• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mn3O4多面體納米晶體的制備及其電化學(xué)性能

    2013-10-17 03:03:02楊陸峰鄭明濤胡超凡崔江虎劉應(yīng)亮
    無機化學(xué)學(xué)報 2013年2期
    關(guān)鍵詞:理學(xué)院華南農(nóng)業(yè)大學(xué)多面體

    楊陸峰 高 闖 鄭明濤 胡超凡 崔江虎 劉應(yīng)亮*,

    (1暨南大學(xué)化學(xué)系納米化學(xué)研究所,廣州 510632)

    (2華南農(nóng)業(yè)大學(xué)理學(xué)院,廣州 510642)

    The development of manganese oxides nanocrystals has been intensively pursued due to their useful applications in the areas of catalysis,energy storage,chemicalsensing devices,magneticdata storage and ferro-uids[1-4].Among them,hausmannite Mn3O4presents particular interest because of its application as an effective catalyst for the decomposition of waste gas and waste solution[5-6].Recent studies have shown that nanostructural Mn3O4possesses interesting electrochemical properties.For instance,Zhang et al.[7]prepared Mn3O4polyhedron nanocrystal via thermolysis of a hydrogen-bonded polymer,which exhibitsa betterelectrochemical capacitance performance than spinel Mn3O4layered nanostructure[8].The performance of the metal oxides is dependent on the structure and morphology including crystallite size,stacking manner,orientation and aspect ratio,which are sensitive to the synthesis route of their preparation[9].

    Owing to the unique shape and size-dependent properties,Mn3O4has been prepared with various methods such as solvothermal treatment of manganite(MnOOH)[10-12],solvothermal treatment of manganese acetate(Mn(CH3COO)2·4H2O)with a hydrogen-bonded polymer[7],sonochemical method to prepare sphere-like nanocrystals[13],calcination of nitrate (Mn(NO3)2),carbonate (MnCO3),manganese oxides(MnO2,Mn2O3,etc.)and oxyhydroxide(g-MnOOH)at high temperature(1 000℃)[14-16],precipitation method from manganese nitrate (Mn(NO3)2)at moderate temperature[17],sol-gel process with a post-treatment at higher temperature[18-19],chemical bath deposition to prepare thin lms[20],electro spinning technique[21],gas condensation[22].

    However,synthetic methods that take advantage of costly organic surfactants and templates often require subsequent purification procedures which markedly increase manufacture costs[23-24].The preparation of Mn3O4by using the precursor manganese oxides with the sophisticated instrument could not be afforded by the average laboratories in the practical application.In the meanwhile,owing to the complex inuence of pH value,temperature,ion concentration,and so forth,limited breakthrough has been achieved for the morphology and size-controlled synthesis ofnanostructured Mn3O4through the solution based approach without any additives.Therefore,it is of great significance to develop an environmentally friendly,low-cost and template-free synthetic method for the synthesis of Mn3O4nanostructures.

    In our previous work,we have reported a simple method for the controlled synthesis of uniform shaped carbon hollow structures by an ethanol-assisted thermolysis of zinc acetate[25],which uses the generated zinc oxide nanostructures as in-situ templates.Herein,we report a one-step synthesis of Mn3O4polyhedral nanocrystals through a facile solution-based thermolysis route in the manganese acetate-alcohol system without any additives.In addition,the formation mechanism of the products has also been proposed.The electrochemical properties of the optimized products of Mn3O4nanocrystals were examined by cyclic voltam metry(CV)measurements.

    1 Experimental

    1.1 Synthesis of Mn3O4polyhedral nanocrystals

    All chemicals used were of analytical grade and purchased from the commercial market without further purification.The synthesis of Mn3O4nanostructures was carried out via a solvothermal method.In a typical procedure,2.5 mmol Mn(CH3COO)2·4H2O(Mn(Ac)2)were dissolved in 30 mL of absolute ethanol.Then the mixture was stirred to give a clear solution and transferred into a 45 mL Teflon-lined stainless steel autoclave.The autoclave was maintained at 200 ℃ for 1~24 h,with a heating rate of 10℃·min-1in an electronic furnace,and then cooled naturally to room temperature.The resulting precipitate was centrifuged and thoroughly washed with deionized water and ethanol several times before drying in air at 60℃ for 24 h.

    1.2 Characterization

    Crystallographic phases of the products were examinedbyXRD usingaMSALXD2X-ray diffractometer with Cu Kα radiation(36 kV,20 mA,λ=0.154 18 nm).FTIR spectra were measured by an Equinox 55 (Bruker)spectrometer with the KBr pellet technique from 400 to 4 000 cm-1.Raman spectra of sampleswere measured using a Renishaw Via microspectrometer using an excitation wavelength of 514 nm generated by an Ar+laser.A 100× objective was used to focus the laser beam and to collect the Raman signal.Chemical state analysis was carried out by X-ray photoelectron spectroscopy (XPS)using a Shimadzu AXIS Ultra X-ray photoelectron spectrometer.All XPS spectra were corrected using the C1s line at 284.6 eV.Casa XPS Version 2.3.13 software and Origin Pro 8.0 were used to analyze the experimental data and graphs.The morphologies of the samples were characterized with scanning electron microscopy (SEM,PhilipsXL-30s),transmission electron microscopy (TEM,Philips Tecnai-10)and high-resolution TEM (HR-TEM,GEOL-2010).The typical components of the liquid fractions after the reaction were detected by the gas chromatography and mass spectrometry(GC-MS)technique.The conditions for GC-MS are given in the supporting information.

    1.3 ElectrochemicalmeasurementofMn3O4 electrode

    The electrochemical electrode was tested on a CHI 660B electrochemical workstation in a three-electrode system.The working electrode was fabricated by pressing the mixture of Mn3O4,carbon black and 5%-PTFE(Polytetrafluoroethylene)(75∶15∶10,W/W/W)into foam nickel electrode.A Pt slice was used as auxiliary electrode and a Ag/AgCl as reference electrode.In these studies,all measurements were performed in a 0.5 mol·L-1Na2SO4aqueous electrolyte solution and all electrochemical experiments were carried out at room temperature.

    2 Results and discussion

    2.1 Characterization of materials

    The crystalline structure and phase purity of the product were investigated by XRD as shown in Fig.1a.Mn3O4are synthesized with 2.5 mmol Mn(Ac)2under the present condition,which can be easily indexed to pure tetragonal phase of γ-Mn3O4(PDF No.89-4837)with lattice constants a of 0.576 3 nm and c of 0.945 6 nm.Comparatively,with the coexistence of γ-Mn3O4,the sample prepared with 7.5 mmol Mn(Ac)2exhibits strong diffraction peak of MnO (PDF No.89-4835)(Fig.1b),indicating that the reaction dosage of Mn(Ac)2has vital influence on the crystals structure of the product.

    The FTIR spectrum in Fig.2 provides more convincing evidence of pure Mn3O4fabricated with 2.5 mmol Mn(Ac)2,which displays three characteristic peaks at 638,532 and 416 cm-1[26-27].Besides,strong absorptions at 3 442 cm-1and weak absorptions around 2 800~3 000 cm-1respectively reveal the stretching vibrations of O-H and C-H.The absorptions at 1 635,1 384 and 1 112 cm-1correspond to the vibrations of CO,C-H groups.Therefore,the FTIR spectrum suggests that the surface of the nanoparticles is coated by a layer of ethanol molecules.

    Considering the C-OH and C-H vibration,and Ac-/C2H5OH used in hydrothermal conditions,the Raman spectra have been provided to investigate the surface microstructure of the pure Mn3O4nanocrystals,as shown in Fig.3.From the Raman spectrum,the Raman peaks at 652.3 cm-1corresponding to crystalline hausmannite structure are clearly found,which are in good agreement with the microstructure information of as-prepared Mn3O4[28-29].In addition,there are no diffraction peaks around~1 360 cm-1and 1 580 cm-1,suggesting the absence of carbon layer on the Mn3O4prepared under the hydrothermal conditions at 200℃.

    Chemical state information for the as-prepared Mn3O4was studied using XPS.As shown in Fig.4a,the survey spectrum shows no significant presence of impurities,except for the contaminant carbon.Energy levels of Mn3s,O1s,Mn2p and Mn3p are obtained in the exact energy locations as reported earlier[30-31].In Fig.4b,the binding energy value of Mn2p3/2is 641.6 eV,and the spin orbit splitting between the Mn2p3/2and Mn2p1/2level is 11.7 eV,which perfectly matches the previously reported values for hausmannite[32].The oxidation state of the manganese atom is further analyzed by deconvoluted for relative intensities of the component peaks of 3p3/2XPS peaks.The binding energy of the Mn2p3/2peak components (640.9 and 642.6 eV)is in good agreement with the literature report,respectively,for the occurrence of Mn2+and Mn4+[31,33]for the formation of 2MnO-MnO2.The atomic concentration of the total oxygen and the manganese from the results of XPS is 64.5% and 35.5%,respectively.The atomic ratio of O to Mn in the Mn3O4is 1.82,which is greater than the theoretical value of 1.33.The excess O may come from the ethanol molecules coated on the surface ofMn3O4as demonstrated by the FTIR spectrum.

    In order to study the inuence of the reaction time on the morphology ofthe products,series of experiments were carried out.SEM images in Fig.5a shows a low-magnication of the sample obtained after solvothermal reaction at 200℃for 2 h,which exhibit large-scale formation of uniform nanoparticles with diameters about 10 ~20 nm.The nanometer-sized particles are observed with diameter of 40~60 nm aggregative attached together in Fig.5b.With increasing the reaction time to 24 h,many polyhedral Mn3O4nanocrystals with mean diameter of 250 nm are presented in Fig.5c.Therefore,the SEM images of the samples reveal that the reaction time plays vital role in the shape evolution of Mn3O4.When the reaction time is extended,the size of Mn3O4sample grows bigger and exhibits distinct polyhedral nanocrystals.

    For the reason that the poor resolution of SEM images can not throw light on the formation process of Mn3O4,the morphology and microstructures of the asprepared Mn3O4were further investigated with TEM and HRTEM.As shown in Fig.6a,a mass of uniform tiny nanoparticles with average diameter of 8 nm are observed after reaction of 1 h.When the reaction time is increased to 2 h,it can be clearly observed that the initial nanocrystals grow into uniform hexagonal flakelike morphology with widths of 10~15 nm as shown in Fig.6b.When the reaction time is further increased to 12 h,many polyhedral nanocrystals with rough surface are observed,which project to regular tetragonal shape with edge lengths of 40~60 nm(Fig.6c).

    The uniform polyhedral nanocrystals with smooth surface are produced when the reaction time is extended to 18 h (Fig.7a).In the same time,the corresponding XRD pattern exhibits sharp and strong diffraction peaks of γ-Mn3O4(Fig.1a).More details of the structure are investigated by HRTEM images.Homogeneous octahedral like nanocrystals with edge lengths about 120 nm are clearly seen in Fig.7b.As shown in Fig.7c,the corresponding lattice fringes exhibit distinct sets of lattice spacing of about 0.306 nm,consistent with(112)crystal planes of a tetragonal structure.Therefore,the Mn3O4nanostructure can be well controlled by tuning the reaction time at 200℃with 2.5 mmol Mn(Ac)2.The time-dependent experiments reveal that the formation of Mn3O4nanocrystals experience an Ostwald ripening dominated process,which is well consistent with the SEM investigation.

    2.2 Formation mechanism of polyhedral nanocrystals

    X-ray crystallography analysis shows that Mn3O4is obtained with 2.5 mmol Mn(Ac)2through the solvothermal process.Interestingly,the synthesized product exhibits the crystalline phase of MnO when increasing the dose of Mn(Ac)2to 7.5 mmol at 200 ℃ (Fig.1b).Therefore,it can be deduced that there is an oxidizing process of MnⅡto MnⅢ with O2both in the autoclave and the ethanol solution.And the limited amount of O2in the reaction system is not enough to have 7.5 mmol MnⅡall oxidized into MnⅢ.Meanwhile,an intense odor of ester is noticed from the solution after the reaction.To shed light on the formation process of Mn3O4,the reaction by-product has been investigated via GC/MS technique.GC/MS analysis conducted on the extract of the post-reaction solution clearly reveals the existence of ethyl acetate (Fig.S1,S2,Supporting Information),indicating the formation of butyl acetate during the synthetic procedure,which is similar to the previous report[34].Thus,On the basis of the experimental results,a formation mechanism of Mn3O4polyhedral nanocrystals is proposed.We believe that the reaction process of the manganese acetate-alcohol solution may be as follows:

    In the current solvothermal synthesis at 200℃,the reaction between manganese acetate and alcohol firstly results in the coordination of C2H5OH to manganese centers,to form unstable alcohol acetate complexes(CH3COO)2-xMn(OC2H5)xby ligand exchange/substitution,concomitant with the release of CH3COOH(eq.1).The produced acetic acid could then react with the solvent alcohol to form water by a slow esterification reaction(eq.2).Subsequently,(CH3COO)2-xMn(OC2H5)xwould hydrolyze and generate MnO under the selfgenerated pressure (eq.3).Finally,Mn3O4nanostructures are achieved after the oxidation reaction of the active MnO with the O2both in the reaction container and ethanol solution (eq.4).In this current situation,many newly formed Mn3O4colloids aggregate together andform nuclei.Meanwhile,thenascentMn3O4nanocrystals with high surface energies might be temporarily stabilized by ethanol solution.Then,the dissolution recrystallization and self-assembly process dominate.Subsequently,an Ostwald ripening process dominates.The proposed pathway is supported by our time-dependent experiments,as shown in Fig.6a~c.

    2.3 Electrochemical properties of Mn3O4 polyhedral nanocrystals

    The electrochemical performance of Mn3O4polyhedral nanocrystals synthesized at 200℃for 18 h were evaluated as a supercapacitor electrode in view of their intrinsic properties and unique structural features.Fig.8 shows the cyclic voltammetry (CV)analysis at various scan rates in 0.5 mol·L-1Na2SO4electrolyte with a potential range of 0.1 to 0.9 V.(vs.Ag/AgCl).The CV curves at slow scan rate present an ideal capacitive behavior with ne rectangular shape.The deviation from rectangularity of the CV becomes distinct with the increase of scan rate.No obvious redox peaks are present in the CV curves,revealing that the measured electrode is charged and discharged at a pseudo-constant rate over the complete voltammetric cycle[35].

    The MnO2based electrode[36]reveal maybe the charge storage mechanism in Mn3O4electrode.At slower scan rate,almost all available pores both on the surface and inside of Mn3O4electrode can be filled with Na+from electrolyte,resulting in a better effective utilization of Mn3O4for redox reaction and a better capacitance.However,the effective interaction between the ions and the electrode is greatly decreased when increasing the scan rate.Thus,the effective redox reaction of Mn3O4is confined only to the outer surface of Mn3O4electrode,resulting in decreased capacitance.The specic capacitance of the electrode at different current densities can be calculated from the following equation[37]

    where C is the specific capacitance of the electrode based on the mass of active materials(F·g-1),Q is the sum of anodic and cathodic voltammetric charges on positive and negative sweeps(C),I is the sample current(A),W is the weight of active materials(g),and V is the total potential deviation of the voltage window(V).v is the scanning rate(V·s-1)and ω is the mass of active electrode materials (g).According to formula(1),specic capacitance ranging from 173 to 84 F·g-1can be delivered at the various scan rates of 2~50 mV·s-1,as shown in Fig.8,which is a little lower than that of Mn3O4nano-octahedrons[38].Thus,the superior crystal structure should be provided for a better functional properties of Mn3O4。

    3 Conclusions

    In summary,Mn3O4nanocrystals with wellcontrolled polyhedral shape have been synthesized via Ethanol-assisted thermolysis of 2.5 mol manganese acetate at 200℃ for 18 h.On the basis of the results,a formation mechanism of Mn3O4polyhedral nanocrystals is proposed.It is valuable to study the shape evolution of γ-Mn3O4in the present reaction system for the understanding of the formation process of polyhedron structures.Cyclic voltammetry measurement shows that the as prepared Mn3O4electrode exhibits a good pseudo capacitance behavior with a discharge specific capacitance of 173 F·g-1at a sweep rate of 5 mV·s-1.These results suggest that Mn3O4polyhedral nanocrystals materials may have potential applications in electrochemical capacitor.

    [1]Zarur A J,Ying J Y.Nature,2000,403:65-67

    [2]Majetich S A,Jin Y.Science,1999,284:470-473

    [3]Nayral C,Viala E,Fau P,et al.Chem.Eur.J.,2000,6:4802-4090

    [4]Raj K,Moskowitz R.J.Magn.Magn.Mater.,1990,85:233-245

    [5]Stobhe E R,Boer B A,Geus J W.Catal.Today,1999,47:161-167

    [6]Yamashita T,Vannice A.J.Catal.,1996,163:158-168

    [7]Zhang F,Zhang X G,Hao L.J.Mater.Chem.Phys.,2011,126:853-858

    [8]Dai Y,Wang K,Xie J Y.Appl.Phys.Lett.,2007,90:102-104

    [9]Jiang J,Li L.Mater.Lett.,2007,61:4894-4896

    [10]Zhang W,Yang Z,Liu Y,et al.J.Cryst.Growth,2004,263:394-399

    [11]Demazeau G.J.Mater.Chem.,1999,9:15-18

    [12]Walton R I.Chem.Soc.Rev.,2002,31:230-238

    [13]Askarinejada A,Bagherzadehb M,Morsali A.J.Appl.Surf.Sci.,2010,256:6678-6682

    [14]Shomate C H.J.Am.Chem.Soc.,1943,65:786-789

    [15]Southard J C,Moore G E.J.Am.Chem.Soc.,1942,64:1769-1770

    [16]Ursu I,Alexandrescu R,Mihailescu I N.J.Phys.B,1986,19:825-830

    [17]Rabiei S,Miser D E,Lipscomb J A,et al.J.Mater.Sci.,2005,40:4995-4998

    [18]Ching S,Roark J L,Duan N.Chem.Mater.,1997,9:750-754

    [19]Al Sagheer F A,Hasan M A,Pasupulety L.J.Mater.Sci.Lett.,1999,18:209-211

    [20]Xu H Y,Xu S L,Wang H,et al.J.Electrochem.Soc.,2005,12:803-807

    [21]Shao C,Guan H,Liu Y,et al.J.Solid State Chem.,2004,177:2628-2631

    [22]Dimesso L,Heider L,Hahn H.Solid State Ionics,1999,123:39-46

    [23]Manna L,Milliron D J,Meisel A,et al.Nat.Mater.,2003,2:382-385

    [24]Tian Z R,Voigt J A,Liu J,et al.Nat.Mater.,2003,2:821-826

    [25]Zheng M T,Liu Y L,Zhao S,et al.Inorg.Chem.,2010,49:8674-8683

    [26]Yang B J,Hu H M,Li C,et al.Chem.Lett.,2004,33:456-458

    [27]Ocana M.Colloid.Polym.Sci.,2000,278:443-449

    [28]Wang W Z,Ao L.Cryst.Growth Des.,2008,8:358-362

    [29]Zuo J,Xu C,Qian Y T,et al.Nanostruct.Mater.,1998,10:1331-1335

    [30]Zhao L Z,Young V.J.Electron Spectrosc.Relat.Phenom.,1984,34:45-54

    [31]Ezhil Raj A M,Victoria S G,Jothy V B,et al.J.Appl.Surf.Sci.,2010,256:2920-2926

    [32]Foord J S,Jackman R B,Allen G C.Philos.Mag.A,1984,49:657-663

    [33]Castro V D,Polzonetti G.J.Electron Spectrosc.,1989,48:117-123

    [34]Ye J F,Liu W,Cai J G.J.Am.Chem.Soc.,2011,133:933-940

    [35]Xu M W,Kong L B,Zhou W J,et al.J.Phys.Chem.C,2007,111:19141-19147

    [36]Devaraj S,Munichandraiah N.J.Phys.Chem.C,2008,112:4406-4417

    [37]YI Guan-Gui(易 觀 貴 ),XIAO Yong(肖 勇 ),HE Wen-Qi(賀文啟),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(1):162-166

    [38]Jiang H,Zhao T,Yan C,et al.Nanoscale,2010,2:2195-2198

    猜你喜歡
    理學(xué)院華南農(nóng)業(yè)大學(xué)多面體
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    華南農(nóng)業(yè)大學(xué)珠江學(xué)院作品精選
    聲屏世界(2022年21期)2023-01-07 12:53:10
    華南農(nóng)業(yè)大學(xué)生生命科學(xué)學(xué)院簡介
    整齊的多面體
    獨孤信多面體煤精組印
    華南農(nóng)業(yè)大學(xué)藝術(shù)學(xué)院設(shè)計作品選登
    具有凸多面體不確定性的混雜隨機微分方程的鎮(zhèn)定分析
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    傅琰東:把自己當(dāng)成一個多面體
    金色年華(2016年11期)2016-02-28 01:42:38
    欧美少妇被猛烈插入视频| 国产欧美日韩综合在线一区二区| 午夜激情av网站| 精品国产乱码久久久久久小说| 欧美精品亚洲一区二区| 女人精品久久久久毛片| av天堂在线播放| 日日摸夜夜添夜夜添小说| 最近最新中文字幕大全免费视频| 不卡一级毛片| 亚洲国产中文字幕在线视频| 久久中文字幕一级| 国产日韩欧美视频二区| av又黄又爽大尺度在线免费看| 丝袜美腿诱惑在线| 黑人巨大精品欧美一区二区蜜桃| 色视频在线一区二区三区| 亚洲熟女精品中文字幕| 日韩欧美一区视频在线观看| 欧美大码av| 国产精品av久久久久免费| 日韩中文字幕视频在线看片| 少妇人妻久久综合中文| 欧美人与性动交α欧美精品济南到| 成人免费观看视频高清| 国产亚洲精品一区二区www | 91国产中文字幕| 久久中文看片网| 侵犯人妻中文字幕一二三四区| www.精华液| 成在线人永久免费视频| 精品国产超薄肉色丝袜足j| 人人澡人人妻人| 国产成人影院久久av| 欧美激情 高清一区二区三区| 手机成人av网站| 在线观看免费日韩欧美大片| 欧美黑人精品巨大| 91精品伊人久久大香线蕉| 欧美人与性动交α欧美精品济南到| 日本精品一区二区三区蜜桃| 国产日韩欧美视频二区| 黑人猛操日本美女一级片| 99国产精品一区二区蜜桃av | 亚洲精品国产精品久久久不卡| 亚洲专区国产一区二区| 高清av免费在线| 久久久久国内视频| www.999成人在线观看| 飞空精品影院首页| 国产人伦9x9x在线观看| 欧美精品人与动牲交sv欧美| 国产又爽黄色视频| 夜夜骑夜夜射夜夜干| 国产亚洲欧美精品永久| 久久精品成人免费网站| 久久精品国产亚洲av香蕉五月 | 国产精品二区激情视频| 丝袜在线中文字幕| 精品卡一卡二卡四卡免费| 精品一区在线观看国产| av一本久久久久| 中文精品一卡2卡3卡4更新| 在线看a的网站| 欧美黄色片欧美黄色片| 国产高清视频在线播放一区 | h视频一区二区三区| 999久久久国产精品视频| 欧美人与性动交α欧美软件| 青春草亚洲视频在线观看| 精品国产乱码久久久久久小说| 亚洲av日韩在线播放| 精品少妇黑人巨大在线播放| 日本91视频免费播放| 国产精品久久久久久精品电影小说| 亚洲精品久久午夜乱码| 操美女的视频在线观看| 国产精品成人在线| 国产av精品麻豆| 国产主播在线观看一区二区| 日韩欧美国产一区二区入口| a 毛片基地| 日本av手机在线免费观看| 99香蕉大伊视频| 母亲3免费完整高清在线观看| 美女高潮到喷水免费观看| 亚洲第一av免费看| 国产精品一二三区在线看| 国产成人免费无遮挡视频| av又黄又爽大尺度在线免费看| 亚洲人成电影免费在线| 一级,二级,三级黄色视频| 久久精品国产亚洲av高清一级| 久久亚洲国产成人精品v| 国产日韩欧美亚洲二区| 久久久国产欧美日韩av| 老司机影院成人| xxxhd国产人妻xxx| 18禁裸乳无遮挡动漫免费视频| 免费人妻精品一区二区三区视频| 亚洲av电影在线进入| 国产精品二区激情视频| 亚洲国产毛片av蜜桃av| 老司机靠b影院| 日韩 亚洲 欧美在线| 黄色a级毛片大全视频| 爱豆传媒免费全集在线观看| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲综合一区二区三区_| 蜜桃在线观看..| 久久久久久久大尺度免费视频| 老司机在亚洲福利影院| 夜夜骑夜夜射夜夜干| 看免费av毛片| 日韩有码中文字幕| 亚洲欧美一区二区三区黑人| 国产精品久久久人人做人人爽| 午夜两性在线视频| 亚洲精品第二区| 欧美激情久久久久久爽电影 | 国产在线一区二区三区精| a 毛片基地| 亚洲自偷自拍图片 自拍| 精品国产国语对白av| 国产成人av激情在线播放| 男女国产视频网站| 老司机福利观看| 久久久久国产一级毛片高清牌| 亚洲av男天堂| 亚洲人成电影免费在线| 亚洲美女黄色视频免费看| 在线看a的网站| 欧美精品一区二区大全| 一二三四社区在线视频社区8| 99国产精品免费福利视频| 深夜精品福利| 午夜免费观看性视频| 婷婷成人精品国产| 欧美性长视频在线观看| 啦啦啦在线免费观看视频4| 久久人人爽av亚洲精品天堂| 国产高清国产精品国产三级| 亚洲欧洲日产国产| 一级毛片电影观看| 国产区一区二久久| 国产欧美日韩综合在线一区二区| 国产极品粉嫩免费观看在线| 亚洲精品日韩在线中文字幕| 国产黄频视频在线观看| 18禁黄网站禁片午夜丰满| 久久久久国产一级毛片高清牌| 欧美人与性动交α欧美精品济南到| 免费人妻精品一区二区三区视频| 久久九九热精品免费| 最黄视频免费看| 一区在线观看完整版| 超色免费av| 久久天躁狠狠躁夜夜2o2o| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 香蕉丝袜av| 久久人妻福利社区极品人妻图片| 亚洲七黄色美女视频| cao死你这个sao货| 最近最新中文字幕大全免费视频| 国产av精品麻豆| 99精国产麻豆久久婷婷| 欧美激情高清一区二区三区| 香蕉丝袜av| 在线看a的网站| 成年美女黄网站色视频大全免费| 永久免费av网站大全| 老鸭窝网址在线观看| 久久人妻福利社区极品人妻图片| 黄色视频,在线免费观看| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品久久久久5区| 久久中文字幕一级| 欧美xxⅹ黑人| 男女边摸边吃奶| 欧美日韩视频精品一区| 成人手机av| 老鸭窝网址在线观看| 欧美亚洲 丝袜 人妻 在线| 大香蕉久久成人网| 精品熟女少妇八av免费久了| 一进一出抽搐动态| 99九九在线精品视频| 中国国产av一级| 精品第一国产精品| 91老司机精品| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区久久| 亚洲国产精品成人久久小说| 久热爱精品视频在线9| 一二三四在线观看免费中文在| 婷婷成人精品国产| 国产野战对白在线观看| 精品视频人人做人人爽| 免费在线观看完整版高清| 肉色欧美久久久久久久蜜桃| 国产亚洲精品久久久久5区| 国产精品av久久久久免费| 国产精品自产拍在线观看55亚洲 | 亚洲五月婷婷丁香| a级毛片在线看网站| 国产成人影院久久av| 国产成人av教育| 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 9色porny在线观看| 高潮久久久久久久久久久不卡| 欧美精品av麻豆av| 黄片播放在线免费| 真人做人爱边吃奶动态| 天天躁日日躁夜夜躁夜夜| 国产成+人综合+亚洲专区| 超碰成人久久| 动漫黄色视频在线观看| 啦啦啦啦在线视频资源| 建设人人有责人人尽责人人享有的| 悠悠久久av| 国产亚洲精品第一综合不卡| 涩涩av久久男人的天堂| 91麻豆精品激情在线观看国产 | 黄色 视频免费看| 黄网站色视频无遮挡免费观看| 制服人妻中文乱码| 亚洲第一青青草原| 国产黄频视频在线观看| 在线观看舔阴道视频| 首页视频小说图片口味搜索| 欧美一级毛片孕妇| 窝窝影院91人妻| 国产精品99久久99久久久不卡| 精品人妻一区二区三区麻豆| 亚洲久久久国产精品| 亚洲av日韩在线播放| 国产欧美日韩一区二区精品| 精品久久蜜臀av无| 亚洲成人手机| 一边摸一边做爽爽视频免费| 欧美在线黄色| 宅男免费午夜| 亚洲欧美精品自产自拍| 国产欧美日韩一区二区精品| 国产1区2区3区精品| 精品少妇一区二区三区视频日本电影| 久久久久久久国产电影| 日韩欧美一区二区三区在线观看 | 久久久久久久久久久久大奶| 一进一出抽搐动态| 国产片内射在线| 亚洲va日本ⅴa欧美va伊人久久 | 一区二区日韩欧美中文字幕| www.av在线官网国产| 亚洲av欧美aⅴ国产| 精品一区二区三区四区五区乱码| 欧美大码av| 又黄又粗又硬又大视频| 欧美日韩亚洲高清精品| 国产淫语在线视频| 国产精品一区二区在线观看99| av网站免费在线观看视频| 中文欧美无线码| 亚洲综合色网址| 丁香六月欧美| 黑人巨大精品欧美一区二区mp4| 精品人妻一区二区三区麻豆| 黄片小视频在线播放| 男女下面插进去视频免费观看| 性少妇av在线| 久久久久久久精品精品| 五月天丁香电影| 国产深夜福利视频在线观看| 亚洲视频免费观看视频| 香蕉丝袜av| 精品熟女少妇八av免费久了| 伦理电影免费视频| 成年人午夜在线观看视频| 好男人电影高清在线观看| 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 后天国语完整版免费观看| 亚洲精品国产一区二区精华液| 国产成人免费无遮挡视频| 侵犯人妻中文字幕一二三四区| 一个人免费看片子| 亚洲中文av在线| 女人精品久久久久毛片| 少妇的丰满在线观看| 人人妻人人添人人爽欧美一区卜| av不卡在线播放| 12—13女人毛片做爰片一| 人妻 亚洲 视频| 精品国产乱码久久久久久男人| 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 在线观看舔阴道视频| 动漫黄色视频在线观看| 青春草视频在线免费观看| 亚洲精品美女久久av网站| 久久人妻熟女aⅴ| 久久香蕉激情| 中文字幕色久视频| 淫妇啪啪啪对白视频 | 国产无遮挡羞羞视频在线观看| 在线观看人妻少妇| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 亚洲国产欧美在线一区| 9色porny在线观看| 国产老妇伦熟女老妇高清| 欧美日韩亚洲高清精品| 国产主播在线观看一区二区| 亚洲性夜色夜夜综合| 一区二区三区精品91| 国产精品免费大片| 精品卡一卡二卡四卡免费| 一二三四在线观看免费中文在| 在线观看人妻少妇| 亚洲精品粉嫩美女一区| 亚洲精品自拍成人| 国产一区二区在线观看av| 人人澡人人妻人| 下体分泌物呈黄色| 中文字幕制服av| 亚洲视频免费观看视频| 99国产精品一区二区蜜桃av | 一区二区三区乱码不卡18| 午夜福利影视在线免费观看| 一二三四在线观看免费中文在| 亚洲精品一区蜜桃| 国产欧美亚洲国产| 亚洲五月婷婷丁香| 欧美日韩亚洲国产一区二区在线观看 | 99re6热这里在线精品视频| 欧美日韩亚洲综合一区二区三区_| 国产黄频视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 黑人操中国人逼视频| 亚洲三区欧美一区| 欧美午夜高清在线| 91av网站免费观看| 欧美黄色淫秽网站| 午夜福利影视在线免费观看| 韩国精品一区二区三区| 男女床上黄色一级片免费看| 午夜福利在线观看吧| 久久久国产一区二区| 午夜福利影视在线免费观看| 男人舔女人的私密视频| 黄片小视频在线播放| a级毛片在线看网站| 国产成人欧美在线观看 | 99精品欧美一区二区三区四区| 欧美在线一区亚洲| 免费在线观看黄色视频的| 一级毛片电影观看| 亚洲欧美精品综合一区二区三区| 1024香蕉在线观看| 伊人亚洲综合成人网| √禁漫天堂资源中文www| a 毛片基地| 国产不卡av网站在线观看| 中国美女看黄片| 欧美另类一区| 国产精品一区二区精品视频观看| 天天影视国产精品| 日韩欧美免费精品| 各种免费的搞黄视频| 精品国产国语对白av| 亚洲av成人不卡在线观看播放网 | 十分钟在线观看高清视频www| 99九九在线精品视频| 一个人免费看片子| 大型av网站在线播放| 最新在线观看一区二区三区| 99久久综合免费| 欧美+亚洲+日韩+国产| www.av在线官网国产| 99精品久久久久人妻精品| 午夜福利视频精品| 亚洲精品国产av蜜桃| 一个人免费在线观看的高清视频 | svipshipincom国产片| 亚洲精品一卡2卡三卡4卡5卡 | 欧美成人午夜精品| 日本欧美视频一区| 国内毛片毛片毛片毛片毛片| 日韩中文字幕视频在线看片| 岛国在线观看网站| 国产欧美日韩一区二区三 | 黑人巨大精品欧美一区二区mp4| 青春草视频在线免费观看| 一级,二级,三级黄色视频| av天堂久久9| 不卡一级毛片| 成在线人永久免费视频| 久久久国产一区二区| 日韩中文字幕欧美一区二区| 99国产精品免费福利视频| 亚洲国产av影院在线观看| av电影中文网址| 国产精品香港三级国产av潘金莲| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 999久久久国产精品视频| 久久国产精品大桥未久av| 成年女人毛片免费观看观看9 | 99久久人妻综合| 在线看a的网站| 国产一区二区 视频在线| 美女视频免费永久观看网站| 国产一区二区三区在线臀色熟女 | 国产男人的电影天堂91| 一二三四在线观看免费中文在| 国产精品二区激情视频| 国产一区二区在线观看av| 欧美性长视频在线观看| 亚洲国产看品久久| 国产色视频综合| 国产免费一区二区三区四区乱码| 日韩 欧美 亚洲 中文字幕| 最新的欧美精品一区二区| 精品少妇内射三级| 在线观看免费视频网站a站| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频 | 两人在一起打扑克的视频| 老司机亚洲免费影院| 国产不卡av网站在线观看| 一区二区av电影网| 手机成人av网站| 欧美黑人欧美精品刺激| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 人妻一区二区av| 色婷婷av一区二区三区视频| 下体分泌物呈黄色| 日韩三级视频一区二区三区| 爱豆传媒免费全集在线观看| 亚洲七黄色美女视频| 中文精品一卡2卡3卡4更新| 性色av一级| 肉色欧美久久久久久久蜜桃| 制服人妻中文乱码| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 黑人操中国人逼视频| 国产欧美日韩一区二区三 | 国产精品一区二区免费欧美 | 午夜精品久久久久久毛片777| 无限看片的www在线观看| 亚洲久久久国产精品| 成年女人毛片免费观看观看9 | 中文字幕人妻丝袜一区二区| 免费av中文字幕在线| 丝瓜视频免费看黄片| 91国产中文字幕| 亚洲专区国产一区二区| 久久女婷五月综合色啪小说| 国产片内射在线| 涩涩av久久男人的天堂| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲 | videosex国产| 国产精品一区二区在线不卡| 在线观看人妻少妇| 免费观看a级毛片全部| av不卡在线播放| 欧美日本中文国产一区发布| 2018国产大陆天天弄谢| 亚洲专区中文字幕在线| 交换朋友夫妻互换小说| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 香蕉丝袜av| 亚洲伊人久久精品综合| 窝窝影院91人妻| 麻豆乱淫一区二区| av天堂在线播放| kizo精华| 纵有疾风起免费观看全集完整版| 91麻豆av在线| 悠悠久久av| 伊人亚洲综合成人网| 亚洲av成人一区二区三| 免费在线观看完整版高清| 777米奇影视久久| 欧美+亚洲+日韩+国产| 久久精品亚洲av国产电影网| 亚洲一区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一欧美日韩一区二区三区 | 中文字幕av电影在线播放| 日韩欧美一区视频在线观看| 亚洲免费av在线视频| 婷婷成人精品国产| 日韩人妻精品一区2区三区| 人妻人人澡人人爽人人| 国产在线视频一区二区| 男女高潮啪啪啪动态图| 18禁观看日本| 成人手机av| 少妇 在线观看| 亚洲七黄色美女视频| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看| 国产男女内射视频| 国产日韩欧美亚洲二区| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人澡人人爽人人夜夜| 欧美另类一区| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| 我要看黄色一级片免费的| 国产免费现黄频在线看| 我的亚洲天堂| 热99久久久久精品小说推荐| 成人三级做爰电影| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 在线观看www视频免费| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区 | 日本撒尿小便嘘嘘汇集6| 999精品在线视频| 久久久久国内视频| 97人妻天天添夜夜摸| 成年美女黄网站色视频大全免费| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 亚洲avbb在线观看| 精品亚洲成国产av| 午夜老司机福利片| 国产无遮挡羞羞视频在线观看| 亚洲av欧美aⅴ国产| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 一级片免费观看大全| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 久久影院123| 两个人免费观看高清视频| 中文字幕色久视频| 97在线人人人人妻| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 汤姆久久久久久久影院中文字幕| 老司机影院成人| 国产亚洲精品久久久久5区| 国产1区2区3区精品| 国产在线视频一区二区| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 欧美少妇被猛烈插入视频| 巨乳人妻的诱惑在线观看| 国产区一区二久久| 国产深夜福利视频在线观看| 日本av免费视频播放| 亚洲三区欧美一区| 国产色视频综合| 男人舔女人的私密视频| 国产成人免费观看mmmm| 在线观看人妻少妇| 美女扒开内裤让男人捅视频| 精品国产超薄肉色丝袜足j| 亚洲成av片中文字幕在线观看| 国产1区2区3区精品| 国产一区二区三区在线臀色熟女 | netflix在线观看网站| 黄频高清免费视频| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 女人被躁到高潮嗷嗷叫费观| 一本色道久久久久久精品综合| 久久久精品免费免费高清| 精品一区二区三区av网在线观看 | 国产真人三级小视频在线观看| 午夜久久久在线观看| 久久久欧美国产精品| 窝窝影院91人妻| 中文字幕人妻丝袜制服| 成年人黄色毛片网站| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 女性被躁到高潮视频| 啪啪无遮挡十八禁网站| 九色亚洲精品在线播放| 在线观看免费日韩欧美大片| 久久久精品区二区三区| 91国产中文字幕| 12—13女人毛片做爰片一| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看| 久久午夜综合久久蜜桃| 国产在线视频一区二区| 精品卡一卡二卡四卡免费| 国产精品av久久久久免费| 亚洲欧美清纯卡通| cao死你这个sao货| 一级黄色大片毛片| 亚洲色图 男人天堂 中文字幕| 12—13女人毛片做爰片一| 少妇人妻久久综合中文| 天天影视国产精品| √禁漫天堂资源中文www|