱女人内裤的视频| 男女床上黄色一级片免费看| 精品第一国产精品| 国产蜜桃级精品一区二区三区| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 男人操女人黄网站| 又紧又爽又黄一区二区| 国产伦人伦偷精品视频| 国产亚洲精品一区二区www| 十八禁网站免费在线| 高清在线国产一区| 在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 久久婷婷成人综合色麻豆| 免费看十八禁软件| 久热爱精品视频在线9| 免费观看人在逋| 亚洲中文日韩欧美视频| 亚洲av日韩精品久久久久久密| 黄片播放在线免费| 国产一卡二卡三卡精品| 午夜久久久久精精品| 国产一区在线观看成人免费| 久久草成人影院| 亚洲精品在线观看二区| 免费在线观看亚洲国产| 久久欧美精品欧美久久欧美| 国产成人av教育| 麻豆久久精品国产亚洲av| 又大又爽又粗| 国语自产精品视频在线第100页| 日本免费a在线| 色综合婷婷激情| 变态另类丝袜制服| 亚洲 欧美一区二区三区| 久久天堂一区二区三区四区| 久久久久精品国产欧美久久久| 午夜福利欧美成人| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 人妻久久中文字幕网| av中文乱码字幕在线| bbb黄色大片| 黄色 视频免费看| 国产成人影院久久av| 国产精品国产高清国产av| 丝袜美腿诱惑在线| 一本综合久久免费| a级毛片a级免费在线| 脱女人内裤的视频| 美女高潮到喷水免费观看| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 免费在线观看日本一区| 欧美激情极品国产一区二区三区| 丁香六月欧美| 90打野战视频偷拍视频| 亚洲国产日韩欧美精品在线观看 | 精品福利观看| 色精品久久人妻99蜜桃| 女同久久另类99精品国产91| 又大又爽又粗| 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 国产精品99久久99久久久不卡| av在线天堂中文字幕| 国产久久久一区二区三区| 国产人伦9x9x在线观看| 久久久久久久久免费视频了| 身体一侧抽搐| 免费av毛片视频| 久久久久九九精品影院| 久久国产精品人妻蜜桃| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 亚洲成人免费电影在线观看| 国产一区二区三区在线臀色熟女| 黄色丝袜av网址大全| 波多野结衣高清无吗| a在线观看视频网站| 国产熟女xx| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 自线自在国产av| 桃红色精品国产亚洲av| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 国产在线精品亚洲第一网站| 中文字幕人成人乱码亚洲影| 99热6这里只有精品| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 1024香蕉在线观看| 老司机午夜福利在线观看视频| 久久久久久九九精品二区国产 | 香蕉av资源在线| 1024视频免费在线观看| 级片在线观看| 日韩欧美 国产精品| 久久精品国产亚洲av高清一级| 亚洲第一电影网av| 亚洲真实伦在线观看| 中国美女看黄片| 亚洲中文日韩欧美视频| 午夜福利欧美成人| 最近在线观看免费完整版| 伦理电影免费视频| 又紧又爽又黄一区二区| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 黄片播放在线免费| 黄色 视频免费看| 国产一区二区在线av高清观看| 久99久视频精品免费| 久久国产亚洲av麻豆专区| www.自偷自拍.com| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| 精品一区二区三区视频在线观看免费| 久久久久久久久久黄片| 国产欧美日韩一区二区精品| 午夜福利高清视频| 桃色一区二区三区在线观看| 国产不卡一卡二| 国产精品永久免费网站| www.999成人在线观看| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 无人区码免费观看不卡| 亚洲自偷自拍图片 自拍| 精品国产美女av久久久久小说| aaaaa片日本免费| 国语自产精品视频在线第100页| 国产高清激情床上av| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 亚洲第一av免费看| 可以在线观看的亚洲视频| av免费在线观看网站| 午夜福利免费观看在线| 国产在线精品亚洲第一网站| av欧美777| 欧美黄色淫秽网站| 91字幕亚洲| 亚洲成av人片免费观看| 少妇熟女aⅴ在线视频| 在线国产一区二区在线| 亚洲国产毛片av蜜桃av| 欧美人与性动交α欧美精品济南到| 99久久久亚洲精品蜜臀av| 精品无人区乱码1区二区| 在线视频色国产色| 国产片内射在线| 亚洲av美国av| 中文字幕久久专区| 91成年电影在线观看| 中文字幕精品免费在线观看视频| 亚洲精华国产精华精| 欧美三级亚洲精品| 午夜激情福利司机影院| 国产真人三级小视频在线观看| svipshipincom国产片| 欧美黑人欧美精品刺激| 中文字幕高清在线视频| 最近最新中文字幕大全免费视频| 日本成人三级电影网站| av福利片在线| 美女大奶头视频| 色尼玛亚洲综合影院| 波多野结衣高清作品| 色播在线永久视频| 色播亚洲综合网| 在线观看www视频免费| 国产国语露脸激情在线看| 色在线成人网| 日韩欧美国产在线观看| videosex国产| 日韩精品中文字幕看吧| 一本一本综合久久| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| 无限看片的www在线观看| a级毛片在线看网站| 老汉色∧v一级毛片| 欧美色欧美亚洲另类二区| 男女下面进入的视频免费午夜 | 欧美又色又爽又黄视频| 日韩欧美在线二视频| 亚洲久久久国产精品| 亚洲国产欧美网| 欧美在线一区亚洲| 亚洲一区二区三区色噜噜| 欧美色欧美亚洲另类二区| 久久亚洲精品不卡| 亚洲精品av麻豆狂野| 免费看美女性在线毛片视频| 国产亚洲av高清不卡| 日本一区二区免费在线视频| 午夜福利欧美成人| 免费观看精品视频网站| 精品免费久久久久久久清纯| 精品国产亚洲在线| 最新在线观看一区二区三区| 精品国产美女av久久久久小说| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 国产免费av片在线观看野外av| 国产激情欧美一区二区| av视频在线观看入口| 不卡一级毛片| 亚洲免费av在线视频| 国产蜜桃级精品一区二区三区| 日日夜夜操网爽| 亚洲av第一区精品v没综合| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 宅男免费午夜| 久久久久免费精品人妻一区二区 | 欧美国产精品va在线观看不卡| a在线观看视频网站| 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| 视频区欧美日本亚洲| 白带黄色成豆腐渣| 免费在线观看黄色视频的| 精品国产一区二区三区四区第35| 免费观看精品视频网站| 最近最新中文字幕大全免费视频| 亚洲一区二区三区色噜噜| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 欧美国产精品va在线观看不卡| 两性夫妻黄色片| 午夜影院日韩av| 国产又黄又爽又无遮挡在线| 99国产综合亚洲精品| 久久香蕉精品热| 亚洲成a人片在线一区二区| 亚洲激情在线av| 国产1区2区3区精品| av在线天堂中文字幕| 老司机深夜福利视频在线观看| 美女高潮喷水抽搐中文字幕| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产成+人综合+亚洲专区| 亚洲av第一区精品v没综合| 一二三四在线观看免费中文在| 欧美成人一区二区免费高清观看 | 日本在线视频免费播放| 国产成年人精品一区二区| 国产激情欧美一区二区| 90打野战视频偷拍视频| 91在线观看av| 18禁美女被吸乳视频| 亚洲色图av天堂| 久久久久九九精品影院| 12—13女人毛片做爰片一| 99在线视频只有这里精品首页| 黄色 视频免费看| 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉激情| 嫩草影视91久久| 久久久久久亚洲精品国产蜜桃av| 亚洲自拍偷在线| www.精华液| 国产精品一区二区三区四区久久 | 91成人精品电影| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 欧美乱码精品一区二区三区| 国产黄色小视频在线观看| 久久精品亚洲精品国产色婷小说| 最近最新中文字幕大全免费视频| 欧美日韩精品网址| 一个人观看的视频www高清免费观看 | www.自偷自拍.com| 欧美丝袜亚洲另类 | 无人区码免费观看不卡| 99国产极品粉嫩在线观看| 十分钟在线观看高清视频www| 亚洲国产精品sss在线观看| 亚洲精品国产一区二区精华液| 国内揄拍国产精品人妻在线 | 黄网站色视频无遮挡免费观看| 最近在线观看免费完整版| 波多野结衣高清无吗| 91麻豆av在线| 91麻豆精品激情在线观看国产| 中文字幕久久专区| 亚洲性夜色夜夜综合| 亚洲国产精品合色在线| 十八禁人妻一区二区| 999久久久国产精品视频| 女人被狂操c到高潮| 午夜福利一区二区在线看| 亚洲欧美日韩高清在线视频| 国产一区二区三区在线臀色熟女| 久久久久国产精品人妻aⅴ院| 日韩大码丰满熟妇| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 99re在线观看精品视频| 国产又黄又爽又无遮挡在线| 亚洲中文av在线| 色婷婷久久久亚洲欧美| 99久久国产精品久久久| 亚洲第一青青草原| 亚洲中文日韩欧美视频| 成人午夜高清在线视频 | 成人国产综合亚洲| 亚洲国产欧洲综合997久久, | 国内毛片毛片毛片毛片毛片| 国产精品1区2区在线观看.| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| 成熟少妇高潮喷水视频| 国产成人系列免费观看| 国产又黄又爽又无遮挡在线| 色综合站精品国产| 看黄色毛片网站| 欧美zozozo另类| 国产一级毛片七仙女欲春2 |