• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mn3O4多面體納米晶體的制備及其電化學(xué)性能

    2013-10-17 03:03:02楊陸峰鄭明濤胡超凡崔江虎劉應(yīng)亮
    無機化學(xué)學(xué)報 2013年2期
    關(guān)鍵詞:理學(xué)院華南農(nóng)業(yè)大學(xué)多面體

    楊陸峰 高 闖 鄭明濤 胡超凡 崔江虎 劉應(yīng)亮*,

    (1暨南大學(xué)化學(xué)系納米化學(xué)研究所,廣州 510632)

    (2華南農(nóng)業(yè)大學(xué)理學(xué)院,廣州 510642)

    The development of manganese oxides nanocrystals has been intensively pursued due to their useful applications in the areas of catalysis,energy storage,chemicalsensing devices,magneticdata storage and ferro-uids[1-4].Among them,hausmannite Mn3O4presents particular interest because of its application as an effective catalyst for the decomposition of waste gas and waste solution[5-6].Recent studies have shown that nanostructural Mn3O4possesses interesting electrochemical properties.For instance,Zhang et al.[7]prepared Mn3O4polyhedron nanocrystal via thermolysis of a hydrogen-bonded polymer,which exhibitsa betterelectrochemical capacitance performance than spinel Mn3O4layered nanostructure[8].The performance of the metal oxides is dependent on the structure and morphology including crystallite size,stacking manner,orientation and aspect ratio,which are sensitive to the synthesis route of their preparation[9].

    Owing to the unique shape and size-dependent properties,Mn3O4has been prepared with various methods such as solvothermal treatment of manganite(MnOOH)[10-12],solvothermal treatment of manganese acetate(Mn(CH3COO)2·4H2O)with a hydrogen-bonded polymer[7],sonochemical method to prepare sphere-like nanocrystals[13],calcination of nitrate (Mn(NO3)2),carbonate (MnCO3),manganese oxides(MnO2,Mn2O3,etc.)and oxyhydroxide(g-MnOOH)at high temperature(1 000℃)[14-16],precipitation method from manganese nitrate (Mn(NO3)2)at moderate temperature[17],sol-gel process with a post-treatment at higher temperature[18-19],chemical bath deposition to prepare thin lms[20],electro spinning technique[21],gas condensation[22].

    However,synthetic methods that take advantage of costly organic surfactants and templates often require subsequent purification procedures which markedly increase manufacture costs[23-24].The preparation of Mn3O4by using the precursor manganese oxides with the sophisticated instrument could not be afforded by the average laboratories in the practical application.In the meanwhile,owing to the complex inuence of pH value,temperature,ion concentration,and so forth,limited breakthrough has been achieved for the morphology and size-controlled synthesis ofnanostructured Mn3O4through the solution based approach without any additives.Therefore,it is of great significance to develop an environmentally friendly,low-cost and template-free synthetic method for the synthesis of Mn3O4nanostructures.

    In our previous work,we have reported a simple method for the controlled synthesis of uniform shaped carbon hollow structures by an ethanol-assisted thermolysis of zinc acetate[25],which uses the generated zinc oxide nanostructures as in-situ templates.Herein,we report a one-step synthesis of Mn3O4polyhedral nanocrystals through a facile solution-based thermolysis route in the manganese acetate-alcohol system without any additives.In addition,the formation mechanism of the products has also been proposed.The electrochemical properties of the optimized products of Mn3O4nanocrystals were examined by cyclic voltam metry(CV)measurements.

    1 Experimental

    1.1 Synthesis of Mn3O4polyhedral nanocrystals

    All chemicals used were of analytical grade and purchased from the commercial market without further purification.The synthesis of Mn3O4nanostructures was carried out via a solvothermal method.In a typical procedure,2.5 mmol Mn(CH3COO)2·4H2O(Mn(Ac)2)were dissolved in 30 mL of absolute ethanol.Then the mixture was stirred to give a clear solution and transferred into a 45 mL Teflon-lined stainless steel autoclave.The autoclave was maintained at 200 ℃ for 1~24 h,with a heating rate of 10℃·min-1in an electronic furnace,and then cooled naturally to room temperature.The resulting precipitate was centrifuged and thoroughly washed with deionized water and ethanol several times before drying in air at 60℃ for 24 h.

    1.2 Characterization

    Crystallographic phases of the products were examinedbyXRD usingaMSALXD2X-ray diffractometer with Cu Kα radiation(36 kV,20 mA,λ=0.154 18 nm).FTIR spectra were measured by an Equinox 55 (Bruker)spectrometer with the KBr pellet technique from 400 to 4 000 cm-1.Raman spectra of sampleswere measured using a Renishaw Via microspectrometer using an excitation wavelength of 514 nm generated by an Ar+laser.A 100× objective was used to focus the laser beam and to collect the Raman signal.Chemical state analysis was carried out by X-ray photoelectron spectroscopy (XPS)using a Shimadzu AXIS Ultra X-ray photoelectron spectrometer.All XPS spectra were corrected using the C1s line at 284.6 eV.Casa XPS Version 2.3.13 software and Origin Pro 8.0 were used to analyze the experimental data and graphs.The morphologies of the samples were characterized with scanning electron microscopy (SEM,PhilipsXL-30s),transmission electron microscopy (TEM,Philips Tecnai-10)and high-resolution TEM (HR-TEM,GEOL-2010).The typical components of the liquid fractions after the reaction were detected by the gas chromatography and mass spectrometry(GC-MS)technique.The conditions for GC-MS are given in the supporting information.

    1.3 ElectrochemicalmeasurementofMn3O4 electrode

    The electrochemical electrode was tested on a CHI 660B electrochemical workstation in a three-electrode system.The working electrode was fabricated by pressing the mixture of Mn3O4,carbon black and 5%-PTFE(Polytetrafluoroethylene)(75∶15∶10,W/W/W)into foam nickel electrode.A Pt slice was used as auxiliary electrode and a Ag/AgCl as reference electrode.In these studies,all measurements were performed in a 0.5 mol·L-1Na2SO4aqueous electrolyte solution and all electrochemical experiments were carried out at room temperature.

    2 Results and discussion

    2.1 Characterization of materials

    The crystalline structure and phase purity of the product were investigated by XRD as shown in Fig.1a.Mn3O4are synthesized with 2.5 mmol Mn(Ac)2under the present condition,which can be easily indexed to pure tetragonal phase of γ-Mn3O4(PDF No.89-4837)with lattice constants a of 0.576 3 nm and c of 0.945 6 nm.Comparatively,with the coexistence of γ-Mn3O4,the sample prepared with 7.5 mmol Mn(Ac)2exhibits strong diffraction peak of MnO (PDF No.89-4835)(Fig.1b),indicating that the reaction dosage of Mn(Ac)2has vital influence on the crystals structure of the product.

    The FTIR spectrum in Fig.2 provides more convincing evidence of pure Mn3O4fabricated with 2.5 mmol Mn(Ac)2,which displays three characteristic peaks at 638,532 and 416 cm-1[26-27].Besides,strong absorptions at 3 442 cm-1and weak absorptions around 2 800~3 000 cm-1respectively reveal the stretching vibrations of O-H and C-H.The absorptions at 1 635,1 384 and 1 112 cm-1correspond to the vibrations of CO,C-H groups.Therefore,the FTIR spectrum suggests that the surface of the nanoparticles is coated by a layer of ethanol molecules.

    Considering the C-OH and C-H vibration,and Ac-/C2H5OH used in hydrothermal conditions,the Raman spectra have been provided to investigate the surface microstructure of the pure Mn3O4nanocrystals,as shown in Fig.3.From the Raman spectrum,the Raman peaks at 652.3 cm-1corresponding to crystalline hausmannite structure are clearly found,which are in good agreement with the microstructure information of as-prepared Mn3O4[28-29].In addition,there are no diffraction peaks around~1 360 cm-1and 1 580 cm-1,suggesting the absence of carbon layer on the Mn3O4prepared under the hydrothermal conditions at 200℃.

    Chemical state information for the as-prepared Mn3O4was studied using XPS.As shown in Fig.4a,the survey spectrum shows no significant presence of impurities,except for the contaminant carbon.Energy levels of Mn3s,O1s,Mn2p and Mn3p are obtained in the exact energy locations as reported earlier[30-31].In Fig.4b,the binding energy value of Mn2p3/2is 641.6 eV,and the spin orbit splitting between the Mn2p3/2and Mn2p1/2level is 11.7 eV,which perfectly matches the previously reported values for hausmannite[32].The oxidation state of the manganese atom is further analyzed by deconvoluted for relative intensities of the component peaks of 3p3/2XPS peaks.The binding energy of the Mn2p3/2peak components (640.9 and 642.6 eV)is in good agreement with the literature report,respectively,for the occurrence of Mn2+and Mn4+[31,33]for the formation of 2MnO-MnO2.The atomic concentration of the total oxygen and the manganese from the results of XPS is 64.5% and 35.5%,respectively.The atomic ratio of O to Mn in the Mn3O4is 1.82,which is greater than the theoretical value of 1.33.The excess O may come from the ethanol molecules coated on the surface ofMn3O4as demonstrated by the FTIR spectrum.

    In order to study the inuence of the reaction time on the morphology ofthe products,series of experiments were carried out.SEM images in Fig.5a shows a low-magnication of the sample obtained after solvothermal reaction at 200℃for 2 h,which exhibit large-scale formation of uniform nanoparticles with diameters about 10 ~20 nm.The nanometer-sized particles are observed with diameter of 40~60 nm aggregative attached together in Fig.5b.With increasing the reaction time to 24 h,many polyhedral Mn3O4nanocrystals with mean diameter of 250 nm are presented in Fig.5c.Therefore,the SEM images of the samples reveal that the reaction time plays vital role in the shape evolution of Mn3O4.When the reaction time is extended,the size of Mn3O4sample grows bigger and exhibits distinct polyhedral nanocrystals.

    For the reason that the poor resolution of SEM images can not throw light on the formation process of Mn3O4,the morphology and microstructures of the asprepared Mn3O4were further investigated with TEM and HRTEM.As shown in Fig.6a,a mass of uniform tiny nanoparticles with average diameter of 8 nm are observed after reaction of 1 h.When the reaction time is increased to 2 h,it can be clearly observed that the initial nanocrystals grow into uniform hexagonal flakelike morphology with widths of 10~15 nm as shown in Fig.6b.When the reaction time is further increased to 12 h,many polyhedral nanocrystals with rough surface are observed,which project to regular tetragonal shape with edge lengths of 40~60 nm(Fig.6c).

    The uniform polyhedral nanocrystals with smooth surface are produced when the reaction time is extended to 18 h (Fig.7a).In the same time,the corresponding XRD pattern exhibits sharp and strong diffraction peaks of γ-Mn3O4(Fig.1a).More details of the structure are investigated by HRTEM images.Homogeneous octahedral like nanocrystals with edge lengths about 120 nm are clearly seen in Fig.7b.As shown in Fig.7c,the corresponding lattice fringes exhibit distinct sets of lattice spacing of about 0.306 nm,consistent with(112)crystal planes of a tetragonal structure.Therefore,the Mn3O4nanostructure can be well controlled by tuning the reaction time at 200℃with 2.5 mmol Mn(Ac)2.The time-dependent experiments reveal that the formation of Mn3O4nanocrystals experience an Ostwald ripening dominated process,which is well consistent with the SEM investigation.

    2.2 Formation mechanism of polyhedral nanocrystals

    X-ray crystallography analysis shows that Mn3O4is obtained with 2.5 mmol Mn(Ac)2through the solvothermal process.Interestingly,the synthesized product exhibits the crystalline phase of MnO when increasing the dose of Mn(Ac)2to 7.5 mmol at 200 ℃ (Fig.1b).Therefore,it can be deduced that there is an oxidizing process of MnⅡto MnⅢ with O2both in the autoclave and the ethanol solution.And the limited amount of O2in the reaction system is not enough to have 7.5 mmol MnⅡall oxidized into MnⅢ.Meanwhile,an intense odor of ester is noticed from the solution after the reaction.To shed light on the formation process of Mn3O4,the reaction by-product has been investigated via GC/MS technique.GC/MS analysis conducted on the extract of the post-reaction solution clearly reveals the existence of ethyl acetate (Fig.S1,S2,Supporting Information),indicating the formation of butyl acetate during the synthetic procedure,which is similar to the previous report[34].Thus,On the basis of the experimental results,a formation mechanism of Mn3O4polyhedral nanocrystals is proposed.We believe that the reaction process of the manganese acetate-alcohol solution may be as follows:

    In the current solvothermal synthesis at 200℃,the reaction between manganese acetate and alcohol firstly results in the coordination of C2H5OH to manganese centers,to form unstable alcohol acetate complexes(CH3COO)2-xMn(OC2H5)xby ligand exchange/substitution,concomitant with the release of CH3COOH(eq.1).The produced acetic acid could then react with the solvent alcohol to form water by a slow esterification reaction(eq.2).Subsequently,(CH3COO)2-xMn(OC2H5)xwould hydrolyze and generate MnO under the selfgenerated pressure (eq.3).Finally,Mn3O4nanostructures are achieved after the oxidation reaction of the active MnO with the O2both in the reaction container and ethanol solution (eq.4).In this current situation,many newly formed Mn3O4colloids aggregate together andform nuclei.Meanwhile,thenascentMn3O4nanocrystals with high surface energies might be temporarily stabilized by ethanol solution.Then,the dissolution recrystallization and self-assembly process dominate.Subsequently,an Ostwald ripening process dominates.The proposed pathway is supported by our time-dependent experiments,as shown in Fig.6a~c.

    2.3 Electrochemical properties of Mn3O4 polyhedral nanocrystals

    The electrochemical performance of Mn3O4polyhedral nanocrystals synthesized at 200℃for 18 h were evaluated as a supercapacitor electrode in view of their intrinsic properties and unique structural features.Fig.8 shows the cyclic voltammetry (CV)analysis at various scan rates in 0.5 mol·L-1Na2SO4electrolyte with a potential range of 0.1 to 0.9 V.(vs.Ag/AgCl).The CV curves at slow scan rate present an ideal capacitive behavior with ne rectangular shape.The deviation from rectangularity of the CV becomes distinct with the increase of scan rate.No obvious redox peaks are present in the CV curves,revealing that the measured electrode is charged and discharged at a pseudo-constant rate over the complete voltammetric cycle[35].

    The MnO2based electrode[36]reveal maybe the charge storage mechanism in Mn3O4electrode.At slower scan rate,almost all available pores both on the surface and inside of Mn3O4electrode can be filled with Na+from electrolyte,resulting in a better effective utilization of Mn3O4for redox reaction and a better capacitance.However,the effective interaction between the ions and the electrode is greatly decreased when increasing the scan rate.Thus,the effective redox reaction of Mn3O4is confined only to the outer surface of Mn3O4electrode,resulting in decreased capacitance.The specic capacitance of the electrode at different current densities can be calculated from the following equation[37]

    where C is the specific capacitance of the electrode based on the mass of active materials(F·g-1),Q is the sum of anodic and cathodic voltammetric charges on positive and negative sweeps(C),I is the sample current(A),W is the weight of active materials(g),and V is the total potential deviation of the voltage window(V).v is the scanning rate(V·s-1)and ω is the mass of active electrode materials (g).According to formula(1),specic capacitance ranging from 173 to 84 F·g-1can be delivered at the various scan rates of 2~50 mV·s-1,as shown in Fig.8,which is a little lower than that of Mn3O4nano-octahedrons[38].Thus,the superior crystal structure should be provided for a better functional properties of Mn3O4。

    3 Conclusions

    In summary,Mn3O4nanocrystals with wellcontrolled polyhedral shape have been synthesized via Ethanol-assisted thermolysis of 2.5 mol manganese acetate at 200℃ for 18 h.On the basis of the results,a formation mechanism of Mn3O4polyhedral nanocrystals is proposed.It is valuable to study the shape evolution of γ-Mn3O4in the present reaction system for the understanding of the formation process of polyhedron structures.Cyclic voltammetry measurement shows that the as prepared Mn3O4electrode exhibits a good pseudo capacitance behavior with a discharge specific capacitance of 173 F·g-1at a sweep rate of 5 mV·s-1.These results suggest that Mn3O4polyhedral nanocrystals materials may have potential applications in electrochemical capacitor.

    [1]Zarur A J,Ying J Y.Nature,2000,403:65-67

    [2]Majetich S A,Jin Y.Science,1999,284:470-473

    [3]Nayral C,Viala E,Fau P,et al.Chem.Eur.J.,2000,6:4802-4090

    [4]Raj K,Moskowitz R.J.Magn.Magn.Mater.,1990,85:233-245

    [5]Stobhe E R,Boer B A,Geus J W.Catal.Today,1999,47:161-167

    [6]Yamashita T,Vannice A.J.Catal.,1996,163:158-168

    [7]Zhang F,Zhang X G,Hao L.J.Mater.Chem.Phys.,2011,126:853-858

    [8]Dai Y,Wang K,Xie J Y.Appl.Phys.Lett.,2007,90:102-104

    [9]Jiang J,Li L.Mater.Lett.,2007,61:4894-4896

    [10]Zhang W,Yang Z,Liu Y,et al.J.Cryst.Growth,2004,263:394-399

    [11]Demazeau G.J.Mater.Chem.,1999,9:15-18

    [12]Walton R I.Chem.Soc.Rev.,2002,31:230-238

    [13]Askarinejada A,Bagherzadehb M,Morsali A.J.Appl.Surf.Sci.,2010,256:6678-6682

    [14]Shomate C H.J.Am.Chem.Soc.,1943,65:786-789

    [15]Southard J C,Moore G E.J.Am.Chem.Soc.,1942,64:1769-1770

    [16]Ursu I,Alexandrescu R,Mihailescu I N.J.Phys.B,1986,19:825-830

    [17]Rabiei S,Miser D E,Lipscomb J A,et al.J.Mater.Sci.,2005,40:4995-4998

    [18]Ching S,Roark J L,Duan N.Chem.Mater.,1997,9:750-754

    [19]Al Sagheer F A,Hasan M A,Pasupulety L.J.Mater.Sci.Lett.,1999,18:209-211

    [20]Xu H Y,Xu S L,Wang H,et al.J.Electrochem.Soc.,2005,12:803-807

    [21]Shao C,Guan H,Liu Y,et al.J.Solid State Chem.,2004,177:2628-2631

    [22]Dimesso L,Heider L,Hahn H.Solid State Ionics,1999,123:39-46

    [23]Manna L,Milliron D J,Meisel A,et al.Nat.Mater.,2003,2:382-385

    [24]Tian Z R,Voigt J A,Liu J,et al.Nat.Mater.,2003,2:821-826

    [25]Zheng M T,Liu Y L,Zhao S,et al.Inorg.Chem.,2010,49:8674-8683

    [26]Yang B J,Hu H M,Li C,et al.Chem.Lett.,2004,33:456-458

    [27]Ocana M.Colloid.Polym.Sci.,2000,278:443-449

    [28]Wang W Z,Ao L.Cryst.Growth Des.,2008,8:358-362

    [29]Zuo J,Xu C,Qian Y T,et al.Nanostruct.Mater.,1998,10:1331-1335

    [30]Zhao L Z,Young V.J.Electron Spectrosc.Relat.Phenom.,1984,34:45-54

    [31]Ezhil Raj A M,Victoria S G,Jothy V B,et al.J.Appl.Surf.Sci.,2010,256:2920-2926

    [32]Foord J S,Jackman R B,Allen G C.Philos.Mag.A,1984,49:657-663

    [33]Castro V D,Polzonetti G.J.Electron Spectrosc.,1989,48:117-123

    [34]Ye J F,Liu W,Cai J G.J.Am.Chem.Soc.,2011,133:933-940

    [35]Xu M W,Kong L B,Zhou W J,et al.J.Phys.Chem.C,2007,111:19141-19147

    [36]Devaraj S,Munichandraiah N.J.Phys.Chem.C,2008,112:4406-4417

    [37]YI Guan-Gui(易 觀 貴 ),XIAO Yong(肖 勇 ),HE Wen-Qi(賀文啟),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(1):162-166

    [38]Jiang H,Zhao T,Yan C,et al.Nanoscale,2010,2:2195-2198

    猜你喜歡
    理學(xué)院華南農(nóng)業(yè)大學(xué)多面體
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    華南農(nóng)業(yè)大學(xué)珠江學(xué)院作品精選
    聲屏世界(2022年21期)2023-01-07 12:53:10
    華南農(nóng)業(yè)大學(xué)生生命科學(xué)學(xué)院簡介
    整齊的多面體
    獨孤信多面體煤精組印
    華南農(nóng)業(yè)大學(xué)藝術(shù)學(xué)院設(shè)計作品選登
    具有凸多面體不確定性的混雜隨機微分方程的鎮(zhèn)定分析
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    傅琰東:把自己當(dāng)成一個多面體
    金色年華(2016年11期)2016-02-28 01:42:38
    h视频一区二区三区| 高清毛片免费看| 国产精品久久久久久精品古装| 国产日韩欧美在线精品| 成人毛片60女人毛片免费| 精品久久久久久电影网| 久久6这里有精品| 建设人人有责人人尽责人人享有的| 日韩精品免费视频一区二区三区 | 久久国内精品自在自线图片| 国产成人aa在线观看| 男人狂女人下面高潮的视频| 麻豆乱淫一区二区| 国产乱来视频区| 极品教师在线视频| 伊人久久国产一区二区| 晚上一个人看的免费电影| 成年女人在线观看亚洲视频| 赤兔流量卡办理| 国产成人一区二区在线| 九草在线视频观看| av天堂中文字幕网| 欧美三级亚洲精品| 亚洲av欧美aⅴ国产| 国产真实伦视频高清在线观看| 日本午夜av视频| 最黄视频免费看| 国产亚洲最大av| 国产片特级美女逼逼视频| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 亚洲精品色激情综合| 人妻人人澡人人爽人人| 又黄又爽又刺激的免费视频.| 波野结衣二区三区在线| 女人精品久久久久毛片| 午夜老司机福利剧场| 蜜桃久久精品国产亚洲av| 精品人妻熟女毛片av久久网站| 国产精品国产三级专区第一集| 黑人猛操日本美女一级片| 大香蕉97超碰在线| 一级毛片aaaaaa免费看小| 大话2 男鬼变身卡| 久久ye,这里只有精品| 黄色视频在线播放观看不卡| 日韩精品免费视频一区二区三区 | 乱码一卡2卡4卡精品| 成人免费观看视频高清| 成人国产麻豆网| 毛片一级片免费看久久久久| 久久久久久久久久久丰满| 看十八女毛片水多多多| 桃花免费在线播放| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 亚洲欧美一区二区三区黑人 | 久久久精品免费免费高清| 男女免费视频国产| 精品久久久久久久久av| 乱系列少妇在线播放| 久久狼人影院| 久久久久久久久久久久大奶| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 看免费成人av毛片| 免费播放大片免费观看视频在线观看| 好男人视频免费观看在线| 亚洲av不卡在线观看| 亚洲国产精品999| 国产精品偷伦视频观看了| 在线观看国产h片| 三级国产精品片| 亚洲欧美成人精品一区二区| 国产精品成人在线| 久久综合国产亚洲精品| 成年av动漫网址| 久久久久久久久久久免费av| 精品午夜福利在线看| 六月丁香七月| 在线观看一区二区三区激情| 九九在线视频观看精品| 亚洲美女黄色视频免费看| 桃花免费在线播放| 久久人人爽av亚洲精品天堂| 国产日韩欧美视频二区| 亚洲国产日韩一区二区| 日韩不卡一区二区三区视频在线| 国产免费视频播放在线视频| 日韩 亚洲 欧美在线| 中文字幕制服av| 中文字幕制服av| 精品人妻一区二区三区麻豆| 中文字幕久久专区| 另类亚洲欧美激情| 欧美激情国产日韩精品一区| 精品国产一区二区三区久久久樱花| 久久久久久久久久久久大奶| 一区在线观看完整版| xxx大片免费视频| 我要看日韩黄色一级片| 精品卡一卡二卡四卡免费| 日本欧美国产在线视频| 特大巨黑吊av在线直播| 精品一品国产午夜福利视频| 欧美区成人在线视频| 国产极品粉嫩免费观看在线 | 亚洲精品国产av成人精品| 在线观看人妻少妇| 肉色欧美久久久久久久蜜桃| 一边亲一边摸免费视频| 久久99热6这里只有精品| 高清视频免费观看一区二区| 欧美bdsm另类| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区激情| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 久久久久久久久久久丰满| 熟女电影av网| 狂野欧美激情性xxxx在线观看| 亚洲精品成人av观看孕妇| 尾随美女入室| 国产伦精品一区二区三区视频9| 亚洲高清免费不卡视频| 在线观看免费视频网站a站| 免费观看在线日韩| 亚洲精品乱码久久久久久按摩| 日韩三级伦理在线观看| 国产乱来视频区| 不卡视频在线观看欧美| 七月丁香在线播放| 一级黄片播放器| 色5月婷婷丁香| 少妇人妻一区二区三区视频| 99九九在线精品视频 | 激情五月婷婷亚洲| 亚洲av在线观看美女高潮| 九九在线视频观看精品| 久久久久人妻精品一区果冻| 中文字幕人妻熟人妻熟丝袜美| 国产av精品麻豆| 91精品一卡2卡3卡4卡| 午夜日本视频在线| 日本av手机在线免费观看| 一级av片app| 岛国毛片在线播放| xxx大片免费视频| 最近的中文字幕免费完整| 午夜福利,免费看| 国内揄拍国产精品人妻在线| 国产 精品1| 日韩成人伦理影院| 一级毛片 在线播放| 老司机亚洲免费影院| h视频一区二区三区| 亚洲熟女精品中文字幕| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| 日韩av在线免费看完整版不卡| 久久久久久久精品精品| videos熟女内射| 午夜福利网站1000一区二区三区| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 插逼视频在线观看| 色视频在线一区二区三区| 国产91av在线免费观看| 99视频精品全部免费 在线| 中文精品一卡2卡3卡4更新| 日韩 亚洲 欧美在线| 亚洲久久久国产精品| 国产伦精品一区二区三区视频9| 最近手机中文字幕大全| 日日摸夜夜添夜夜添av毛片| 国产成人免费观看mmmm| 99热全是精品| 波野结衣二区三区在线| 99热网站在线观看| 春色校园在线视频观看| 人妻 亚洲 视频| 欧美日韩综合久久久久久| www.色视频.com| 下体分泌物呈黄色| 国产一区二区三区综合在线观看 | 大话2 男鬼变身卡| 黑人猛操日本美女一级片| 欧美3d第一页| 久久久久国产网址| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 观看免费一级毛片| 国产在视频线精品| av女优亚洲男人天堂| 高清毛片免费看| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区免费观看| 欧美精品一区二区大全| 美女主播在线视频| 大码成人一级视频| 一区二区三区四区激情视频| 一本大道久久a久久精品| 久热久热在线精品观看| 人人妻人人看人人澡| 久久久亚洲精品成人影院| 大码成人一级视频| 国精品久久久久久国模美| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 欧美日韩一区二区视频在线观看视频在线| 黄片无遮挡物在线观看| 精品一区在线观看国产| 在线 av 中文字幕| 国产一区有黄有色的免费视频| 五月开心婷婷网| 国产午夜精品久久久久久一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 老熟女久久久| 一个人看视频在线观看www免费| 91久久精品电影网| 哪个播放器可以免费观看大片| 我要看日韩黄色一级片| 亚洲av免费高清在线观看| 99久久人妻综合| 国产伦在线观看视频一区| 我的老师免费观看完整版| 99久久中文字幕三级久久日本| 国产成人a∨麻豆精品| 黑人巨大精品欧美一区二区蜜桃 | 99久国产av精品国产电影| 久久久国产欧美日韩av| 国产av精品麻豆| 桃花免费在线播放| 能在线免费看毛片的网站| 十八禁高潮呻吟视频 | 国模一区二区三区四区视频| 亚洲av不卡在线观看| 大话2 男鬼变身卡| 一区二区三区免费毛片| 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 美女视频免费永久观看网站| 91午夜精品亚洲一区二区三区| 综合色丁香网| 午夜免费观看性视频| 人人妻人人澡人人看| a 毛片基地| 波野结衣二区三区在线| 高清不卡的av网站| 18+在线观看网站| 18禁裸乳无遮挡动漫免费视频| 另类精品久久| 天堂中文最新版在线下载| 国精品久久久久久国模美| h视频一区二区三区| 精品一区二区免费观看| 女的被弄到高潮叫床怎么办| 国产午夜精品久久久久久一区二区三区| 99久久精品国产国产毛片| 99国产精品免费福利视频| 久久人人爽人人爽人人片va| videos熟女内射| 观看av在线不卡| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 日本爱情动作片www.在线观看| 久久狼人影院| 各种免费的搞黄视频| 国产欧美日韩一区二区三区在线 | 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 日本免费在线观看一区| 久久6这里有精品| 人妻 亚洲 视频| 亚洲成人一二三区av| 亚洲欧美一区二区三区黑人 | 99视频精品全部免费 在线| 国产日韩一区二区三区精品不卡 | 亚洲精华国产精华液的使用体验| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| 69精品国产乱码久久久| 三级国产精品片| 插逼视频在线观看| 国产av国产精品国产| 久久毛片免费看一区二区三区| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| av卡一久久| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| av线在线观看网站| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 人人妻人人爽人人添夜夜欢视频 | 一级av片app| 亚洲精品aⅴ在线观看| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 久久久久久伊人网av| 国产69精品久久久久777片| 免费观看av网站的网址| 天美传媒精品一区二区| 中文资源天堂在线| 国产精品免费大片| 亚洲美女搞黄在线观看| 日本午夜av视频| 狂野欧美激情性bbbbbb| 99视频精品全部免费 在线| 久久青草综合色| 久久久欧美国产精品| 国产亚洲91精品色在线| 日日啪夜夜爽| 国产极品粉嫩免费观看在线 | 免费黄色在线免费观看| 99视频精品全部免费 在线| 在线观看免费高清a一片| 亚洲欧美成人精品一区二区| 黑人猛操日本美女一级片| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 成年人午夜在线观看视频| 伦理电影大哥的女人| 日韩强制内射视频| 日韩视频在线欧美| 久久久久视频综合| 日本91视频免费播放| 日本色播在线视频| 国产亚洲一区二区精品| 在线观看av片永久免费下载| 最近手机中文字幕大全| 国产高清不卡午夜福利| 久久午夜福利片| 国产成人一区二区在线| 久久久精品94久久精品| 久久久国产欧美日韩av| 国产成人91sexporn| 久久精品久久久久久久性| 边亲边吃奶的免费视频| 在现免费观看毛片| 大话2 男鬼变身卡| 大香蕉97超碰在线| 亚洲中文av在线| 国产视频首页在线观看| 在线观看免费视频网站a站| 草草在线视频免费看| 国产精品伦人一区二区| 观看av在线不卡| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| av在线播放精品| 午夜免费男女啪啪视频观看| 精品午夜福利在线看| 又爽又黄a免费视频| 看非洲黑人一级黄片| 欧美丝袜亚洲另类| 午夜av观看不卡| 青春草国产在线视频| 亚洲中文av在线| 精品午夜福利在线看| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 丝袜喷水一区| 成人国产av品久久久| 亚洲av不卡在线观看| 国产精品无大码| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠久久av| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| av卡一久久| 欧美激情极品国产一区二区三区 | 五月玫瑰六月丁香| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 国产精品蜜桃在线观看| 欧美日韩在线观看h| 美女视频免费永久观看网站| 99热国产这里只有精品6| 亚洲成人一二三区av| 亚洲精品,欧美精品| 在线免费观看不下载黄p国产| 亚洲av欧美aⅴ国产| 老司机亚洲免费影院| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 国产精品一区www在线观看| 亚洲欧美一区二区三区黑人 | av网站免费在线观看视频| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区| 丰满少妇做爰视频| 国产精品一区二区性色av| 久久国内精品自在自线图片| 国产免费福利视频在线观看| 国产片特级美女逼逼视频| 寂寞人妻少妇视频99o| 夜夜骑夜夜射夜夜干| 国产熟女欧美一区二区| 高清欧美精品videossex| 精品酒店卫生间| 黄色毛片三级朝国网站 | 久久97久久精品| 国产在线免费精品| 91精品伊人久久大香线蕉| 国产成人精品福利久久| 在线观看免费高清a一片| 女人久久www免费人成看片| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 国产精品一区二区在线不卡| 中文资源天堂在线| 少妇裸体淫交视频免费看高清| 尾随美女入室| 亚洲精品国产成人久久av| 亚洲av成人精品一区久久| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| av免费观看日本| 欧美日韩亚洲高清精品| 亚洲av成人精品一二三区| 久久久国产欧美日韩av| 美女国产视频在线观看| 亚洲国产毛片av蜜桃av| 日韩av免费高清视频| 国产成人精品一,二区| 五月玫瑰六月丁香| 在线观看免费视频网站a站| 精品久久国产蜜桃| 日韩精品免费视频一区二区三区 | 欧美日韩国产mv在线观看视频| 久久精品国产自在天天线| 亚洲欧美一区二区三区国产| 美女脱内裤让男人舔精品视频| 黄色怎么调成土黄色| 国产成人freesex在线| 久久 成人 亚洲| 69精品国产乱码久久久| 国产精品一二三区在线看| 黑丝袜美女国产一区| 国产av国产精品国产| 老女人水多毛片| a级毛色黄片| 三级经典国产精品| 亚洲欧洲精品一区二区精品久久久 | 丰满迷人的少妇在线观看| 免费少妇av软件| 99热网站在线观看| 18禁动态无遮挡网站| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 插逼视频在线观看| 亚洲婷婷狠狠爱综合网| 成年人免费黄色播放视频 | 热99国产精品久久久久久7| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 日日啪夜夜撸| 51国产日韩欧美| 99精国产麻豆久久婷婷| 六月丁香七月| 日韩,欧美,国产一区二区三区| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 777米奇影视久久| 少妇精品久久久久久久| www.色视频.com| 国产爽快片一区二区三区| av网站免费在线观看视频| 性色avwww在线观看| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| tube8黄色片| av免费观看日本| 99热6这里只有精品| 久久久亚洲精品成人影院| 国产乱来视频区| 五月伊人婷婷丁香| av黄色大香蕉| 免费久久久久久久精品成人欧美视频 | 午夜激情久久久久久久| a级片在线免费高清观看视频| 久久青草综合色| av.在线天堂| 免费黄色在线免费观看| 日韩伦理黄色片| 夜夜爽夜夜爽视频| 我要看日韩黄色一级片| 人人妻人人澡人人爽人人夜夜| 久久久久网色| 亚洲美女黄色视频免费看| 乱人伦中国视频| 免费av中文字幕在线| 在线精品无人区一区二区三| 一本久久精品| 自拍偷自拍亚洲精品老妇| 午夜激情福利司机影院| 成人毛片a级毛片在线播放| 亚洲精品日本国产第一区| 久久99一区二区三区| 精品人妻熟女av久视频| 亚洲天堂av无毛| 丁香六月天网| 99九九线精品视频在线观看视频| 三级经典国产精品| 在现免费观看毛片| 一区在线观看完整版| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 免费av不卡在线播放| 人妻少妇偷人精品九色| 少妇被粗大猛烈的视频| 成年女人在线观看亚洲视频| 久久青草综合色| 精品熟女少妇av免费看| 免费看日本二区| 18禁裸乳无遮挡动漫免费视频| 蜜桃在线观看..| 午夜老司机福利剧场| 亚洲av中文av极速乱| 午夜精品国产一区二区电影| 一级a做视频免费观看| 久久久久国产网址| 中文乱码字字幕精品一区二区三区| 免费观看a级毛片全部| 欧美精品高潮呻吟av久久| 成人影院久久| 伦理电影大哥的女人| 五月天丁香电影| freevideosex欧美| 日日啪夜夜爽| 成人18禁高潮啪啪吃奶动态图 | 男女免费视频国产| 一级av片app| 日韩中文字幕视频在线看片| 日日摸夜夜添夜夜添av毛片| 精品卡一卡二卡四卡免费| 男的添女的下面高潮视频| 国产精品久久久久久精品古装| 亚洲综合色惰| 80岁老熟妇乱子伦牲交| 大片免费播放器 马上看| 这个男人来自地球电影免费观看 | 国产精品人妻久久久久久| 久久韩国三级中文字幕| 纵有疾风起免费观看全集完整版| 亚洲精品456在线播放app| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 国产成人a∨麻豆精品| 欧美精品一区二区大全| 特大巨黑吊av在线直播| 一边亲一边摸免费视频| 亚洲av二区三区四区| 最近的中文字幕免费完整| 日本wwww免费看| 久热这里只有精品99| 久久青草综合色| 日韩欧美 国产精品| 色视频www国产| 爱豆传媒免费全集在线观看| 免费看光身美女| 麻豆成人午夜福利视频| 日韩中字成人| 国产淫语在线视频| 一区二区三区四区激情视频| 一级毛片黄色毛片免费观看视频| 国产视频内射| 亚洲国产欧美在线一区| 亚洲欧美日韩东京热| 国产精品嫩草影院av在线观看| 日本av免费视频播放| 久久久久久久亚洲中文字幕| 一级毛片久久久久久久久女| 国产高清不卡午夜福利| 久久99热6这里只有精品| 亚洲av福利一区| 国产一区二区三区综合在线观看 | 日日爽夜夜爽网站| 大话2 男鬼变身卡| 欧美成人精品欧美一级黄| 日韩大片免费观看网站| 欧美老熟妇乱子伦牲交| 久久午夜福利片| 欧美日韩在线观看h| 一级爰片在线观看| 久久6这里有精品| 中文天堂在线官网| 亚洲av不卡在线观看| 欧美另类一区| 黄色一级大片看看| 99热6这里只有精品| 大码成人一级视频| 久久久久国产网址| 亚洲欧美中文字幕日韩二区| 久久久久精品久久久久真实原创| 青春草视频在线免费观看| 亚洲精品久久午夜乱码| 欧美三级亚洲精品|