• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CdS-ZnSe和CdSe-ZnS量子點(diǎn)的合成和F?rster能量轉(zhuǎn)移研究

    2013-10-17 03:03:02弓亞瓊張賀楠衛(wèi)增巖
    無機(jī)化學(xué)學(xué)報 2013年2期
    關(guān)鍵詞:能量轉(zhuǎn)移中北大學(xué)太原

    弓亞瓊 詹 寰 張賀楠 衛(wèi)增巖 蘇 偉*,

    (1中北大學(xué)化工與環(huán)境學(xué)院,太原 030051)

    (2Department of Chemistry,City College of the City University of New York,New York,10031,USA)

    (3Department of Chemistry,Hunter College of the City University of New York,New York,10065,USA)

    0 Introduction

    For over a decade,QDs have found applications in various areas from biological imaging,novel sensors to electroluminescence light-emitting diode (LED)due to their unique optical and electrical properties[1-4].For these applications,it is advantageous that QDs have broad absorption bands,size-dependantphotoluminescence(PL)property,high quantum yield(QY)and excellent chemical stability as compared to conventionalorganic dyesin addition to narrow emission peaks[5].Recently,among QDs,type II core-shell QDs such as CdS-ZnSe,ZnO-CdS and CdSe-CdTe have received significant attention due to their unique band alignment where the band structures of the core and the shell materials are staggered and one carrier is predominantly confined to the core and the other is located in the shell with photon excitation[6-7].This feature contrasts to the commonly studied typeⅠQDs where both carriers are confined in the same physical domain of type Ⅰ QD[8].For the type Ⅱ QDs,the recombination rate between the electron and the hole is diminished due to the reduced wavefunction overlap between the carriers and thus has longer exciton lifetime.

    Frster resonance energy transfer(FRET)is a nonradiative energy transfermechanism between an excited donor fluorophore and a ground-state acceptor fluorophore through dipole-dipole interactions[9].Three important requirements for FRET to occur between donors and acceptors are: (i)The photon emission energy of donors has to be greater than that of acceptors, (ii)The donor emission band and the acceptor absorption spectra has sufficient overlap,and(iii)The distance between donors and acceptors is within the distance limit of FRET (~10 nm)[10-11].If all three requirements are met,the resonance energy transfer between donors and acceptors occurs in high probability and the FRET induces both PL intensity quenching and reduction of the carrier lifetime of the donor[10].

    QDs were examined as donors in FRET-based studies to replace traditional fluorescent dyes in biological applications such as biological imaging,DNA detection,and cell tracking[12-14].The FRET-based sensor is a great example to take advantage of QDs as donors because the narrow emission band of QD donors does not interfere with the direct excitation of acceptors and thus detects only signals induced by FRET.This is extremely important in the design of bio-sensorssincetheemission band ofacceptor enhanced by FRET could be detected easily from large background PL bands.From the PL intensity change of acceptor in a bio-sensor system,one is able to examine the concentration of target biological molecules via antigen-antibody conjugation method[12].Driven by these important applications,the FRET mechanism between QDs and dye-labeled biomolecules has been investigated in a variety of solvents,temperatures,and pH values[5].Few studies have been reported on the FRET with type Ⅱ QDs.This is in part due to the difficulty in synthesizing typeⅡQDs,and the spatial separation of carriers of typeⅡQDs is a concern to lower quantum yields[15-17].However,the type Ⅱ QDs are still interesting acceptors since their long excitonic lifetime enhances the probability for the energy transfer to the acceptor before electrons and holes of the donor recombine.Despite this potential,there has been no report in our knowledge to explore typeⅡQD as acceptors in the FRET process.The aim of this report is to investigate the potential of the typeⅡQDs as an acceptor in QD-based FRET complexes.

    In this work we assembled QD hybrid structures from typeⅠCdSe-ZnS QDs and typeⅡCdS-ZnSe QDsto study theirenergy transfermechanisms through time-resolved and steady-state photoluminescence (PL) measurements.These measurements reveal reduction of the donor lifetime,indicating the occurrence of FRET between typeⅠand typeⅡ QD.Experimental data support that the long-range resonance-energy transfer is sufficiently effective between QDs and the enhancement is larger as the exciton lifetime of donors is extended,as expected by Frster theory.

    1 Experimental

    The typeⅠCdSe-ZnS (QD491)and the typeⅡCdS-ZnSe (QD560)QDs reported here were prepared by using a stepwise procedure composed of:1)core nano-crystals growth (CdSe,CdS),2)shell overcoating (ZnS,ZnSe),3)tri-n-octylphosphine oxide(TOPO)/tri-n-octylphosphine (TOP)-capping,and 4)size selection precipitation and final purification[6,18-20].The diameter of QD cores and the shell thickness were necessary to be precisely controlled in the synthesis in order to optimize the spectral overlap between the emission bands of the donors and the absorption bands of the acceptors.

    1.1 Instruments and Materials

    1.1.1 Instruments

    The steady-state fluorescence spectra were acquired using a spectrometer (Horiba Jobin-Yvon)with a Xenon lamp as an excitation source at 367 nm.The time-resolved fluorescence measurements were carried out using a time-correlated single photon counting(TCSPC)system(Horiba Jobin-Yvon)at room temperature.A 200 Pico series (PS)diode laser operating at 1 MHz repetition rate and 467 nm emission wavelength wasused asthe excitation source.The time-resolved data were deconvoluted by using the iterative nonlinear least squares method.Absorption spectra were recorded by a Cary 50 Probe UV-Vis spectrophotometer in the wavelength range of 400~700 nm.

    Transmission Electron Microscopy(TEM)samples were prepared by attaching a carbon-coated copper TEM grid on a piece of 1.0 cm ×1.0 cm silicon substrate,applying spin-coating procedure to the same volume of QDs solution,then peeling the TEM grid off from the silicon substrate after baking it for 1 hour at 40℃.All TEM samples were studied by Zeiss EM 920 Transmission Electron Microscope at an acceleration voltage of 80 kV.

    1.1.2 Materials

    All chemicals were used without further purfication:trioctylphosphane (TOP) (97%;Sigma-Aldrich),Trioctylphosphane oxide (TOPO,99%;Sigma-Aldrich),hexadecylamine(HDA,98%;Sigma-Aldrich),dodecylphosphonic acid (97%;Sigma-Aldrich),methanol (Sigma-Aldrich),hexane(Sigma-Aldrich),bis (2,4,4-trimethylpentyl)phosphinic acid(BTMPPA,99%;Sigma-Aldrich),diethylzinc (95%;Sigma-Aldrich),hexamethyldisilthiane(>97%;Fluka),oleylamine (7 mL,98%),CdO,Se and S(Sigma-Aldrich),oleylamine(Sigma-Aldrich).

    1.2 Synthesis of CdSe-ZnS typeⅠQD(QD491)

    1.2.1 Synthesis of CdSe cores

    First,51.4 mg (0.4 mmol)of CdO (Sigma-Aldrich)was placed into a flask containing 1.15 mL(1.045 g)of Trioctylphosphane oxide (TOPO,99%;Sigma-Aldrich)and then it was mixed with 2.85 mL(2.375 g)of hexadecylamine (HDA,98%;Sigma-Aldrich)at 270 ℃ under nitrogen flow.After 230 μL(0.8 mmol)of dodecylphosphonic acid was added and temperature of the resulting colorless solution was raised to 250 ℃,3.5 mL of a 0.2 mol·L-1solution of Se (Sigma-Aldrich) powderin trioctylphosphane(TOP) (97%;Sigma-Aldrich)was quickly injected.The reaction was stopped after 45 seconds by pouring the mixture into 30 mL methanol(Sigma-Aldrich)at room temperature.After the CdSe cores were purified by rinsing in methanol and centrifugation (14 000 r·min-1,15 min.),the resulting compounds were redispersed in hexane(Sigma-Aldrich).

    1.2.2 Coating ZnS shell onto CdSe cores

    First,14 g Trioctylphosphaneoxide (TOPO)(99%;Sigma-Aldrich),3 mL oleylamine(99%;Sigma-Aldrich),2 mL HDA (98%;Sigma-Aldrich),and 2.0 mmol bis (2,4,4-trimethylpentyl)phosphinic acid(BTMPPA,99%;Sigma-Aldrich)were degassed under vacuum for 2 hrs in a three-necked flask at 100℃.CdSe cores dispersed in hexane from previous synthesis were added to the degassed solution and the hexane was removed at 80℃ under vacuum.Under a flow of argon,the mixed solution was heated at 180°C and the ZnS shell precursor solution (0.1 mmol diethylzinc (95%;Sigma-Aldrich)and 0.1 mmol hexamethyldisilthiane (>97%;Fluka)dissolved in 7 mL TOP)was added dropwise.After the addition was complete,the solution was kept at 180℃for 5 min and then left stirring overnight at 75℃to anneal the ZnS shell.The resulting CdSe-ZnS core-shell QDs were purified by precipitation in methanol,same as the core-purification procedure.The final QDs were re-dispersed in hexane.

    1.3 Synthesis of CdS/ZnSe typeⅡQDs(QD560)

    1.3.1 Synthesis of CdS cores

    The Cd precursor solution was prepared by mixing a degassed (under vacuum at 100℃for 1 h)solution ofcadmium acetate hydrate (1 mmol),trioctylphosphane (TOP)(6 mL),and bis(2,4,4-trimethylpentyl)phosphinic acid(BTMPPA)(1 mmol)with a degassed (under vacuum at room temperature for 1 h)solution of elemental sulfur(1 mmol,Sigma-Aldrich)in oleylamine (3 mL,Sigma-Aldrich).The resulting solution was rapidly injected into a roundbottomed flask containing degassed (under vacuum at 100℃for 1 h)oleylamine (7 mL,98%)and trioctylphosphane (TOP) (8 mL)stirring rapidly at 250~280℃.After QDs were grown at 250℃ for 15 to 30 min,the heating was stopped and cooled down by removing the heating source.Before coating the ZnSe shell,the CdS QD cores were precipitated out of the growth solution and then separated from hexane solution one more time to remove unreacted precursors and excess capping ligands.The resulting particles were flocculated from the growth solution by adding 0.4 mol of hexane,0.8 moles of butanol,and 3 moles of methanol (total 100 mL)to 1 mole of growth solution(24 mL)and centrifuged for 15 min at 14 000 r·min-1.These particles were dispersed in hexane and flocculated by adding one drop of butanol per mole of original growth solution and 0.5 mol of methanol,and then centrifuged for 15 min.The CdS core nanoparticles were finally re-dispersed in pure hexane.

    1.3.2 Coating of ZnSe shell onto CdS cores

    A colloidal solution of ca.20 mg of CdS QD cores was placed in a three-neck flask under purified argon flow.After adding 2.5 mL of TOPO with 1.5 mL of HDA,the mixture was heated at 190℃and then kept at this temperature to evaporate hexane completely.Zinc stearate (316 mg,98%;Sigma-Aldrich)was dissolved in 2.5 mL of toluene upon gentle heating (ca.60 ℃ ).After cooling to room temperature,the resulting 0.2 mol·L-1solution was mixed with 2.5 mL of a 0.2 mol·L-1solution of Se in TOP.This mixture was injected with a syringe pump within 1 hour into the reaction flask containing the CdS core nanocrystals at 190℃.Periodically small aliquots were removed in order to monitor the shell growth by TEM.After the addition was completed,the resultingcrystalswereannealedat190℃for additional 1 ~1.5 hours.The core-shell QDs were purified by the precipitation method same as the coreprocessing procedure.The final CdS-ZnSe type II QDs were re-dispersed in hexane.

    1.4 Building of QDs Assembly Samples

    1.4.1 Preparation of Solid QDs Assembly Samples

    All QDs samples were casted by spin coating solution of QDs in hexane onto a 1.0 cm ×1.0 cm silicon substrate under ambient atmosphere.Following the spin coating,the samples were placed in an oven at 40℃for 1 hour to remove the trace amounts of organic solvents,before they were characterized by steady-state PL and time-resolved PL.The control samplesfor the typeⅠ QD491-typeⅡQD560 assembly consist of either only the donor of(QD491)CdSe-ZnS QDs or the acceptor of CdS-ZnSe(QD560)QDs.All control samples were prepared in exactly the same concentration as the one in the corresponding mixed QDs samples on silicon.The donor-to-acceptor stoichiometry ratio was varied in the mixed QDs samples by keeping the concentration of donor QDs constant and varying the concentration of acceptor QDs.

    1.4.2 Concentration Calculation

    The assembly of typeⅠQD491 donor-typeⅡQD560 acceptor with differentdonor-to-acceptor stoichiometry ratios were prepared and studied by using steady-state and time-resolved PL spectroscopy.The concentration of QDs solution was determined analytically from the total amount of Cd and the sizes of QDs.For example,for the QD491,the CdSe core was dried and weighed as 16.24 mg after synthesis.The number of CdSe QDs core is about 9.0 ×1016assuming each CdSe QDs weighs 1.8×10-19g estimated from the diameter of 1.95 nm and the density of 5.816 g·cm-3.After the CdSe core was coated by ZnS and finally redispered in 200 mL ofhexane,the concentration of QD491 solution is 7.5×10-7mol·L-1.

    The assembly of QD491-QD560 QDs,the donorto-acceptor molar ratio of CdSe-ZnS(QD491)QDs and CdS-ZnSe (QD560)QDs was varied among 10∶1,5 ∶1 and 2 ∶1 while the concentration of CdS-ZnSe(QD560)QDs was varied among 3.6×1013cm-3(6.0×10-8mol· L-1),7.2×1013cm-3(1.2×10-7mol·L-1)and 1.8×1014cm-3(3.0×10-7mol·L-1)and the concentration of CdSe-ZnS(QD491)QDs was maintained as constant of 3.6×1014cm-3(6.0×10-7mol·L-1).

    2 Results and Discussion

    The band alignment of typeⅠQD491 donortypeⅡ QD560 acceptor assembly is shown in Fig.1(a).For this QDs assembly,as the energy is transferred from typeⅠCdSe-ZnS (QD491)QDs to the core of typeⅡCdS-ZnSe(QD560)QDs,the excited electrons and holes relax to the ground state of the conduction band in CdS and the valence band in ZnSe,respectively,according to the typeⅡband alignment,resulting in the typeⅡ emission.

    To confirm the band overlaps between this donoracceptor QDs pair,emission bands for donors and absorption bands for acceptors are compared as shown in Fig.1 (b).This spectral comparison shows the significant overlap between the PL emission of typeⅠQD491 and the lowest-energy absorption band of typeⅡ QD560 as shown.The small Stokes shift,~0.05 eV,of the PL emission of acceptor QD560 with respect to their lowest-energy absorption peaks indicates that these QDs have very few surface defects and have well-passivated surfaces[6].

    The QDs assembly system,typeⅠdonor QD491 typeⅡacceptor QD560,was also examined for the comparison with the result from the typeⅡdonor typeⅠ acceptor system.A series of solid samples were studied by varying the concentration of QD560 in the fixed concentration of QD491 in the QDs-QDs FRET assembly.It is worth noting that for the type ⅠQDs-typeⅡQDs assembly,the FRET is expected to be less discernible because the decay time of donor is shorter than that of acceptor due to the fast electronhole recombination of the type Ⅰ QDs donor.Hence three different mixed solid samples were prepared from CdSe-ZnS(QD491)QDs and CdS-ZnSe(QD560)QDs at the donor-to-acceptor molar ratios of 10∶1,5∶1 and 2∶1.To achieve these ratios,the concentration of CdS-ZnSe(QD560)QDs was adjusted among 3.6×1013cm-3(6.0×10-8mol·L-1),7.2×1013cm-3(1.2×10-7mol·L-1)and 1.8×1014cm-3(3.0×10-7mol·L-1)and then they were mixed with CdSe-ZnS (QD491)QDs at the constant concentration of 3.6×1014cm-3(6.0×10-7mol·L-1).The Gaussian function-fitted spectra can be deconvoluted into neat QD491 and QD560 PL peaks for all of three mixed solid samples.The quenching of type Ⅰ donor QD491 is observed in Fig.2(a)as compared with the PL spectra of neat QD491 at the same concentration.PL intensity ofQD491 is gradually decreased as the concentration of QD560 is increased in this typeⅠdonor QDs-typeⅡacceptor assembly.

    To calculate the quenching efficiency of the typeⅠ donor QD491 in this QDs assembly,Eq.(1):Q=(IFree-IMix)/IFree,is used,where IFreeand IMixare the integrated PL intensities of the neat QD491 in the solid state sample and the PL intensity of the QD491-QD560 mixed solid sample,respectively,under the same QD491 concentration[21].From these spectra,the Q value is 4.1%,13.1%and 62.6%,for the donor-toacceptor ratios of 10∶1,5∶1 and 2∶1.The increasing Q value shows its dependence on n (the number of acceptor QD560 per donor QD491),which indicates that the FRET efficiency is enhanced by increasing the number of the acceptor of QD560 around the donor of QD491[23].This is because the number of acceptors perdonoraffectsthe FRET efficiency according to the following Eq.(2):Eff=nR06/(nR06+r6),where Eff is FRET efficiency,n is the number of acceptors per donor,R0is Frster distance,and r is donor-acceptor distance[5].Increasing n yields higher FRET efficiency when R0and r are fixed in this case.

    Time-resolved PL measurements were also carried out on all mixed samples and neat QD491 sample for the binary QDs assembly of the typeⅠdonor QD491 and the typeⅡacceptor QD560 QDs.The time-resolved PL spectra of these samples are shown in Fig.2(b).From the plot,the neat QD491 has a PL lifetime of 4.20 ns.The PL lifetime decreases to 3.38 ns,3.19ns and finally reaches 2.75 ns as the QD491-QD560 ratio is changed to 10∶1,5∶1 and 2∶1.This trend indicates that the quenching of typeⅠdonor QD491 is caused by FRET between QD491 and QD560[16].The energy transfer efficiency from QD491 to QD560 is determined by the same Eq.(3)as fellows:τmix.-1=τfree-1+ΓFRET,where τmixand τfreeare the lifetime of the QD491 in the mixed samples and the lifetime of the neat QDs,respectively[17].The energy transfer efficiency for each sample is estimated by Eq.(3)to be 5.78%,7.55%and 12.56%as the QD491-QD560 ratios are changed among 10 ∶1,5 ∶1 and 2 ∶1,respectively.This trend is consistent with the change in Q values on the same series of samples.

    When the typeⅠQDs are excited both electrons and holes are confined in the cores.However,in the case of the typeⅡQDs,one carrier is confined in the core while the other is confined in the shell.Because the spatial separation of carriers in the typeⅡQDs reduces the recombination of carriers,the typeⅡQDs have longer PL lifetime than the typeⅠQDs.In the first QDs assembly,the donor of the typeⅡQD560 QDs is still in the excited state when the energy transfer is initiated due to the longer lifetime of the type Ⅱ donor QDs.In the case of the second QDs assembly,the donor of the typeⅠQD491 relaxes faster than the acceptor of typeⅡQD560 to recombine two carriers,and thus the typeⅠdonor QD491 is inefficient in the FRET process.This is why the typeⅠQDs have not been employed as acceptors in FRET assemblies,and even less FRET studies have been done using the type Ⅱ QDs as acceptors.

    To measure the inter-particle distance between typeⅠand typeⅡQDs in the QDs assemblies,transmission electron microscopy (TEM)analysis of each QDs assembly was conducted.The QD491 typeⅠQDs consist of CdSe cores with outer diameter of(3.9 ±0.1)nm,determined by TEM.The CdSe cores were over-coated by ZnS shell with a thickness of~1 nm.The CdS-ZnSe (QD560)typeⅡ QDs consist of CdS core with a diameter of 4.0±0.1 nm and the ZnSe shell with a thickness of~1 nm.For all QDs in this report,TOPO and TOP were used as ligands to passivate surfaces of core-shell QDs.In Fig.3 both QD491 and QD560 QDs in the mixed sample are close packed,forming a glassy solid on the TEM grid where each QDs remains separated from its neighbors by the organic capping groups.The separation between adjacent QDs is about(4.5±0.2)nm for the second QDs assembly.Combining this result and the spectroscopic observation,it is evident that QD491-QD560 separation distance (4.5±0.2)nm are within the FRET distance in the solid state samples prepared by spinning coating.

    It is also possible that the emission is quenched by the aggregation of acceptor QDs,but this is not the case in our observation[23-24].If the aggregation of QDs is the main reason for the PL quenching,all of the QDs samples in the assembly should show the same quenching efficiency.However,both the PL and TRPL spectra clearly show that the quenching efficiencies are dependent on donor-to-acceptor ratios.Especially for the QD491,the PL intensity is dramatically quenched (62.6%)in the presence of QD560 in the mixed sample,and the FRET efficiencies increase gradually as the percentage of QD560 is increased.Therefore,aggregation ofQDsisnotthemajor pathway for the PL quenching in these experiments.

    3 Conclusions

    In this report, we have synthesized and assembled solid state samples from the combinations of two QDs:CdSe-ZnS (QD491)typeⅠQDs(donor)and CdS-ZnSe(QD560)typeⅡQDs(acceptor)with various mixing ratios.The FRET process between these donors and acceptors in the QDs assemblies is confirmed by the PL intensity quenching and the decreased PL lifetime of donor QDs in this assembly.Besides,it is worth noting that the energy gap between the donor QDs and the acceptor QDs on the basis of PL spectra, ~0.3 eV,is larger than their Stokes shift, ~0.05 eV,in the band gap diagram in Fig.1(b).Since the emission bands of the donor and the acceptor are more separated,this feature is especially advantageous for the accurate measurements of PL lifetimes due to the elimination of the interference of donor emission spectra from the FRET-driven acceptor emission spectra.

    [1]Alivisatos A P.Science,1996,271:933-937

    [2]Zhag J,Campbell R E,Ting A Y,et al.Nature Rev.Mol.Cell Biol.,2002,3(12):906-18

    [3]Achermann M,Petruska M A,Kos S,et al.Nature,2004,429:642-646

    [4]Lu S,Madhukar A.Nano Lett.,2007,7:3443-3451

    [5]Medintz IL,Uyeda H T,Goldman E R,et al.Nature Materials,2005,4:435-446

    [6]Ivanov S A,Piryatinski A,Nanda J,et al.J.Am.Chem.Soc.,2007,129(38):11708-11719

    [7]Xu F,Volkov V,Zhu Y,et al.J.Phys.Chem.C,2009,113(45):19419-19423

    [8]Kim S,Fisher B,Eisier H J,et al.J.Am.Soc.,2003,125(38):11466-11467

    [9]Lakowicz J R.Principles of Fluorescence of Spectroscopy,2nded.,New York:Kluwer Academic/Plenum,1999:368-370

    [10]Crooker S A,Hollingsworth J A,Tretiak S,et al.Phys.Rev.Lett.,2002,89:186802-1-186802-4(doi:10.1103/PhysRevLett.89.186802)

    [11]Henglein A.Chem.Rev.,1989,89(8):1861-1873

    [12]Medintz I L,Berti L,Pons T,et al.Nano Lett.,2007,7(6):1741-1748

    [13]Sukhanova A,Devy J,Venteo L,et al.Anal.Biochem.,2004,324(1):60-67

    [14]Wu X,Liu H,Liu J,et al.Nat.Biotechnol.,2003,21(1):41-46

    [15]Wargnier R,Baranov A V,Maslov V G,et al.Nano Lett.,2004,4(3):451-457

    [16]Wang C,Chen C,Wei C,et al.J.Phys.Chem.C,2009,113:15548-15552

    [17]Wang C H,Chen C W,Chen Y T,et al.Appl.Phys.Lett.,2010,96:071906.doi:10.1063/1.3315876.

    [18]Murray C B,Norris D J,Bawendi M G.J.Am.Chem.Soc.,1993,115(19):8706-8715

    [19]Somers R C,Bawendi M G,Nocera D G.Chem.Soc.Rev.,2007,36:579-591

    [20]Hines M A,Sionnest P G.J.Phys.Chem.,1996,100:468-471

    [21]Jin L,Li S,Kwon B,et al.J.Appl.Phys.,2011,109:124310doi:10.1063/1.3597635(7pages).

    [22]Weller H.Angew.Chem.Int.Ed.,1993,32:41-53

    [23]Noh M,Kim T,Lee H,et al.Colloids&Surfaces A:Physicochem.Eng.Aspects,2010,359:39-44

    [24]Zhang Y,Mi L,Wang P N,et al.J.Lumin.,2008,128:1948-1951

    猜你喜歡
    能量轉(zhuǎn)移中北大學(xué)太原
    《中北大學(xué)學(xué)報(社會科學(xué)版)》征稿啟事
    太原清廉地圖
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    除夜太原寒甚
    《中北大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    蓄電池組能量均衡控制及SOC估算方法研究
    價值工程(2019年23期)2019-09-20 09:33:05
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    基于納米金與納米銀簇間表面等離子增強(qiáng)能量轉(zhuǎn)移效應(yīng)特異性檢測microRNA
    能量轉(zhuǎn)移型鋰電池組均衡電路的設(shè)計與研究
    K(5P)與H2的反應(yīng)碰撞和電子-振動能量轉(zhuǎn)移
    国产日本99.免费观看| 久久99热6这里只有精品| 日本三级黄在线观看| 中文资源天堂在线| 日韩欧美 国产精品| www日本黄色视频网| 亚洲性夜色夜夜综合| 在线免费十八禁| 日韩欧美国产在线观看| 天天一区二区日本电影三级| 亚洲av中文av极速乱| 少妇的逼好多水| 亚洲精品国产av成人精品 | 国产午夜福利久久久久久| 一区福利在线观看| 天天躁日日操中文字幕| 色尼玛亚洲综合影院| 两性午夜刺激爽爽歪歪视频在线观看| 搡老岳熟女国产| 亚洲性夜色夜夜综合| 久久精品夜色国产| 精品久久久久久久久久免费视频| 九九在线视频观看精品| 97超视频在线观看视频| 一边摸一边抽搐一进一小说| 一本精品99久久精品77| 久久精品91蜜桃| 久久精品国产清高在天天线| 99riav亚洲国产免费| 国内久久婷婷六月综合欲色啪| 婷婷亚洲欧美| 久久久久久久久大av| 毛片一级片免费看久久久久| 99久久成人亚洲精品观看| 国产午夜精品论理片| 此物有八面人人有两片| 久久综合国产亚洲精品| 中出人妻视频一区二区| 欧美激情国产日韩精品一区| 美女大奶头视频| 日韩欧美免费精品| 成年av动漫网址| 黄色配什么色好看| 精品一区二区免费观看| 亚洲av免费高清在线观看| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 女人十人毛片免费观看3o分钟| 久久久久性生活片| 亚洲性久久影院| 欧美日本亚洲视频在线播放| 深爱激情五月婷婷| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 精品国产三级普通话版| 亚洲欧美清纯卡通| 日韩一区二区视频免费看| 国产免费一级a男人的天堂| 日韩三级伦理在线观看| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频| 日本成人三级电影网站| 亚洲美女黄片视频| 久久久久久久久大av| 国产国拍精品亚洲av在线观看| 黑人高潮一二区| 久久久精品欧美日韩精品| videossex国产| 免费看av在线观看网站| 国产乱人偷精品视频| 亚洲无线观看免费| 亚洲自拍偷在线| 99九九线精品视频在线观看视频| 国产精品久久久久久久久免| 免费av不卡在线播放| av国产免费在线观看| 欧美激情在线99| 国产精品久久电影中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 国产色婷婷99| 91午夜精品亚洲一区二区三区| 色综合站精品国产| 国产中年淑女户外野战色| 18+在线观看网站| 日产精品乱码卡一卡2卡三| 一级毛片久久久久久久久女| 色av中文字幕| 精品一区二区三区视频在线观看免费| 91久久精品国产一区二区三区| 国产中年淑女户外野战色| 亚洲性久久影院| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频 | h日本视频在线播放| 久久久成人免费电影| 久久韩国三级中文字幕| 国产单亲对白刺激| 亚洲经典国产精华液单| 国产高清视频在线观看网站| 少妇人妻精品综合一区二区 | 亚洲成av人片在线播放无| av天堂在线播放| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 亚洲,欧美,日韩| 婷婷色综合大香蕉| 久久久久九九精品影院| 日韩欧美在线乱码| 成人国产麻豆网| 欧美成人一区二区免费高清观看| av专区在线播放| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看 | 国产人妻一区二区三区在| 久久久欧美国产精品| 国产精品无大码| 成人午夜高清在线视频| 老师上课跳d突然被开到最大视频| 在线观看免费视频日本深夜| 国产av不卡久久| 成人性生交大片免费视频hd| 国产成人freesex在线 | 精品久久久噜噜| 一区二区三区高清视频在线| 97超视频在线观看视频| 欧美丝袜亚洲另类| 久久久久国产精品人妻aⅴ院| 九九久久精品国产亚洲av麻豆| 一级毛片我不卡| 欧美最黄视频在线播放免费| 欧美日韩在线观看h| 欧美zozozo另类| 国产久久久一区二区三区| 欧美最新免费一区二区三区| 亚洲精品粉嫩美女一区| 99热这里只有精品一区| 欧美一区二区精品小视频在线| 舔av片在线| 欧美成人精品欧美一级黄| 伦精品一区二区三区| 日韩欧美精品v在线| 色播亚洲综合网| 精品久久久久久久久久免费视频| 精品人妻视频免费看| 久久6这里有精品| 久久久a久久爽久久v久久| 老熟妇仑乱视频hdxx| 成人漫画全彩无遮挡| 成年av动漫网址| 不卡一级毛片| av视频在线观看入口| 国产在视频线在精品| 两个人的视频大全免费| 69人妻影院| 中文在线观看免费www的网站| 成人av一区二区三区在线看| 久久6这里有精品| 男女那种视频在线观看| 色在线成人网| 亚洲国产色片| 国产黄片美女视频| 久久久久久久午夜电影| 亚洲第一电影网av| 日韩av不卡免费在线播放| 69人妻影院| 男女那种视频在线观看| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 国产亚洲精品综合一区在线观看| 午夜a级毛片| 国产精品嫩草影院av在线观看| 国产在线男女| 国产精品一及| 又爽又黄无遮挡网站| 国产精品亚洲一级av第二区| 嫩草影院精品99| 国产91av在线免费观看| 大型黄色视频在线免费观看| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看| 一进一出好大好爽视频| 人妻少妇偷人精品九色| 精品福利观看| 亚洲无线在线观看| 在线播放国产精品三级| 亚洲美女黄片视频| 亚洲精品国产av成人精品 | 亚洲aⅴ乱码一区二区在线播放| 国产色爽女视频免费观看| 最好的美女福利视频网| 岛国在线免费视频观看| 久久九九热精品免费| 女生性感内裤真人,穿戴方法视频| 一个人观看的视频www高清免费观看| 夜夜夜夜夜久久久久| 国产色婷婷99| 国产老妇女一区| 美女大奶头视频| 亚洲av一区综合| 欧美另类亚洲清纯唯美| 伦理电影大哥的女人| 黄片wwwwww| 九九热线精品视视频播放| 国产亚洲av嫩草精品影院| 赤兔流量卡办理| 男女下面进入的视频免费午夜| 国产精品嫩草影院av在线观看| 免费av观看视频| 亚洲精品日韩在线中文字幕 | 亚洲国产精品久久男人天堂| 国产精品亚洲美女久久久| 国产爱豆传媒在线观看| 美女内射精品一级片tv| 国产成人一区二区在线| 成年女人永久免费观看视频| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 久久午夜亚洲精品久久| 黄色配什么色好看| 深爱激情五月婷婷| 麻豆一二三区av精品| 国产高清激情床上av| 国产黄色视频一区二区在线观看 | 伦精品一区二区三区| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 免费观看在线日韩| 久久天躁狠狠躁夜夜2o2o| 在线播放无遮挡| 久久久久久久久久黄片| 在线播放国产精品三级| 国产男靠女视频免费网站| 久久国内精品自在自线图片| 国产成人freesex在线 | 免费av不卡在线播放| 黄色视频,在线免费观看| 国产大屁股一区二区在线视频| 国产男靠女视频免费网站| 久久九九热精品免费| 欧美激情久久久久久爽电影| 美女xxoo啪啪120秒动态图| 国产aⅴ精品一区二区三区波| 少妇人妻一区二区三区视频| 亚洲国产精品成人久久小说 | av免费在线看不卡| 99久国产av精品| 欧美一区二区精品小视频在线| 美女内射精品一级片tv| 大香蕉久久网| а√天堂www在线а√下载| 国产av麻豆久久久久久久| 国产高清激情床上av| 色视频www国产| 亚洲成人久久性| 国产成人a∨麻豆精品| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| 又黄又爽又免费观看的视频| 露出奶头的视频| 久久久久久久亚洲中文字幕| 国产精品久久久久久精品电影| 麻豆精品久久久久久蜜桃| 国产成人精品久久久久久| 一个人观看的视频www高清免费观看| 97超碰精品成人国产| 99热只有精品国产| 久久精品国产亚洲av天美| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 一区二区三区免费毛片| 亚洲色图av天堂| 亚洲av一区综合| 麻豆一二三区av精品| 亚州av有码| 成年av动漫网址| 国产精品无大码| 久久精品夜色国产| 1000部很黄的大片| 欧美色视频一区免费| av福利片在线观看| 精品久久久久久久末码| 欧美不卡视频在线免费观看| 天美传媒精品一区二区| 国产精品人妻久久久久久| 日本精品一区二区三区蜜桃| 男女那种视频在线观看| 97超视频在线观看视频| 久久人妻av系列| 亚洲欧美成人综合另类久久久 | 午夜激情欧美在线| 大型黄色视频在线免费观看| 国产成人aa在线观看| 久久精品91蜜桃| 国产精品久久视频播放| 变态另类成人亚洲欧美熟女| 18禁在线无遮挡免费观看视频 | 在现免费观看毛片| 高清午夜精品一区二区三区 | 久久久久精品国产欧美久久久| 美女免费视频网站| 老司机午夜福利在线观看视频| 男女啪啪激烈高潮av片| 午夜激情欧美在线| 久久欧美精品欧美久久欧美| 三级毛片av免费| 99久久久亚洲精品蜜臀av| 久久久久国内视频| 高清午夜精品一区二区三区 | 国产aⅴ精品一区二区三区波| 日韩精品有码人妻一区| 高清毛片免费看| 人人妻人人澡欧美一区二区| 最新在线观看一区二区三区| 欧美日韩在线观看h| 少妇熟女欧美另类| 免费看a级黄色片| 中文字幕精品亚洲无线码一区| 三级国产精品欧美在线观看| 日韩亚洲欧美综合| 插逼视频在线观看| 嫩草影院入口| 亚洲色图av天堂| av视频在线观看入口| 精品少妇黑人巨大在线播放 | 九色成人免费人妻av| 国产高清三级在线| 亚洲熟妇中文字幕五十中出| 99热精品在线国产| 男女边吃奶边做爰视频| 波多野结衣巨乳人妻| 国产成人福利小说| 午夜视频国产福利| 国国产精品蜜臀av免费| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 18+在线观看网站| 欧美一区二区国产精品久久精品| 久久久欧美国产精品| 国国产精品蜜臀av免费| 18+在线观看网站| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 91久久精品国产一区二区三区| 免费一级毛片在线播放高清视频| 国产一区二区激情短视频| 欧美最黄视频在线播放免费| 床上黄色一级片| 日韩大尺度精品在线看网址| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 人人妻,人人澡人人爽秒播| 俺也久久电影网| 在线观看免费视频日本深夜| 天美传媒精品一区二区| 日韩一区二区视频免费看| 哪里可以看免费的av片| av专区在线播放| 色哟哟·www| 成人欧美大片| 成人特级av手机在线观看| 麻豆一二三区av精品| 欧美一区二区国产精品久久精品| 真人做人爱边吃奶动态| 亚洲最大成人av| 亚洲成av人片在线播放无| 舔av片在线| av在线亚洲专区| 少妇裸体淫交视频免费看高清| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 又黄又爽又免费观看的视频| 一区二区三区免费毛片| 精品一区二区三区视频在线观看免费| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| 国产美女午夜福利| 日产精品乱码卡一卡2卡三| 亚洲成a人片在线一区二区| 免费看a级黄色片| 亚洲一区高清亚洲精品| avwww免费| 高清毛片免费看| 精品一区二区免费观看| 久久久精品大字幕| 国产精品日韩av在线免费观看| 亚洲av中文字字幕乱码综合| 欧美性感艳星| 伦理电影大哥的女人| 少妇猛男粗大的猛烈进出视频 | 国产精品,欧美在线| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 在线国产一区二区在线| 午夜亚洲福利在线播放| 亚洲精品一卡2卡三卡4卡5卡| 午夜老司机福利剧场| 在线天堂最新版资源| 毛片女人毛片| 一进一出抽搐gif免费好疼| 别揉我奶头~嗯~啊~动态视频| 日韩一本色道免费dvd| 在线看三级毛片| 自拍偷自拍亚洲精品老妇| 亚洲一区高清亚洲精品| 日本 av在线| 亚洲第一电影网av| 天堂√8在线中文| av专区在线播放| 激情 狠狠 欧美| 精品少妇黑人巨大在线播放 | 欧美一区二区亚洲| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 两个人的视频大全免费| 99热这里只有是精品在线观看| 美女大奶头视频| 欧美高清性xxxxhd video| 国产精品一及| 免费一级毛片在线播放高清视频| 在线观看美女被高潮喷水网站| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区成人| 白带黄色成豆腐渣| 午夜福利视频1000在线观看| 国产爱豆传媒在线观看| 欧美中文日本在线观看视频| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| 久久久精品94久久精品| 不卡视频在线观看欧美| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线观看免费| 美女 人体艺术 gogo| 日本与韩国留学比较| 欧美成人精品欧美一级黄| 日韩欧美一区二区三区在线观看| 亚洲三级黄色毛片| 99九九线精品视频在线观看视频| 久久鲁丝午夜福利片| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费| 国产视频内射| 草草在线视频免费看| 亚洲五月天丁香| 国产视频一区二区在线看| av女优亚洲男人天堂| 99国产极品粉嫩在线观看| 亚洲欧美精品综合久久99| 男女做爰动态图高潮gif福利片| 人妻夜夜爽99麻豆av| av在线天堂中文字幕| 亚洲最大成人手机在线| 国产探花极品一区二区| 天堂√8在线中文| 九九爱精品视频在线观看| 国产一区二区三区av在线 | 97热精品久久久久久| 精品久久久久久久人妻蜜臀av| 99热网站在线观看| 免费看av在线观看网站| 日韩人妻高清精品专区| 禁无遮挡网站| 亚洲av二区三区四区| 一夜夜www| 国产亚洲精品av在线| 国产av不卡久久| 国产色爽女视频免费观看| 日本 av在线| 色视频www国产| 最好的美女福利视频网| 国产黄色视频一区二区在线观看 | 欧美极品一区二区三区四区| 国产精品福利在线免费观看| 成人av在线播放网站| 国内精品美女久久久久久| videossex国产| 亚洲精品一卡2卡三卡4卡5卡| 女人十人毛片免费观看3o分钟| 亚洲,欧美,日韩| 欧美性感艳星| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 亚洲国产精品合色在线| 欧美色视频一区免费| 国产午夜精品久久久久久一区二区三区 | 久久精品国产亚洲av涩爱 | 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 日本熟妇午夜| 老司机影院成人| 色在线成人网| 十八禁国产超污无遮挡网站| 久久久久久大精品| 亚洲色图av天堂| 国产真实乱freesex| 亚洲成人中文字幕在线播放| 亚洲在线观看片| 日韩欧美免费精品| 日本黄色视频三级网站网址| 99热这里只有是精品在线观看| 久久99热这里只有精品18| 99久久精品一区二区三区| 岛国在线免费视频观看| 我的老师免费观看完整版| 成年免费大片在线观看| 美女黄网站色视频| 日日摸夜夜添夜夜添av毛片| 18禁裸乳无遮挡免费网站照片| 欧美+亚洲+日韩+国产| 欧美高清性xxxxhd video| 床上黄色一级片| 黄色配什么色好看| 波多野结衣高清作品| 国产伦一二天堂av在线观看| 18禁裸乳无遮挡免费网站照片| 久久欧美精品欧美久久欧美| 在线播放国产精品三级| 久久久精品欧美日韩精品| .国产精品久久| 欧美激情在线99| 女同久久另类99精品国产91| a级毛色黄片| 精品一区二区免费观看| 亚洲成av人片在线播放无| 成人无遮挡网站| 久久欧美精品欧美久久欧美| av黄色大香蕉| 偷拍熟女少妇极品色| 你懂的网址亚洲精品在线观看 | 国产人妻一区二区三区在| 成人三级黄色视频| 亚洲三级黄色毛片| 日日摸夜夜添夜夜爱| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 长腿黑丝高跟| 欧美不卡视频在线免费观看| 俄罗斯特黄特色一大片| 国产av一区在线观看免费| 嫩草影院精品99| 国产熟女欧美一区二区| 久久久国产成人精品二区| 五月玫瑰六月丁香| 久久久久国产网址| 人妻少妇偷人精品九色| 男女做爰动态图高潮gif福利片| 亚洲中文日韩欧美视频| 日韩高清综合在线| 日韩欧美精品v在线| 啦啦啦观看免费观看视频高清| av视频在线观看入口| 在线观看av片永久免费下载| 国产av一区在线观看免费| 中国国产av一级| 亚洲电影在线观看av| 免费看日本二区| 亚洲精品粉嫩美女一区| .国产精品久久| 国产视频内射| 国产精品一及| 国产探花极品一区二区| 黄色日韩在线| 亚洲自拍偷在线| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 亚洲中文字幕日韩| 蜜桃亚洲精品一区二区三区| 国产精品一及| 国产探花极品一区二区| 能在线免费观看的黄片| 丰满的人妻完整版| 亚洲国产日韩欧美精品在线观看| 给我免费播放毛片高清在线观看| 婷婷色综合大香蕉| 波多野结衣巨乳人妻| 日韩高清综合在线| 成人三级黄色视频| 国产av麻豆久久久久久久| 毛片一级片免费看久久久久| av天堂在线播放| 精品一区二区三区av网在线观看| 69av精品久久久久久| 波多野结衣高清无吗| 又黄又爽又刺激的免费视频.| av在线播放精品| 中文字幕av成人在线电影| 日韩欧美国产在线观看| 日本爱情动作片www.在线观看 | videossex国产| 无遮挡黄片免费观看| 日韩大尺度精品在线看网址| 欧美成人a在线观看| 99国产极品粉嫩在线观看| 国产成人a区在线观看| 日日摸夜夜添夜夜爱| 日产精品乱码卡一卡2卡三| 九九爱精品视频在线观看| 国产精品一区二区三区四区久久| 国产亚洲精品av在线| 欧美在线一区亚洲| 不卡一级毛片| 久久人人爽人人片av| 搡老岳熟女国产| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 午夜日韩欧美国产| av在线播放精品| 精品一区二区三区人妻视频| 久久久久性生活片|