• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mn3O4多面體納米晶體的制備及其電化學(xué)性能

    2013-10-17 03:03:02楊陸峰鄭明濤胡超凡崔江虎劉應(yīng)亮
    無機化學(xué)學(xué)報 2013年2期
    關(guān)鍵詞:理學(xué)院華南農(nóng)業(yè)大學(xué)多面體

    楊陸峰 高 闖 鄭明濤 胡超凡 崔江虎 劉應(yīng)亮*,

    (1暨南大學(xué)化學(xué)系納米化學(xué)研究所,廣州 510632)

    (2華南農(nóng)業(yè)大學(xué)理學(xué)院,廣州 510642)

    The development of manganese oxides nanocrystals has been intensively pursued due to their useful applications in the areas of catalysis,energy storage,chemicalsensing devices,magneticdata storage and ferro-uids[1-4].Among them,hausmannite Mn3O4presents particular interest because of its application as an effective catalyst for the decomposition of waste gas and waste solution[5-6].Recent studies have shown that nanostructural Mn3O4possesses interesting electrochemical properties.For instance,Zhang et al.[7]prepared Mn3O4polyhedron nanocrystal via thermolysis of a hydrogen-bonded polymer,which exhibitsa betterelectrochemical capacitance performance than spinel Mn3O4layered nanostructure[8].The performance of the metal oxides is dependent on the structure and morphology including crystallite size,stacking manner,orientation and aspect ratio,which are sensitive to the synthesis route of their preparation[9].

    Owing to the unique shape and size-dependent properties,Mn3O4has been prepared with various methods such as solvothermal treatment of manganite(MnOOH)[10-12],solvothermal treatment of manganese acetate(Mn(CH3COO)2·4H2O)with a hydrogen-bonded polymer[7],sonochemical method to prepare sphere-like nanocrystals[13],calcination of nitrate (Mn(NO3)2),carbonate (MnCO3),manganese oxides(MnO2,Mn2O3,etc.)and oxyhydroxide(g-MnOOH)at high temperature(1 000℃)[14-16],precipitation method from manganese nitrate (Mn(NO3)2)at moderate temperature[17],sol-gel process with a post-treatment at higher temperature[18-19],chemical bath deposition to prepare thin lms[20],electro spinning technique[21],gas condensation[22].

    However,synthetic methods that take advantage of costly organic surfactants and templates often require subsequent purification procedures which markedly increase manufacture costs[23-24].The preparation of Mn3O4by using the precursor manganese oxides with the sophisticated instrument could not be afforded by the average laboratories in the practical application.In the meanwhile,owing to the complex inuence of pH value,temperature,ion concentration,and so forth,limited breakthrough has been achieved for the morphology and size-controlled synthesis ofnanostructured Mn3O4through the solution based approach without any additives.Therefore,it is of great significance to develop an environmentally friendly,low-cost and template-free synthetic method for the synthesis of Mn3O4nanostructures.

    In our previous work,we have reported a simple method for the controlled synthesis of uniform shaped carbon hollow structures by an ethanol-assisted thermolysis of zinc acetate[25],which uses the generated zinc oxide nanostructures as in-situ templates.Herein,we report a one-step synthesis of Mn3O4polyhedral nanocrystals through a facile solution-based thermolysis route in the manganese acetate-alcohol system without any additives.In addition,the formation mechanism of the products has also been proposed.The electrochemical properties of the optimized products of Mn3O4nanocrystals were examined by cyclic voltam metry(CV)measurements.

    1 Experimental

    1.1 Synthesis of Mn3O4polyhedral nanocrystals

    All chemicals used were of analytical grade and purchased from the commercial market without further purification.The synthesis of Mn3O4nanostructures was carried out via a solvothermal method.In a typical procedure,2.5 mmol Mn(CH3COO)2·4H2O(Mn(Ac)2)were dissolved in 30 mL of absolute ethanol.Then the mixture was stirred to give a clear solution and transferred into a 45 mL Teflon-lined stainless steel autoclave.The autoclave was maintained at 200 ℃ for 1~24 h,with a heating rate of 10℃·min-1in an electronic furnace,and then cooled naturally to room temperature.The resulting precipitate was centrifuged and thoroughly washed with deionized water and ethanol several times before drying in air at 60℃ for 24 h.

    1.2 Characterization

    Crystallographic phases of the products were examinedbyXRD usingaMSALXD2X-ray diffractometer with Cu Kα radiation(36 kV,20 mA,λ=0.154 18 nm).FTIR spectra were measured by an Equinox 55 (Bruker)spectrometer with the KBr pellet technique from 400 to 4 000 cm-1.Raman spectra of sampleswere measured using a Renishaw Via microspectrometer using an excitation wavelength of 514 nm generated by an Ar+laser.A 100× objective was used to focus the laser beam and to collect the Raman signal.Chemical state analysis was carried out by X-ray photoelectron spectroscopy (XPS)using a Shimadzu AXIS Ultra X-ray photoelectron spectrometer.All XPS spectra were corrected using the C1s line at 284.6 eV.Casa XPS Version 2.3.13 software and Origin Pro 8.0 were used to analyze the experimental data and graphs.The morphologies of the samples were characterized with scanning electron microscopy (SEM,PhilipsXL-30s),transmission electron microscopy (TEM,Philips Tecnai-10)and high-resolution TEM (HR-TEM,GEOL-2010).The typical components of the liquid fractions after the reaction were detected by the gas chromatography and mass spectrometry(GC-MS)technique.The conditions for GC-MS are given in the supporting information.

    1.3 ElectrochemicalmeasurementofMn3O4 electrode

    The electrochemical electrode was tested on a CHI 660B electrochemical workstation in a three-electrode system.The working electrode was fabricated by pressing the mixture of Mn3O4,carbon black and 5%-PTFE(Polytetrafluoroethylene)(75∶15∶10,W/W/W)into foam nickel electrode.A Pt slice was used as auxiliary electrode and a Ag/AgCl as reference electrode.In these studies,all measurements were performed in a 0.5 mol·L-1Na2SO4aqueous electrolyte solution and all electrochemical experiments were carried out at room temperature.

    2 Results and discussion

    2.1 Characterization of materials

    The crystalline structure and phase purity of the product were investigated by XRD as shown in Fig.1a.Mn3O4are synthesized with 2.5 mmol Mn(Ac)2under the present condition,which can be easily indexed to pure tetragonal phase of γ-Mn3O4(PDF No.89-4837)with lattice constants a of 0.576 3 nm and c of 0.945 6 nm.Comparatively,with the coexistence of γ-Mn3O4,the sample prepared with 7.5 mmol Mn(Ac)2exhibits strong diffraction peak of MnO (PDF No.89-4835)(Fig.1b),indicating that the reaction dosage of Mn(Ac)2has vital influence on the crystals structure of the product.

    The FTIR spectrum in Fig.2 provides more convincing evidence of pure Mn3O4fabricated with 2.5 mmol Mn(Ac)2,which displays three characteristic peaks at 638,532 and 416 cm-1[26-27].Besides,strong absorptions at 3 442 cm-1and weak absorptions around 2 800~3 000 cm-1respectively reveal the stretching vibrations of O-H and C-H.The absorptions at 1 635,1 384 and 1 112 cm-1correspond to the vibrations of CO,C-H groups.Therefore,the FTIR spectrum suggests that the surface of the nanoparticles is coated by a layer of ethanol molecules.

    Considering the C-OH and C-H vibration,and Ac-/C2H5OH used in hydrothermal conditions,the Raman spectra have been provided to investigate the surface microstructure of the pure Mn3O4nanocrystals,as shown in Fig.3.From the Raman spectrum,the Raman peaks at 652.3 cm-1corresponding to crystalline hausmannite structure are clearly found,which are in good agreement with the microstructure information of as-prepared Mn3O4[28-29].In addition,there are no diffraction peaks around~1 360 cm-1and 1 580 cm-1,suggesting the absence of carbon layer on the Mn3O4prepared under the hydrothermal conditions at 200℃.

    Chemical state information for the as-prepared Mn3O4was studied using XPS.As shown in Fig.4a,the survey spectrum shows no significant presence of impurities,except for the contaminant carbon.Energy levels of Mn3s,O1s,Mn2p and Mn3p are obtained in the exact energy locations as reported earlier[30-31].In Fig.4b,the binding energy value of Mn2p3/2is 641.6 eV,and the spin orbit splitting between the Mn2p3/2and Mn2p1/2level is 11.7 eV,which perfectly matches the previously reported values for hausmannite[32].The oxidation state of the manganese atom is further analyzed by deconvoluted for relative intensities of the component peaks of 3p3/2XPS peaks.The binding energy of the Mn2p3/2peak components (640.9 and 642.6 eV)is in good agreement with the literature report,respectively,for the occurrence of Mn2+and Mn4+[31,33]for the formation of 2MnO-MnO2.The atomic concentration of the total oxygen and the manganese from the results of XPS is 64.5% and 35.5%,respectively.The atomic ratio of O to Mn in the Mn3O4is 1.82,which is greater than the theoretical value of 1.33.The excess O may come from the ethanol molecules coated on the surface ofMn3O4as demonstrated by the FTIR spectrum.

    In order to study the inuence of the reaction time on the morphology ofthe products,series of experiments were carried out.SEM images in Fig.5a shows a low-magnication of the sample obtained after solvothermal reaction at 200℃for 2 h,which exhibit large-scale formation of uniform nanoparticles with diameters about 10 ~20 nm.The nanometer-sized particles are observed with diameter of 40~60 nm aggregative attached together in Fig.5b.With increasing the reaction time to 24 h,many polyhedral Mn3O4nanocrystals with mean diameter of 250 nm are presented in Fig.5c.Therefore,the SEM images of the samples reveal that the reaction time plays vital role in the shape evolution of Mn3O4.When the reaction time is extended,the size of Mn3O4sample grows bigger and exhibits distinct polyhedral nanocrystals.

    For the reason that the poor resolution of SEM images can not throw light on the formation process of Mn3O4,the morphology and microstructures of the asprepared Mn3O4were further investigated with TEM and HRTEM.As shown in Fig.6a,a mass of uniform tiny nanoparticles with average diameter of 8 nm are observed after reaction of 1 h.When the reaction time is increased to 2 h,it can be clearly observed that the initial nanocrystals grow into uniform hexagonal flakelike morphology with widths of 10~15 nm as shown in Fig.6b.When the reaction time is further increased to 12 h,many polyhedral nanocrystals with rough surface are observed,which project to regular tetragonal shape with edge lengths of 40~60 nm(Fig.6c).

    The uniform polyhedral nanocrystals with smooth surface are produced when the reaction time is extended to 18 h (Fig.7a).In the same time,the corresponding XRD pattern exhibits sharp and strong diffraction peaks of γ-Mn3O4(Fig.1a).More details of the structure are investigated by HRTEM images.Homogeneous octahedral like nanocrystals with edge lengths about 120 nm are clearly seen in Fig.7b.As shown in Fig.7c,the corresponding lattice fringes exhibit distinct sets of lattice spacing of about 0.306 nm,consistent with(112)crystal planes of a tetragonal structure.Therefore,the Mn3O4nanostructure can be well controlled by tuning the reaction time at 200℃with 2.5 mmol Mn(Ac)2.The time-dependent experiments reveal that the formation of Mn3O4nanocrystals experience an Ostwald ripening dominated process,which is well consistent with the SEM investigation.

    2.2 Formation mechanism of polyhedral nanocrystals

    X-ray crystallography analysis shows that Mn3O4is obtained with 2.5 mmol Mn(Ac)2through the solvothermal process.Interestingly,the synthesized product exhibits the crystalline phase of MnO when increasing the dose of Mn(Ac)2to 7.5 mmol at 200 ℃ (Fig.1b).Therefore,it can be deduced that there is an oxidizing process of MnⅡto MnⅢ with O2both in the autoclave and the ethanol solution.And the limited amount of O2in the reaction system is not enough to have 7.5 mmol MnⅡall oxidized into MnⅢ.Meanwhile,an intense odor of ester is noticed from the solution after the reaction.To shed light on the formation process of Mn3O4,the reaction by-product has been investigated via GC/MS technique.GC/MS analysis conducted on the extract of the post-reaction solution clearly reveals the existence of ethyl acetate (Fig.S1,S2,Supporting Information),indicating the formation of butyl acetate during the synthetic procedure,which is similar to the previous report[34].Thus,On the basis of the experimental results,a formation mechanism of Mn3O4polyhedral nanocrystals is proposed.We believe that the reaction process of the manganese acetate-alcohol solution may be as follows:

    In the current solvothermal synthesis at 200℃,the reaction between manganese acetate and alcohol firstly results in the coordination of C2H5OH to manganese centers,to form unstable alcohol acetate complexes(CH3COO)2-xMn(OC2H5)xby ligand exchange/substitution,concomitant with the release of CH3COOH(eq.1).The produced acetic acid could then react with the solvent alcohol to form water by a slow esterification reaction(eq.2).Subsequently,(CH3COO)2-xMn(OC2H5)xwould hydrolyze and generate MnO under the selfgenerated pressure (eq.3).Finally,Mn3O4nanostructures are achieved after the oxidation reaction of the active MnO with the O2both in the reaction container and ethanol solution (eq.4).In this current situation,many newly formed Mn3O4colloids aggregate together andform nuclei.Meanwhile,thenascentMn3O4nanocrystals with high surface energies might be temporarily stabilized by ethanol solution.Then,the dissolution recrystallization and self-assembly process dominate.Subsequently,an Ostwald ripening process dominates.The proposed pathway is supported by our time-dependent experiments,as shown in Fig.6a~c.

    2.3 Electrochemical properties of Mn3O4 polyhedral nanocrystals

    The electrochemical performance of Mn3O4polyhedral nanocrystals synthesized at 200℃for 18 h were evaluated as a supercapacitor electrode in view of their intrinsic properties and unique structural features.Fig.8 shows the cyclic voltammetry (CV)analysis at various scan rates in 0.5 mol·L-1Na2SO4electrolyte with a potential range of 0.1 to 0.9 V.(vs.Ag/AgCl).The CV curves at slow scan rate present an ideal capacitive behavior with ne rectangular shape.The deviation from rectangularity of the CV becomes distinct with the increase of scan rate.No obvious redox peaks are present in the CV curves,revealing that the measured electrode is charged and discharged at a pseudo-constant rate over the complete voltammetric cycle[35].

    The MnO2based electrode[36]reveal maybe the charge storage mechanism in Mn3O4electrode.At slower scan rate,almost all available pores both on the surface and inside of Mn3O4electrode can be filled with Na+from electrolyte,resulting in a better effective utilization of Mn3O4for redox reaction and a better capacitance.However,the effective interaction between the ions and the electrode is greatly decreased when increasing the scan rate.Thus,the effective redox reaction of Mn3O4is confined only to the outer surface of Mn3O4electrode,resulting in decreased capacitance.The specic capacitance of the electrode at different current densities can be calculated from the following equation[37]

    where C is the specific capacitance of the electrode based on the mass of active materials(F·g-1),Q is the sum of anodic and cathodic voltammetric charges on positive and negative sweeps(C),I is the sample current(A),W is the weight of active materials(g),and V is the total potential deviation of the voltage window(V).v is the scanning rate(V·s-1)and ω is the mass of active electrode materials (g).According to formula(1),specic capacitance ranging from 173 to 84 F·g-1can be delivered at the various scan rates of 2~50 mV·s-1,as shown in Fig.8,which is a little lower than that of Mn3O4nano-octahedrons[38].Thus,the superior crystal structure should be provided for a better functional properties of Mn3O4。

    3 Conclusions

    In summary,Mn3O4nanocrystals with wellcontrolled polyhedral shape have been synthesized via Ethanol-assisted thermolysis of 2.5 mol manganese acetate at 200℃ for 18 h.On the basis of the results,a formation mechanism of Mn3O4polyhedral nanocrystals is proposed.It is valuable to study the shape evolution of γ-Mn3O4in the present reaction system for the understanding of the formation process of polyhedron structures.Cyclic voltammetry measurement shows that the as prepared Mn3O4electrode exhibits a good pseudo capacitance behavior with a discharge specific capacitance of 173 F·g-1at a sweep rate of 5 mV·s-1.These results suggest that Mn3O4polyhedral nanocrystals materials may have potential applications in electrochemical capacitor.

    [1]Zarur A J,Ying J Y.Nature,2000,403:65-67

    [2]Majetich S A,Jin Y.Science,1999,284:470-473

    [3]Nayral C,Viala E,Fau P,et al.Chem.Eur.J.,2000,6:4802-4090

    [4]Raj K,Moskowitz R.J.Magn.Magn.Mater.,1990,85:233-245

    [5]Stobhe E R,Boer B A,Geus J W.Catal.Today,1999,47:161-167

    [6]Yamashita T,Vannice A.J.Catal.,1996,163:158-168

    [7]Zhang F,Zhang X G,Hao L.J.Mater.Chem.Phys.,2011,126:853-858

    [8]Dai Y,Wang K,Xie J Y.Appl.Phys.Lett.,2007,90:102-104

    [9]Jiang J,Li L.Mater.Lett.,2007,61:4894-4896

    [10]Zhang W,Yang Z,Liu Y,et al.J.Cryst.Growth,2004,263:394-399

    [11]Demazeau G.J.Mater.Chem.,1999,9:15-18

    [12]Walton R I.Chem.Soc.Rev.,2002,31:230-238

    [13]Askarinejada A,Bagherzadehb M,Morsali A.J.Appl.Surf.Sci.,2010,256:6678-6682

    [14]Shomate C H.J.Am.Chem.Soc.,1943,65:786-789

    [15]Southard J C,Moore G E.J.Am.Chem.Soc.,1942,64:1769-1770

    [16]Ursu I,Alexandrescu R,Mihailescu I N.J.Phys.B,1986,19:825-830

    [17]Rabiei S,Miser D E,Lipscomb J A,et al.J.Mater.Sci.,2005,40:4995-4998

    [18]Ching S,Roark J L,Duan N.Chem.Mater.,1997,9:750-754

    [19]Al Sagheer F A,Hasan M A,Pasupulety L.J.Mater.Sci.Lett.,1999,18:209-211

    [20]Xu H Y,Xu S L,Wang H,et al.J.Electrochem.Soc.,2005,12:803-807

    [21]Shao C,Guan H,Liu Y,et al.J.Solid State Chem.,2004,177:2628-2631

    [22]Dimesso L,Heider L,Hahn H.Solid State Ionics,1999,123:39-46

    [23]Manna L,Milliron D J,Meisel A,et al.Nat.Mater.,2003,2:382-385

    [24]Tian Z R,Voigt J A,Liu J,et al.Nat.Mater.,2003,2:821-826

    [25]Zheng M T,Liu Y L,Zhao S,et al.Inorg.Chem.,2010,49:8674-8683

    [26]Yang B J,Hu H M,Li C,et al.Chem.Lett.,2004,33:456-458

    [27]Ocana M.Colloid.Polym.Sci.,2000,278:443-449

    [28]Wang W Z,Ao L.Cryst.Growth Des.,2008,8:358-362

    [29]Zuo J,Xu C,Qian Y T,et al.Nanostruct.Mater.,1998,10:1331-1335

    [30]Zhao L Z,Young V.J.Electron Spectrosc.Relat.Phenom.,1984,34:45-54

    [31]Ezhil Raj A M,Victoria S G,Jothy V B,et al.J.Appl.Surf.Sci.,2010,256:2920-2926

    [32]Foord J S,Jackman R B,Allen G C.Philos.Mag.A,1984,49:657-663

    [33]Castro V D,Polzonetti G.J.Electron Spectrosc.,1989,48:117-123

    [34]Ye J F,Liu W,Cai J G.J.Am.Chem.Soc.,2011,133:933-940

    [35]Xu M W,Kong L B,Zhou W J,et al.J.Phys.Chem.C,2007,111:19141-19147

    [36]Devaraj S,Munichandraiah N.J.Phys.Chem.C,2008,112:4406-4417

    [37]YI Guan-Gui(易 觀 貴 ),XIAO Yong(肖 勇 ),HE Wen-Qi(賀文啟),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(1):162-166

    [38]Jiang H,Zhao T,Yan C,et al.Nanoscale,2010,2:2195-2198

    猜你喜歡
    理學(xué)院華南農(nóng)業(yè)大學(xué)多面體
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    華南農(nóng)業(yè)大學(xué)珠江學(xué)院作品精選
    聲屏世界(2022年21期)2023-01-07 12:53:10
    華南農(nóng)業(yè)大學(xué)生生命科學(xué)學(xué)院簡介
    整齊的多面體
    獨孤信多面體煤精組印
    華南農(nóng)業(yè)大學(xué)藝術(shù)學(xué)院設(shè)計作品選登
    具有凸多面體不確定性的混雜隨機微分方程的鎮(zhèn)定分析
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    傅琰東:把自己當(dāng)成一個多面體
    金色年華(2016年11期)2016-02-28 01:42:38
    亚洲乱码一区二区免费版| 99在线人妻在线中文字幕| 天美传媒精品一区二区| 一级黄片播放器| 最近最新中文字幕大全电影3| 欧美激情久久久久久爽电影| 精品久久久久久久久亚洲 | 91精品国产九色| 看片在线看免费视频| 午夜福利在线观看免费完整高清在 | 少妇猛男粗大的猛烈进出视频 | 超碰av人人做人人爽久久| 国产三级在线视频| 在线国产一区二区在线| 看片在线看免费视频| 国产精品99久久久久久久久| 伦理电影大哥的女人| 亚洲中文字幕日韩| 亚洲av中文av极速乱 | 亚洲四区av| 夜夜夜夜夜久久久久| 特大巨黑吊av在线直播| 精品久久久久久久久久久久久| 99热这里只有精品一区| 成人美女网站在线观看视频| 成人欧美大片| 国产免费男女视频| 免费av不卡在线播放| 国内少妇人妻偷人精品xxx网站| 日韩欧美精品v在线| 国产国拍精品亚洲av在线观看| 一夜夜www| 欧美xxxx黑人xx丫x性爽| 麻豆国产av国片精品| 国产美女午夜福利| 欧美丝袜亚洲另类 | 91久久精品电影网| 日韩欧美精品v在线| 日本与韩国留学比较| 男人狂女人下面高潮的视频| 日韩av在线大香蕉| 精品久久久久久久久av| 丰满乱子伦码专区| 国产一区二区亚洲精品在线观看| 中文字幕熟女人妻在线| 夜夜爽天天搞| 精品人妻熟女av久视频| 欧美日韩亚洲国产一区二区在线观看| 天堂网av新在线| 色5月婷婷丁香| 亚洲电影在线观看av| 久久欧美精品欧美久久欧美| 欧美bdsm另类| 亚洲av日韩精品久久久久久密| 欧美成人性av电影在线观看| 免费观看的影片在线观看| 美女高潮的动态| 99热这里只有是精品50| 搞女人的毛片| 日日摸夜夜添夜夜添小说| 国产免费男女视频| 日本黄大片高清| 亚洲真实伦在线观看| 黄色女人牲交| 赤兔流量卡办理| 婷婷亚洲欧美| ponron亚洲| 色噜噜av男人的天堂激情| 国产高清视频在线观看网站| 国产精品一区二区三区四区久久| 国产一区二区三区在线臀色熟女| 色哟哟·www| 国产成人一区二区在线| 麻豆久久精品国产亚洲av| 婷婷六月久久综合丁香| 男女边吃奶边做爰视频| 99久久无色码亚洲精品果冻| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看| 内射极品少妇av片p| 亚洲真实伦在线观看| 久久久久久久午夜电影| 在线免费十八禁| 最近最新中文字幕大全电影3| 久久香蕉精品热| 国产主播在线观看一区二区| 综合色av麻豆| 中国美女看黄片| 男人狂女人下面高潮的视频| 又爽又黄a免费视频| 欧美+日韩+精品| 麻豆成人av在线观看| 此物有八面人人有两片| 一区福利在线观看| 色综合亚洲欧美另类图片| 热99在线观看视频| 淫妇啪啪啪对白视频| 欧美色欧美亚洲另类二区| 久久国内精品自在自线图片| 嫩草影院入口| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 精品99又大又爽又粗少妇毛片 | 久久香蕉精品热| 国产乱人视频| 一级a爱片免费观看的视频| 99热网站在线观看| 亚洲熟妇熟女久久| 国产伦人伦偷精品视频| 欧美xxxx黑人xx丫x性爽| 99精品久久久久人妻精品| 91麻豆av在线| 黄色配什么色好看| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 日本撒尿小便嘘嘘汇集6| 免费观看的影片在线观看| 99国产极品粉嫩在线观看| 在线观看一区二区三区| 搡女人真爽免费视频火全软件 | 91狼人影院| 在线天堂最新版资源| 此物有八面人人有两片| 免费电影在线观看免费观看| 免费观看人在逋| bbb黄色大片| 天堂网av新在线| 免费av不卡在线播放| 91av网一区二区| 淫秽高清视频在线观看| 麻豆国产av国片精品| 精品久久久久久久久久久久久| 成人高潮视频无遮挡免费网站| 国产乱人视频| 天堂√8在线中文| 99久久精品国产国产毛片| 欧洲精品卡2卡3卡4卡5卡区| 久久香蕉精品热| 有码 亚洲区| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看 | 草草在线视频免费看| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| 国产蜜桃级精品一区二区三区| 久久午夜亚洲精品久久| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 午夜精品久久久久久毛片777| 91在线观看av| 国产精品国产三级国产av玫瑰| 别揉我奶头~嗯~啊~动态视频| 欧美+日韩+精品| 免费av毛片视频| 久久久国产成人免费| 欧美日本视频| 亚洲自偷自拍三级| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 日韩av在线大香蕉| 小蜜桃在线观看免费完整版高清| 一区福利在线观看| 一级黄片播放器| h日本视频在线播放| 88av欧美| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 听说在线观看完整版免费高清| 老司机福利观看| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 国产探花在线观看一区二区| 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 熟妇人妻久久中文字幕3abv| 天堂√8在线中文| 成人二区视频| 一进一出抽搐gif免费好疼| 免费大片18禁| 免费在线观看日本一区| 久久这里只有精品中国| 99热6这里只有精品| 国语自产精品视频在线第100页| 国产亚洲91精品色在线| 亚洲男人的天堂狠狠| 悠悠久久av| 简卡轻食公司| 两性午夜刺激爽爽歪歪视频在线观看| 久久久成人免费电影| 人妻少妇偷人精品九色| 国产精品1区2区在线观看.| 精品久久久久久久久av| 亚洲不卡免费看| 国产爱豆传媒在线观看| 俺也久久电影网| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 九九爱精品视频在线观看| ponron亚洲| 91久久精品国产一区二区成人| 亚洲在线观看片| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 99久久九九国产精品国产免费| 亚洲熟妇熟女久久| 亚洲久久久久久中文字幕| 国产爱豆传媒在线观看| 国产精华一区二区三区| 看十八女毛片水多多多| 淫秽高清视频在线观看| 亚洲欧美日韩高清在线视频| 国产主播在线观看一区二区| 亚洲欧美激情综合另类| 国内精品美女久久久久久| 国产黄色小视频在线观看| 久久久精品大字幕| 亚洲自拍偷在线| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 久久这里只有精品中国| 一级av片app| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 午夜影院日韩av| 亚洲av免费高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲自偷自拍三级| 99久久成人亚洲精品观看| 亚洲真实伦在线观看| 免费观看的影片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品国产成人久久av| 精品人妻一区二区三区麻豆 | 免费av毛片视频| 麻豆精品久久久久久蜜桃| av.在线天堂| 免费看美女性在线毛片视频| 成人综合一区亚洲| 在线观看一区二区三区| 国产单亲对白刺激| 精品人妻1区二区| 毛片女人毛片| 在线观看免费视频日本深夜| 国产伦人伦偷精品视频| 在线观看舔阴道视频| 丰满人妻一区二区三区视频av| 啦啦啦啦在线视频资源| 又粗又爽又猛毛片免费看| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区 | 日韩欧美在线二视频| 麻豆成人av在线观看| 成人国产麻豆网| 人妻夜夜爽99麻豆av| 国国产精品蜜臀av免费| 亚洲av不卡在线观看| 我要搜黄色片| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 国产一区二区三区av在线 | 久久久久久久亚洲中文字幕| 免费观看在线日韩| 亚洲国产欧美人成| 女人被狂操c到高潮| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 国内精品久久久久精免费| 亚洲av中文av极速乱 | 熟妇人妻久久中文字幕3abv| 午夜a级毛片| 亚洲最大成人手机在线| 久久久久久久久中文| 成人av一区二区三区在线看| 色播亚洲综合网| 国产亚洲精品综合一区在线观看| 亚洲内射少妇av| 级片在线观看| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 成人毛片a级毛片在线播放| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 听说在线观看完整版免费高清| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 国产精品久久电影中文字幕| 精品久久久久久久久亚洲 | 成人国产麻豆网| 亚洲一区高清亚洲精品| av天堂在线播放| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 美女高潮喷水抽搐中文字幕| 国产色爽女视频免费观看| 草草在线视频免费看| 老司机午夜福利在线观看视频| 男人舔奶头视频| 好男人在线观看高清免费视频| av天堂中文字幕网| 欧美xxxx黑人xx丫x性爽| 又黄又爽又免费观看的视频| 91在线精品国自产拍蜜月| 色综合婷婷激情| 久久精品影院6| 久久国产精品人妻蜜桃| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| eeuss影院久久| 97超级碰碰碰精品色视频在线观看| 91久久精品电影网| 能在线免费观看的黄片| 1000部很黄的大片| 亚洲av熟女| 国内精品久久久久精免费| 99在线视频只有这里精品首页| 国内久久婷婷六月综合欲色啪| 亚洲国产精品合色在线| 日本色播在线视频| av视频在线观看入口| 欧美丝袜亚洲另类 | 亚洲成人中文字幕在线播放| 亚洲精品久久国产高清桃花| 精品久久久久久久人妻蜜臀av| 国产 一区精品| 18禁裸乳无遮挡免费网站照片| 中文字幕高清在线视频| www日本黄色视频网| 毛片女人毛片| 欧美日韩国产亚洲二区| 久久精品国产清高在天天线| 国产美女午夜福利| 国产毛片a区久久久久| 免费看av在线观看网站| 色综合色国产| 69av精品久久久久久| 国产免费男女视频| 欧美成人性av电影在线观看| 国产精品一区二区三区四区免费观看 | 人人妻人人澡欧美一区二区| 久久中文看片网| 亚洲成av人片在线播放无| 日韩一本色道免费dvd| 91久久精品国产一区二区成人| 中文字幕免费在线视频6| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 日韩欧美在线二视频| 亚洲自拍偷在线| 国产精品久久久久久av不卡| 欧美人与善性xxx| 国产精品免费一区二区三区在线| 男人狂女人下面高潮的视频| 欧美+亚洲+日韩+国产| 99久久精品国产国产毛片| 少妇高潮的动态图| 亚洲精品国产成人久久av| 精品久久久久久久久久久久久| av中文乱码字幕在线| 男人和女人高潮做爰伦理| 天天一区二区日本电影三级| 亚洲av日韩精品久久久久久密| 久久久久久久亚洲中文字幕| 在线观看av片永久免费下载| 俺也久久电影网| 国产午夜精品论理片| 一a级毛片在线观看| 国产日本99.免费观看| 国产一区二区三区视频了| 亚洲aⅴ乱码一区二区在线播放| 亚洲成av人片在线播放无| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 在线观看免费视频日本深夜| 男女之事视频高清在线观看| 国产色婷婷99| 久久国产乱子免费精品| 毛片女人毛片| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 我要看日韩黄色一级片| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 狠狠狠狠99中文字幕| 国产一区二区在线av高清观看| 国产成人av教育| 网址你懂的国产日韩在线| 免费电影在线观看免费观看| 别揉我奶头~嗯~啊~动态视频| 内射极品少妇av片p| 精品午夜福利在线看| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 伦精品一区二区三区| 亚洲av美国av| 亚洲av第一区精品v没综合| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 亚洲自偷自拍三级| 人妻久久中文字幕网| 男人舔奶头视频| 亚洲av免费高清在线观看| 老熟妇乱子伦视频在线观看| 国产一区二区三区在线臀色熟女| 窝窝影院91人妻| 美女黄网站色视频| 人妻丰满熟妇av一区二区三区| АⅤ资源中文在线天堂| 韩国av一区二区三区四区| 男女之事视频高清在线观看| 在线a可以看的网站| 日韩高清综合在线| 人妻夜夜爽99麻豆av| 三级毛片av免费| 欧美日本亚洲视频在线播放| 亚洲久久久久久中文字幕| 久久久久久伊人网av| 亚洲在线自拍视频| 综合色av麻豆| 日韩精品中文字幕看吧| 男人的好看免费观看在线视频| 悠悠久久av| x7x7x7水蜜桃| 精华霜和精华液先用哪个| 免费黄网站久久成人精品| 免费电影在线观看免费观看| 麻豆一二三区av精品| 极品教师在线免费播放| 网址你懂的国产日韩在线| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区 | 99久久久亚洲精品蜜臀av| 亚洲人与动物交配视频| 亚洲成人中文字幕在线播放| 国产综合懂色| 亚洲国产欧美人成| 女同久久另类99精品国产91| 久久久久久久精品吃奶| 亚洲第一区二区三区不卡| 国产成人aa在线观看| 午夜影院日韩av| 欧美成人免费av一区二区三区| 成人国产麻豆网| 日本一本二区三区精品| 欧美性猛交黑人性爽| 亚洲,欧美,日韩| 性插视频无遮挡在线免费观看| 动漫黄色视频在线观看| 国产日本99.免费观看| 欧美bdsm另类| 午夜精品一区二区三区免费看| 国产一区二区亚洲精品在线观看| 不卡视频在线观看欧美| 男人的好看免费观看在线视频| 亚洲专区中文字幕在线| 91麻豆av在线| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验 | 国国产精品蜜臀av免费| 亚洲最大成人中文| 午夜福利视频1000在线观看| 欧美+亚洲+日韩+国产| 成年女人毛片免费观看观看9| 亚洲美女视频黄频| 成人综合一区亚洲| 日本免费a在线| 国产白丝娇喘喷水9色精品| 精品久久久久久久末码| 99久久久亚洲精品蜜臀av| 国产69精品久久久久777片| 99久久精品热视频| 欧美潮喷喷水| 亚洲av第一区精品v没综合| 一级黄色大片毛片| 乱系列少妇在线播放| 国产一区二区三区av在线 | 又爽又黄无遮挡网站| 草草在线视频免费看| 99精品在免费线老司机午夜| 一夜夜www| 亚洲成人免费电影在线观看| 国产日本99.免费观看| 国产精品av视频在线免费观看| 久久久精品大字幕| 制服丝袜大香蕉在线| 九九在线视频观看精品| 热99re8久久精品国产| 最新中文字幕久久久久| 欧美潮喷喷水| 亚洲aⅴ乱码一区二区在线播放| 不卡一级毛片| 亚洲精品456在线播放app | 中文资源天堂在线| 亚洲精华国产精华精| 国产爱豆传媒在线观看| 亚洲av电影不卡..在线观看| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 少妇人妻精品综合一区二区 | 亚洲欧美日韩东京热| 毛片女人毛片| 午夜福利18| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久久av| 色综合色国产| 国产成人aa在线观看| 午夜免费成人在线视频| 免费黄网站久久成人精品| 久久精品影院6| 久久精品国产亚洲av涩爱 | 两个人的视频大全免费| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区| 午夜福利高清视频| 国产精品一区www在线观看 | 欧美性感艳星| 一个人看视频在线观看www免费| 69人妻影院| 欧美激情国产日韩精品一区| 午夜亚洲福利在线播放| 亚洲午夜理论影院| 露出奶头的视频| 欧美高清成人免费视频www| 国产精品自产拍在线观看55亚洲| 在线观看舔阴道视频| 国产伦人伦偷精品视频| 伦理电影大哥的女人| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 国产精品一区www在线观看 | 美女cb高潮喷水在线观看| 亚洲一区二区三区色噜噜| bbb黄色大片| 久久人人精品亚洲av| 精品日产1卡2卡| 精品一区二区免费观看| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 日日摸夜夜添夜夜添小说| 舔av片在线| 日韩国内少妇激情av| 性插视频无遮挡在线免费观看| 精品一区二区三区人妻视频| 在线看三级毛片| 美女免费视频网站| 99热这里只有精品一区| 日日撸夜夜添| 国产综合懂色| 99热网站在线观看| 久久精品国产鲁丝片午夜精品 | 三级毛片av免费| 婷婷精品国产亚洲av在线| 亚洲一区高清亚洲精品| 亚洲精品成人久久久久久| 亚洲不卡免费看| 美女高潮喷水抽搐中文字幕| 免费人成在线观看视频色| 噜噜噜噜噜久久久久久91| 欧美人与善性xxx| 啪啪无遮挡十八禁网站| 99视频精品全部免费 在线| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| 在线看三级毛片| 欧美日韩精品成人综合77777| 久久久久久久久久久丰满 | 成人av在线播放网站| 国产男靠女视频免费网站| 精品99又大又爽又粗少妇毛片 | 精品人妻一区二区三区麻豆 | 欧美日韩精品成人综合77777| 精品久久久久久久久久久久久| 国产欧美日韩精品亚洲av| 日韩欧美在线乱码| 日本a在线网址| 欧美激情国产日韩精品一区| 我的老师免费观看完整版| 别揉我奶头~嗯~啊~动态视频| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 18禁黄网站禁片免费观看直播| 黄色丝袜av网址大全| 亚洲av免费在线观看| 看片在线看免费视频| 搡老妇女老女人老熟妇| 网址你懂的国产日韩在线| 好男人在线观看高清免费视频| 精品人妻1区二区| 欧美另类亚洲清纯唯美| 国产精品一及| 日韩一区二区视频免费看| 日本a在线网址| 亚洲电影在线观看av| 一级黄片播放器| 日本 av在线| 国内精品久久久久精免费| 极品教师在线免费播放| 黄色日韩在线| 能在线免费观看的黄片| www日本黄色视频网| 国产在线精品亚洲第一网站| 亚洲性夜色夜夜综合| 变态另类成人亚洲欧美熟女| 99精品久久久久人妻精品| 搡老岳熟女国产|