• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    油氣生產(chǎn)中的沖刷腐蝕(一)

    2013-10-16 03:04:42BaotongLu
    石油與天然氣化工 2013年1期
    關(guān)鍵詞:工程部西南沖刷

    Baotong Lu

    (美國西南研究院材料工程部)

    1 Background

    Wit h a few exceptions,most metals owe t heir corrosion resistance to a protective surface fil m.E-rosive fl uids can da mage t he pr otective fil m,and re move s mall pieces of material as well,leading to a significant increase in penetration rate.For instance,carbon steel pipe carrying water is usually protected by a fil m of rust and its corrosion rates are typically <1 mm/y (or 40 mils/y).The removal of the fil m by erosive slurry gives corrosion rates of t he or der of 10 mm/y(400 mils/y)in addition to t he any er osion of underl ying metal[1]The damage to the pr otect fil m may be t he results of the fl uid-induced mechanical f orces or flowing-enhanced dissolution[2-3].Meanwhile,the corrosion can cause degradation in surface pr operties and promote the mechanical erosion under action of the mechanical f orces[4].This conjoint action of er osion and corrosion is kno wn as erosion-corr osion[5].er osion-corrosion enco mpasses a wide range of flow-induced corr osion[6].It is also regar ded as a subject within the broader area of tribo-corrosion which covers all aspects of tribol ogically(mainl y mechanically)induced interactions wit h electr ochemical pr ocesses[7].As su mmarized by Postlet hwaite and Nesic[6],t he sources of t he various mechanical f orces that cause erosion-corrosion include:

    (1)Tur bulent flow,fl uct uating shear stress and pressure i mpacts.

    (2)Impact of suspended solid particles.

    (3)Impacts of suspended liquid dr oplets in high-speed gas flow.

    (4)Impact of suspended gas bubbles in aqueous flow.

    (5)The violent collapse of vapor bubbles f oll owing cavitation.

    The five mechanical force sources mentioned above can be f ound in oil and gas pr oduction.The fl uids to induce erosion-corr osion may be single phase like the portable water or multiphase flows such as various combinations of gas,oil,water and solid particles in petr oleu m industry[8].It is well known t hat the t ur bulent fl ow,fl uct uating shear stress and pressure i mpacts are sources of flow accelerated corrosion in pipelines transporting oil and water[9]and the violent collapse of vapor bubbles in pu mps and val ves can result in cavitation-corr o-sion[10].A f ew typical pr oblems of er osion-corr osion in oil and gas production are specifically mentioned as f ollows.

    · The downhole co mponents.Petr oleu m and mining drill bits are subjected to highl y abrasive rock and high velocity fluid so that erosion-corrosion is among t he most f ail ure mechanis ms of downhole co mponents[11]. The entire downhole tubing string is exposed to erosion-corrosion,but points if radical fl ow diversion or constr uction such as pu mps,downhole screens,chokes and subsurface safety valves are particularly at risk[12-13].In t he downholes of gas wells,the er osion-corr osion may result from the i mpingement of mixture of corrosive liquid droplets[14].

    · The systems used to contain,transport and process erosive mineral slurries.This is particularl y i mportant f or the oil sand industry of nort her n Al berta,Canada,where handling the processing of essentially silica-based sand (tar sand)results in ser ver er osion-corr osion pr oblems[7,15].

    ·With the technique of CO2injection f or enhanced oil recovery and active exploitation of deep nat ure gas reser voirs containing CO2,ser ver corr osion of car bon steel is experienced[16].In CO2-sat urated envir on ments,t he Fe CO3scale may f or m and it can pr ovide pr otection to so me extent.The sand present in production fl uids may damage and/or remove the protective scale,leading to erosion-corrosion[17].

    ·Petroleu m refinery equip ment components,typically,pu mp inter nals,t her mo wells,piping elbows,nozzle,valves seats and guides,experience varying degrees of high temperature erosion and corrosion.The erosion-corrosion effects are predo minant in fl uidized catalytic crackers,delayed cokers,flexicokers,t her mal crackers and vacuu m distillation units[18].High temperat ure cr ude oil moving with high velocity across the tube wall surf ace may cause ser ver localized damage.Such kind of damage may be related to t he naphet henic acids that are highly aggressive in a temperature range from 220℃to 400℃[19]and the high turbulence of fl uid[20-21].The material loss is increased significantly by t he s mall amount of fine er odent in the cr ude oils that are extracted from bitu men of oil sand.

    Accor ding to a recent sur vey,er osion-corr osion was rated in the top 5 most prevalent f or ms of corrosion damage in the oil and gas production[22]and cause an i mmense economic loss[23-24].Many review articles on topic of er osion-corr osion investigation fr o m different view angles can be f ound in open literature[3,6-7,23].In this paper,an attempt will be made to over view t he pr ogresses achieved in t he eval uation of er osion-corr osion resistance of materials and the mitigation methods.The e mphasis will be put on t he syner gistic eff ects in er osioncorr osion in flowing sl urries.

    2 Erosion,corrosion and their synergism

    The mechanis ms of flo w accelerated corrosion relate to the destr ucting and ref or ming of protect fil ms.The pr otect fil ms fall into t wo categories:(1)t he relative t hick por ous diff usion barriers,f or med on car bon steels(red r ust)and copper all oys(cupr ous oxide)and (2)t he thin invisible passive fil ms on stainless steels,nickel alloy and other passive metals like titaniu m[6].A spectr u m of erosion-corrosion process in Table 1 was su mmarized by Poulson[3,24].Actually,this spectru m is more suitable to t he metals wit h loose and less pr otective surface scale exposed to a single phase flow.The erosion-corrosion mechanis ms of passive metals in fl owing sl urries are much more co mplicated t han t hose shown in Table 1.For example,t he mechanical erosion may contribute a major part of total material l oss of stainless steels in marine pu mping applications where solid er odent are present,even under t he condition t hat t he pr otect fil m is only partially removed[25].A lar ge amount of experi mental data have indicated that,even if the corrosion co mponent is very s mall,e.g.less t han 5%of t he pure mechanical erosion rate in absence of corrosion,the resulting erosion-corrosion rate may be much greater t han t hat without corr osion[14,26-30].Wit h i mplantation of sand pr oduction controls,such as gravel-packing completion,the pr one reser voirs pr oduce still sand up to 5 pounds per t housand barrels and results in considerable material l oss due to er osion-corr osion[12].Experimental evidence indicated that the corrosion due to wet CO2might accelerate the erosion of C-Mn steel by a f actor of 2~4[12].Because of t he damage and re moval of pr otective scale caused by t he sand i mpingement,the corrosion rate also increased significantly[12,17].

    Table 1 Spectrum of erosion-corrosion processes[3,23]

    As mentioned above,t wo different material loss mechanisms are involved in erosion-corrosion of metals,mechanical er osion and electrochemical corrosion.The mechanical er osion relates to plastic def or mation and r upt ure in surface layer.Small pieces of metal are removed fr o m t he surface by various mechanical f orces before being ionized.The electrochemical corrosion relates to the metal being dissol ved into t he sl urr y after it is ionized.Theref ore,the total material loss rate˙w is the su m of material loss rates caused by erosion˙e and corrosion˙c,

    To be more accurate,t he corrosion rate is the more suitable ter m in the place of‘erosion-corr osion rate’in Table 1.The total material loss of material in corrosive fluids is nor mally larger than t he su m of t hose caused by pure mechanical erosion and pure electr ochemical corr osion.Accor ding to standard of AST M G119,the pure mechanical erosion is defined as t he er osion in an inert envir onment and the pure electrochemical corrosion is the corrosion under erosion-free condition.The additional wastages of er osion and corr osion co mponents caused by t he syner gistic eff ects are regar ded as t he corr osion-enhanced erosion˙ecand t he er osion-enhanced corr osion˙ce[31],

    The erosion-corrosion mechanism is affected by all the f actors which control corrosion and all the fact ors which aff ect er osion.In co mbination,the damage is synergistic and can be extremely aggressive.The syner gis m of er osion and corr osion,˙s ,is expressed as the su m of˙ecand˙ce[31]:

    The syner gis m often contributes to such a lar ge part of the total material loss[26-30,32-34],that it cannot be ignored in ser vice lif eti me assess ment in engineering.The corrosion is erosive liquid can be deter mined using the standard procedures that used in erosion-free condition,such as t he one to measure the linear polarization resistance(AST M G59)[35]and t he one to generate t he potentiodynamic cur ves(AST M G5)[36].The pure mechanical erosion rate in corr osive sl urries shoul d be conducted under the same hydrodynamic conditions under cat hodic pr otection.AST M G119 reco mmended polarizing the speci men to one volt cathodic wit h respect t he open circuit potential to guarantee a f ully protected condition.However,caution must be taken because hydrogen embrittlement may occur in so me materials under the cathodic pr otection.Besides,t he gas bubbles pr oduced by the hydrogen evol ution may affect the hydrodynamic conditions.A recent st udy indicated t hat the erosion rates under cathodic protection in the slurries prepared by dil ute acidic sol utions are much higher t han t hose in neutral and al kaline sl urries[37].In line with AST M G119,the f ollowing dimensionless factors can be defined to describe the degree of syner gis m:

    Alt hough eff orts have been made,it is still difficult buil d an integral model of er osion-corr osion[38-40].Because a lar ge amount of factors are involved in the er osion-corrosion pr ocesses incl uding t he metall ur gical features of material[41-44],the hydrodynamics of fluid[45-46]and flow field[47],the characteristics of erodent[48-51],the temperat ure[52-53]and corr osivity of media[37,54].

    During i mpingement,the sand degradation may result fr o m t he br oken of sand particles and/or the bluntness of particle corner or edge,leading to a reduced er osion rate.If t he eff ect of sand degradation is excluded,the erosion rate under a given hydrodynamic condition is independent of ti me[40,55],The total material loss rate resulting from a cavitating liquid or i mpingement of liquid dr oplets is a f unction of ti me.There is an incubation ti me wit hin which the rate of material l oss is negligible.After t he incubation,t he material loss rate increases rapidl y,reaches a peak val ue and t hen reduces to a steady val ue gradually[56-57].

    3 Corrosion in fluids

    3.1 Corrosion under control of mass transfer at electrode/electrolyte interface

    When corrosion is controlled by the mass transfer of dissolved oxygen or in the boundary layer of the liquid at the electrolyte/electrode or diff usion of so me ot her sol uble species away fr o m t he surface[24],the corrosion rate is for mulated as f oll ows[58-62],

    The non-di mensional parameters in Eq.(8)are Sher wood nu mber Sh=Kd/D,Reynol ds nu mber Re=Ud/v and Sch midt nu mber Sc=v/D;where α,βandγare constants depending upon t he flow conditions and the geo metr y of the test devices;K is the specific mass transfer coefficient,d is the specific size depending on t he geo metry of test device;D is the diff usion coefficient of the species of which diff usion in t he boundar y layer contr ols the corrosion process;U is the flow velocity;and v is t he kinematic viscosity of t he fl uid.

    Equation(8)was originally established in the rotating disk electrode(RDE)system based on kinetics of electroche mical reaction[63]. When the electr ochemical reaction over t he RDE surface is mass transf er contr ol,α=0.791,β=0.7 andγ=0.356.Eq.(8)was extended to various systems.In a straight pipe,d in eq.(8)coul d be t he pipe diameter.Corr osion rate˙c=KΔC,as t he corrosion is do minated by t he mass transfer pr ocess in the boundary layer at t he electr ode/electrolyte interf ace.ΔC is t he concentration driving f orce or concentration drop of species wit hin t he boundar y layer,of which t he diff usion contr ols t he corrosion pr ocess.Thus

    Eq.(9)has been validated experi mentally,such as the test data sho wn in Fig.1.Dissolved oxygen is often believed to be t he species in t he fl owing electr olyte contr olling t he corr osion process.If the corrosion reaction at the tar get surface is solely controlled by the diff usion of dissolved oxygen wit hin t he boundar y layer,t he corr osion rate is pr oportional to t he li mited current density ilimof dissolved oxygen[59-62]and the corrosion rate˙c is given by

    where C0t he dissol ved oxygen concentration in bul k liquid mediu m.Theoretically,η=1.Postlet hwaite et al.pointed out onl y 2/3 of dissol ved oxygen reaching the wall is used in oxidizing the iron into ferrous ions and that the rest is used in the oxidization of t he f err ous ions to ferric ions close to t he wall,so t hatη=2/3[11].

    In Fig.1,the exponent deter mined t he fl owing tailing water free of solid particle is around 0.75 and that in f ollowing slurries is about 0.55.This is because the linear relationship˙c=KΔC not al ways hel d.Generally,˙c∝Km[3,24].The deviation of mval ue fr o m 1 suggests the corr osion reaction is not f ully under t he mass transf er contr ol,as depicted in Fig.2[3,8,24].In the flowing electrolyte free of sand,corrosion scale would f or m on the target surf ace(n>1:case 2 in Fig.2).In flowing sl urr y,t he i mpingement of solid particles would re move t he corr osion scale and t he activation of electr ode may result from the dynamic plastic strain in the surface layer(n<1:case 4 in Fig.2).In real pipe system,the surface roughness can affect theβ-value[58,64].For a mass transf er-contr olled corr osion reaction,t he val ue f orβmay range fr o m 0.5 to 1[6].

    When the protective corrosion product scale exists on the surface,the apparent mass transport coefficient K is f or mulated as f ollows[66],

    where KBand KFare t he mass transport coefficients in the boundary layer and the corrosion pr oduct fil m,respectively.If t he metal is under the passive condition,the mass transfer in the passive fil m will be much slower than that the liquid phase,KB>>KF,and K≈KF.If t he fl uid does not induce t he breakdown of passive fil m,t he corrosion of ir on-based alloys is contr olled by t he diff usion of oxygen vacancy within t he passive fil m[67]and hence the corr osion rate is controlled by the density and diff usion coefficient of oxygen vacancy density within the passive fil m[68].If the fluid cannot destr oy t he passive fil m,a high fl owing vel ocity can increase the dissolved oxygen supply at the electr ode/electr ol yte interf ace,leading to a reduced oxygen vacancy density in the passive fil m.As a result,the passive current density is likely to be reduced.If t he fl uid da mages and/or destr ucts t he passive fil m,t he corr osion rate will increased dra matically[69].

    3.2 Critical i mpingement velocity

    The exact mechanis m of pr otective fil m da mage during erosion-corrosion in single-phased turbulent flow is still in doubt.There is uncertainty regar ding the roles of mechanical forces and mass transfer in fil m disr uption since bot h of t hem are directl y related to t ur bulence intensity[6]. An industr y standar d,API RP-14E[70]reco mmends an empirical f or mula,originall y devel oped fr o m t he experience in electric power industry with erosion-corrosion of car bon steel by stea m condensate,to estimate the critical velocity Ue(ft/s)beyond which the corrosion rate will become unacceptable high due to onset of er osion-corr osion.

    whereρFis t he density of fl uid in Ibft-3and CAPIis a constant.A constant 450 is reco mmended f or use in seawater injection systems constr ucted fr o m corrosion-resistant alloys,100 is f or ot her materials and 150~200 f or inhibited systems.The liquid jet i mpingement tests on API 5CT L80 12Cr steel indicate t he er osion-corr osion resistance in absence of solid particle is considerably higher than that predicted by API RP-14E[69].The critical velocity is also a f unction of envir on ment and syste m geo metr y[8].Eff orts have been made to modif y Eq.(8)to pr ovide more universal CAPIf actor,by taking the har dness of surf ace fil ms into account[71].Because t he pr otective fil m (passive fil m or corr osion pr oduct scale)is very thin(~10 n m or less),both the t heory and experi mental techniques f or eval uating t he mechanical properties of t he pr otective fil m are not well established[72].The critical velocity Uecan be regar ded as t he critical condition leading to passive fil m breakdown and,theref ore,it is usef ul tool to eval uate t he er osion-corr osion susceptibility of materials under i mpingement liquid dr oplet suspending in high velocity gas flow[14].However,it does not relate to the corr osion rate after the passive fil m breakdown.

    3.3 Wall shear stresses

    Based on the experi mental observation of copper alloy tubes with a diameter of 25 mm[73],Efir d[74]pr oposed t he concept of ‘critical wall shear stress’f or fil m disr uption.

    where f is the Fanning friction factor[75]and its val ues f or pipes wit h various surface r oughness can be obtained fr o m a Moody chart[76].The concept of critical wall shear stress has been used to evaluate the perf or mance of protective fil m of inhibitor in CO2corr osion of car bon steel[77].However,t his idea was not tested to see if the concept of critical wall shear stress was applicable to ot her geo metries[8].It has been pointed out that the wall shear stresses obtained are too low to remove the corrosion product scale fro m the pipe wall[6,8,24,78]

    The most severe er osion-corr osion pr oblems occur under conditions of dist ur bed t ur bulent fl ow at sudden changes on the fl owing system,such as bends,heat-exchanger-tube inlets,orifice plates,val ues,fittings and in tur bo-machinery including pu mps,co mpressors,t ur bines and pr opellers[6].The experi mental evidence indicated t hat it is difficult to correlate t he corrosion rate in t he detached flow pr oduced by t he downstrea m of pipe expan-sion to the wall shear stress[24].In reality,t here are fluctuating shear stress and pressure at the wall and the largest values are obtained quasi-cyclic bursting events close to the wall[6].It is worthy of studying t he possibility t hat t he corrosion pr oduct scale is physicall y re moved by t he stress resulting fr o m t he t ur bulent fl uid[24].

    In addition to corrosion process in fluid,the wall shear stress may cause an extra material loss in a corroding mediu m.It was f ound that the actual material loss in flowing electrolytes free of solid particle measured wit h weight l oss met hod was higher t han t hat calculated with t he Faraday’s law based on t he anodic current density deter mined by t he electr ochemical appr oach[79-80].The extra material loss is defined as non-Faraday’s material loss.

    where˙w is total material loss measured wit h the weight loss met hod and t he Faraday’s material l oss is equal to t he corr osion rate

    The non-Faraday material loss disappears as the corrosion is ceased by cathodic protection.However,it increases with increasing anodic current density and the wall shear stress(Fig.3),suggesting it is a result of synergistic effect bet ween the mechanical f orce and corrosion.

    3.4 Corrosion of passive metals in flowing slurry

    When t he kinetic ener gy of solid particles in flowing slurry exceeds a threshold val ue,the particle i mpingement will remove a s mall piece of passive fil m and pr oduce a crater.It will lead to a shar p rise of local corr osion current over t he crate surface.Then the local current will decay with ti me because of repassivation[81].As a result,the corrosion current density over target surface that is i mpacted by sl urry is no longer unif or m and the average corr osion current density will depends on the rate of passive fil m removal and repassivation kinetics.In line with the kinetic analysis of slurry i mpingement,the average current density over the whole electrode surface can be expressed as[82]

    where i is the local current density that is a f unction of t he repassivation kinetics,A is t he surf ace area of target and˙Ae(=CpUsinθAˉcrater/mˉp)is the generation rate of t he active surf ace area caused by sl urry i mpingement.Cpand mˉpare the concentration(kg/m3)and average mass(kg)of solid particle,respectively,θis t he i mpinge ment angle,Aˉcrateris the average surface area of crater produced by t he individual particle i mpingement t hat can be measured from SEM i mage of surface i mpacted by the slurry.The kinetic mode and parameters of repassivation depend on the nat ure of tar get materials,as well as chemical characteristics and hydr odynamics of corrosion media,and can be determined directl y using t he single particle i mpingement or scratch test[52,83].When t he repassivation f ollows t he bi-exponential law,as indicated by 304 stainless steel in the tap water[52],

    where t he second ter m in Eq.(15)(i1,τ1)relates to certain quickly decaying processes such as the f or mation of a passive fil m wit h monolayer t hickness on a bared crater surface,and t he t hir d ter m(i2,τ2)relates to a sl owly decaying pr ocess f or gr owth of a passive fil m[84];i1+i2=ipeak,ipeakis the peak response of local current density over the crate surface to t he particle i mpingement;iSis the stable current density in the flowing water free of sand.In t his case,the corr osion current density in flowing sl urr y is f or mulated as f ollows by inserting Eq.(17)into Eq.(16)and integrating[52]

    The non-di mensional para meters areλ1=τ1˙Aeandλ2=τ2˙Aet hat represent t he co mbined eff ects of the hydrodynamic conditions and repassivation kinetics.An exa mple in Figs.4 and 5 indicates t hat Eq.(18)gives a good prediction to the corrosion current density of 304SS in t he flowing sl urries.iScan be regarded as the corrosion rate under the erosion-free condition,so t hat t he corr osion aug mentation defined by AST M G119 is given by

    When the repassivation f ollows the power law,as indicated by car bon steels in the sl urries prepared wit h t he borate buffer sol ution[52,83]

    The corrosion current density in flowing slurry and t he corrosion augmentation will be f or mulated as[52]

    whereτ0and m(0<m<1)are experi mental con stants,t he non-di mensional parameterλ0=τ0˙Ae.In the practical situations in engineering,λ0<<1.It has been demonstrated t hat Eq.(21)gives good prediction to the corr osion current densities of pipeline steels[52].

    [1] Postlet h waite J,Dobbin M H,Bergevin K.Corr osion,1986,42:514-524.

    [2] Burstein G T,Sasaki K.Electrochi m.Acta,2001,46:3675-3683.

    [3] Poulson B.Corr osion Science,1983,23(4):391-430.

    [4] Lu B T,Luo J L.J.Phys.Chem.B,2006,110:4217-4231.

    [5] AST M G 15-05.Standard ter minology relating to corr osion and corrosion testing.Annual Book of AST M Standards,Vol.03.02,Wear and Erosion,Metal Corrosion,West Conshohocken,PA,2005:65-68.

    [6] Postlet h waite J,Nesic S.Er osion-corr osion in single and multiphase flow.Uhlig's Handbook,2nd Edition by W.Revie,2000,John Wiley &Sons,Inc.,249-272.

    [7] Wood R J K.Wear,2006,261:1012-1023.

    [8] Pouslson P B.Erosion-corrosion in corrosion.Shreir L L,Jarman R A,Burstein G T.(ed.).3rd Edition.Elsevier,1994:293-303.

    [9] Efird K D.Corrosion 2000.Paper No.52.NACE International,Huston,TX.,2000.

    [10] Owen I,Madadnia J.ASME,F(xiàn)l uids Engineering Division,(Publication),V.226,Cavitation and gas-liquid flow in fl uid machinery and devices,1995:59-62.

    [11] Kembaiyan K T,Keshavan K.Wear,1995,186-187:487-492.

    [12] Ha mzah R,Stephenson D J,Str utt J E.Wear,1995,186-1987:493-496.

    [13] Procyk A,Whitelock M,Ali S.Oil & Gas Journal,1998,July:80-90.

    [14] Andrews P,Illson T F,Mathews S J.Wear,1999,233-235:568-574.

    [15] Clar k H M,l wellyn R J.Wear,2003,250:206-218.

    [16] Wang C,Neville A,Ra machanfran S and Jovancicevic V.Wear,2005,258:649-658.

    [17] Shaley J R,Shirazi S A,Dayalan E,et al.Corrosion,1998,54:972-978.

    [18] Raghu D,Mc Kee B,Sheriff C.et al.Corrosion'01.Paper No.513.NACE Inter national.Houston.TX.USA,2001.

    [19] Kane R D,Cayard M S.Corrosion'02.Paper No.555.NACE International.Houston.TX.USA,2002,

    [20] Klenowicz Z,Darowicki K,Krakowiak S,et al.Mater.Corr.,2003,54:181-187.

    [21] Wu X Q,Jing H M,Zheng Y G,et al.Wear,2004,256:134-141.

    [22] Mc Lintyre P.Marine Corr osion Club Meeting,Aber deen,A-pril,1999.

    [23] Wood R J K,Jones T F,Miles N J,et al.Wear,2001,250:770-778.

    [24] Poulson B.Wear,1999,233-235:497-405.

    [25] Neville A,Hodgkiess T,Dallas J T.Wear,1995,186-187:497-507.

    [26] Matsu mura M,Oka Y.Slurr y Erosion-corrosion on Co mmercial Pure Iron in Fountain-Jet Facility,Proc.7th Int.Conf.on Er osion by Liquid and Solid Impact,Ca mbridge,UK,Cavendish Lab.University of Ca mbridge,1987,40.

    [27] Hu X,Neville A.Wear,2005,258:641-648.

    [28] Yue Z,Zhou P,Shi J.Wear of Materials.ASME.New York,1987:763-771.

    [29] Madson B W.Wear,1988,123:127-142.

    [30] Pitt C H,Chang Y M.Corr osion,1986,42:312-317.

    [31] AST M G119-04.Standard guide f or deter mining synergis m bet ween wear and corrosion.West Conshohocken.PA,2006:519-523.

    [32] Watson S W,F(xiàn)riederdorf F J,Madson B W,et al.Wear,1995,181-183:476-484.

    [33] Stack M M.Inter national Materials Reviews,2005,50:1.

    [34]Madsen B W.Wear,1988,123:127-136.

    [35] AST M G59-97.Conducting potentiodyna mic polarization resistance measurement.West Conshohocken,PA,2005:519-523.

    [36] AST M G5-94.Making potentiostatic and potentiodyna mic anodic polarization measurements.West Conshohocken,PA,1994.

    [37] Lu B T,Wang K,Wan X M,et al.Correlation bet ween degradations of mechanical properties in surface layer and erosion resistance of car bon steel-effects of slurry chemistry.Tribology Inter national,2012,in revision.

    [38] Postlethwaite J.Corrosion,1981,37:1-5.

    [39] Neville A,Hu X.Wear,2001,250-251:1284-1294.

    [40] Li Y,Burstein G T,Hutchings I M.Wear,1995,186-187:515-522.

    [41] Christodoulou P,Dr otlew A,Gutowski W.Wear,1997,211:129.

    [42] Pugsley V A,Allen C.Wear,1999,233-235:93.

    [43] Wang M C,Ren S Z,Wang X B,et al.Wear,1993,160:259.

    [44] Huang X,Wu Y J.Mater.Eng.Perf or m.,1998,7:463.

    [45] Clar k H M.Wear,1992,152:223-240.

    [46] Blatt W,Kohloey W,Lotz U,et al.Corrosion,1989,45:793.

    [47] Hutchings I M.The Erosion of Materials by Liquid Flow.MTI Publication No.25.Materials Technology Institute of the Chemical Process Industries,Inc.,1986.

    [48] Lu B T,Lu J F,Luo J L.Corr os.Sci.,2011,53:1000-1008.

    [49] Bjordal M,Bardal E,Rogne T ,et al.Surface and Coatings Technology,2005,70:215.

    [50] Das S,Mondal D P,Modi O P,et al.Wear,1999,231:195.

    [51] Prasad B K.Wear,2000,238:151.

    [52] Lu B T,Luo J L.Electrochi mica Acta,2008,53:7022-7031.

    [53] Neville A,Hodgkiess T.British Corr osion Jour nal,1997,32:197.

    [54] Poulson B.Corrosion Science,1983,23:391.

    [55] AST M G76-05.Standar d test met hod f or conducting er osion tests by solid particle i mpingement using gas Jet.West Conshohocken,PA,2006:310-315.

    [56] AST M G134-95.Standar d test met hod for erosion of solid materials by a cavitating liquid jet.West Conshohocken,PA,2006:559-571.

    [57] AST M G72-04.Standar d practice f or liquid i mpingement er osion testing.West Conshohocken.PA,2006:273-290.

    [58] Silver man D C.Corrosion,2004,60:1003-1024.

    [59] Postlet h waite J,Dobbin M H,Ber gevin K.Corrosion,1986,42:514-521.

    [60] Chen T V,Moccari A A,Medonald D D.Corr osion,1992,48:239-255.

    [61] Poulson B.Corrosion Science,1983,23:391-430.

    [62] Heitz E.Corrosion,1991,47:135-145.

    [63] Newman J S and Tho mas-Alyea K E.Electrochemical Systems,Wiley-IEEE,2004:378-400.

    [64] Poulson B.Corrosion Science,1990,30:743-746.

    [65] Chen C W,Yu T,Lu B T,et al.Corr osion during Waster Slurry Transporation.

    [66] Heitz E.Corrosion,1991,47:135-145.

    [67] Mcdanold D D.J.Electr ochem.Soc.,1992,196:3434-3449.

    [68] Sikora S,Sikora J,Mcdanald D D.Electrochi m.Acta,1996,41:783.

    [69] Andrews P,Illson I F,Matt hews S J.Wear,1999,233-235:568-574.

    [70] API RP 14E:Recp mmended practice f or design and installation of offshore production platfor m piping system.Washington DC,API,1991.

    [71] Craig B D.Mater.Perf or m.,Sept.1998:59-60.

    [72] Seo M,Chiba M.Electrochi mica Acta,2001,47:319-325.

    [73] ASM Metals Handbook.13,624.ASM metals Par k.Ohio,1981.

    [74] Efird K D.Corr osion,1976,33:3.

    [75] Streeter V L,Wylie E B,Bedford K W.Fl uid Mechanics.9th ed.Me Graw-Hill m New Yor k,1998:105,291.

    [76] Perr y R H,Green D,ed.Perry's Chemical Engineers'Handbook,7th ed.Mc Graw-Hill.New York,1998,6:10.

    [77] Sch mitt G,Wer ner C,Schoning M J.Corr osion'02.Paper no 280.NACE Inter national.TX.USA,2002.

    [78] Syrett B C.Corrosion,1975,32:242.

    [79] Lu B T,Luo J L.Electrochi mica Acta,2010,56:559-565.

    [80] Guo H X,Lu B T,Luo J L.Electrochi mica Acta,2006,51:5341-5348.

    [81] Sasaki K,Burstein G T.Philosophical Magazine Letters,2000,80:489-493.

    [82] Lu B T,Luo J L,Ma H Y.J.Electrochem.Soc.,2007,154:C159-C168.

    [83] Staehle R W.Corr osion Science,2007,49:7-19.

    [84] Oltra R,Chapey B,Renaud L.Wear,1995,186-187:533.

    [85] Lu B T,Mao L C,Luo J L,Electrochi mica Acta,2010,56:85-95.

    猜你喜歡
    工程部西南沖刷
    “潮”就這么說
    “兩把劍,一避免”在項(xiàng)目管理中的重要性
    名城繪(2019年2期)2019-10-21 10:20:07
    Country Driving
    透射槽波探測技術(shù)對煤層沖刷帶的研究與應(yīng)用
    一路向西南——然烏湖、米堆冰川
    西南絲綢之路及其對西南經(jīng)濟(jì)的影響
    奏好鐵塔銀線交響曲——濟(jì)源供電公司豐源輸變電工程部線路一班工作側(cè)記
    河南電力(2016年5期)2016-02-06 02:11:33
    水庫壩區(qū)沖刷漏斗的形成機(jī)理
    基于CFD的液固兩相流沖刷腐蝕預(yù)測研究
    堤防工程沖刷深度的計(jì)算探討
    色播在线永久视频| 久久中文字幕一级| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 久久ye,这里只有精品| 亚洲成人手机| 久久人人97超碰香蕉20202| 80岁老熟妇乱子伦牲交| 男女之事视频高清在线观看| 欧美黄色淫秽网站| 丰满少妇做爰视频| 久久精品国产a三级三级三级| 欧美老熟妇乱子伦牲交| av超薄肉色丝袜交足视频| 操美女的视频在线观看| 久久国产亚洲av麻豆专区| 国产精品免费视频内射| 人妻 亚洲 视频| 精品国产一区二区三区久久久樱花| 两性夫妻黄色片| 多毛熟女@视频| 欧美性长视频在线观看| 巨乳人妻的诱惑在线观看| 国产精品自产拍在线观看55亚洲 | 欧美日韩视频精品一区| 91老司机精品| 中文亚洲av片在线观看爽 | 精品福利永久在线观看| 熟女少妇亚洲综合色aaa.| 一区二区三区乱码不卡18| 蜜桃国产av成人99| 黄片小视频在线播放| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 欧美 亚洲 国产 日韩一| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 国产老妇伦熟女老妇高清| 91成人精品电影| 亚洲av日韩精品久久久久久密| 高清毛片免费观看视频网站 | 亚洲精品自拍成人| 久久热在线av| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 成人影院久久| 不卡一级毛片| 国产精品九九99| 久9热在线精品视频| 黑人欧美特级aaaaaa片| 老司机靠b影院| 美女高潮喷水抽搐中文字幕| 99香蕉大伊视频| 色视频在线一区二区三区| 天堂俺去俺来也www色官网| 国产精品国产av在线观看| 久久久久久久久久久久大奶| 久久ye,这里只有精品| 亚洲专区国产一区二区| 欧美变态另类bdsm刘玥| 在线观看免费日韩欧美大片| 脱女人内裤的视频| av线在线观看网站| 少妇裸体淫交视频免费看高清 | 天天操日日干夜夜撸| 大码成人一级视频| 一二三四在线观看免费中文在| 亚洲国产看品久久| 一区二区三区精品91| 精品第一国产精品| 午夜视频精品福利| 日韩欧美免费精品| 免费久久久久久久精品成人欧美视频| 日本撒尿小便嘘嘘汇集6| 黑人猛操日本美女一级片| 欧美激情久久久久久爽电影 | 天堂8中文在线网| 亚洲欧美激情在线| 啦啦啦 在线观看视频| 波多野结衣一区麻豆| 我的亚洲天堂| 乱人伦中国视频| 国产免费现黄频在线看| 成人国语在线视频| 午夜激情av网站| 久久亚洲精品不卡| 亚洲av国产av综合av卡| 一级毛片女人18水好多| 亚洲精品在线观看二区| 久久狼人影院| 1024视频免费在线观看| 精品少妇久久久久久888优播| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 黄色片一级片一级黄色片| 色播在线永久视频| av欧美777| av超薄肉色丝袜交足视频| 高清在线国产一区| 美女视频免费永久观看网站| 黄色视频,在线免费观看| 性少妇av在线| 久久精品亚洲熟妇少妇任你| 国产精品国产av在线观看| 桃红色精品国产亚洲av| 精品少妇内射三级| 成年动漫av网址| 久久精品91无色码中文字幕| 亚洲精品av麻豆狂野| 嫩草影视91久久| 99国产综合亚洲精品| 精品欧美一区二区三区在线| 中文亚洲av片在线观看爽 | 久久午夜亚洲精品久久| 王馨瑶露胸无遮挡在线观看| 精品视频人人做人人爽| 男人操女人黄网站| 一本久久精品| 91麻豆精品激情在线观看国产 | 中亚洲国语对白在线视频| 丰满人妻熟妇乱又伦精品不卡| 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| 极品人妻少妇av视频| 午夜福利影视在线免费观看| 久久毛片免费看一区二区三区| 中文欧美无线码| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 久久人妻福利社区极品人妻图片| 色尼玛亚洲综合影院| 亚洲欧美激情在线| 国产精品av久久久久免费| 国产成人欧美在线观看 | 久久精品aⅴ一区二区三区四区| 久久精品成人免费网站| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 青草久久国产| 国产在视频线精品| 男女床上黄色一级片免费看| 亚洲国产av影院在线观看| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| tocl精华| 色婷婷久久久亚洲欧美| 99国产精品免费福利视频| 精品久久久久久电影网| 一级a爱视频在线免费观看| 亚洲久久久国产精品| 国产成人av教育| 久久久久网色| 日本黄色日本黄色录像| 久久久国产一区二区| 一级黄色大片毛片| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久| 精品国产亚洲在线| 成在线人永久免费视频| 9色porny在线观看| 搡老岳熟女国产| 国产成人影院久久av| 丁香六月欧美| 日韩欧美一区二区三区在线观看 | 日本vs欧美在线观看视频| 在线 av 中文字幕| 成人亚洲精品一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久大尺度免费视频| 国产精品av久久久久免费| av一本久久久久| 在线亚洲精品国产二区图片欧美| 亚洲av欧美aⅴ国产| 天堂8中文在线网| 男女午夜视频在线观看| 制服诱惑二区| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 一本色道久久久久久精品综合| av免费在线观看网站| 在线天堂中文资源库| 在线av久久热| 日韩中文字幕欧美一区二区| 国产精品自产拍在线观看55亚洲 | 亚洲欧美激情在线| 亚洲av日韩在线播放| 国产成人av激情在线播放| 色在线成人网| 美女主播在线视频| 精品少妇一区二区三区视频日本电影| 中文字幕人妻丝袜制服| 国产av国产精品国产| 亚洲第一av免费看| 91国产中文字幕| 一本久久精品| 免费在线观看完整版高清| 亚洲伊人久久精品综合| 国产日韩欧美视频二区| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 国产不卡一卡二| 后天国语完整版免费观看| 午夜福利影视在线免费观看| 国产在线免费精品| 免费久久久久久久精品成人欧美视频| 新久久久久国产一级毛片| a在线观看视频网站| 欧美乱码精品一区二区三区| 精品人妻熟女毛片av久久网站| 十分钟在线观看高清视频www| 亚洲三区欧美一区| 国产福利在线免费观看视频| 热99re8久久精品国产| 王馨瑶露胸无遮挡在线观看| 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 久久久久精品国产欧美久久久| 在线观看免费视频日本深夜| 欧美激情 高清一区二区三区| 中亚洲国语对白在线视频| 久久影院123| 亚洲精品在线美女| 美女高潮到喷水免费观看| 国产97色在线日韩免费| 成人高潮视频无遮挡免费网站| 在线观看一区二区三区| 国产精品av久久久久免费| 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 亚洲成人中文字幕在线播放| 噜噜噜噜噜久久久久久91| 久久久国产成人免费| 制服人妻中文乱码| 一区二区三区激情视频| 亚洲av免费在线观看| 精品欧美国产一区二区三| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| 国产精品一区二区三区四区久久| 亚洲国产色片| 中文字幕高清在线视频| 亚洲精品一区av在线观看| 极品教师在线免费播放| 国产69精品久久久久777片 | 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| 精品国产乱子伦一区二区三区| 最新中文字幕久久久久 | 精品一区二区三区视频在线观看免费| 久久亚洲真实| 免费看光身美女| 久久久久久国产a免费观看| 午夜久久久久精精品| 精品久久久久久,| av女优亚洲男人天堂 | 在线观看免费午夜福利视频| 亚洲电影在线观看av| 国产高清有码在线观看视频| 香蕉久久夜色| 久久久国产精品麻豆| 色av中文字幕| 久久久久久人人人人人| 禁无遮挡网站| 亚洲成人免费电影在线观看| 国产成人精品无人区| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 18禁黄网站禁片午夜丰满| 亚洲国产高清在线一区二区三| av视频在线观看入口| 在线国产一区二区在线| 九色成人免费人妻av| 日韩欧美国产在线观看| 日本 av在线| 国产日本99.免费观看| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| 国产av麻豆久久久久久久| 宅男免费午夜| 国产人伦9x9x在线观看| 男女做爰动态图高潮gif福利片| 午夜福利视频1000在线观看| 亚洲成人免费电影在线观看| 日韩高清综合在线| 亚洲专区国产一区二区| 日韩av在线大香蕉| 成人国产综合亚洲| 亚洲av熟女| 搡老熟女国产l中国老女人| 亚洲精品色激情综合| 成人18禁在线播放| 久久久成人免费电影| 久久草成人影院| 97碰自拍视频| x7x7x7水蜜桃| 国产av在哪里看| 精品熟女少妇八av免费久了| 人妻夜夜爽99麻豆av| 又大又爽又粗| 国产视频一区二区在线看| 日日干狠狠操夜夜爽| 99久久99久久久精品蜜桃| 19禁男女啪啪无遮挡网站| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 欧美中文综合在线视频| 精品国产三级普通话版| svipshipincom国产片| 搡老岳熟女国产| 色视频www国产| 日韩人妻高清精品专区| 真人一进一出gif抽搐免费| 免费无遮挡裸体视频| 国产黄色小视频在线观看| 亚洲成av人片在线播放无| 亚洲中文av在线| 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 中文字幕最新亚洲高清| 美女黄网站色视频| 精品久久久久久久久久免费视频| 精品乱码久久久久久99久播| 九色国产91popny在线| 在线永久观看黄色视频| 亚洲第一电影网av| 在线永久观看黄色视频| 久久久久国产一级毛片高清牌| or卡值多少钱| 黄色女人牲交| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| 亚洲欧美日韩无卡精品| 久久草成人影院| 精品久久久久久,| 国产69精品久久久久777片 | 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 黄色日韩在线| 色精品久久人妻99蜜桃| 国产亚洲av高清不卡| 精品久久久久久久末码| 99视频精品全部免费 在线 | 少妇人妻一区二区三区视频| 久久草成人影院| 91av网一区二区| 久久久久国产一级毛片高清牌| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 精华霜和精华液先用哪个| 日日摸夜夜添夜夜添小说| 宅男免费午夜| 亚洲人成网站高清观看| 亚洲精品美女久久久久99蜜臀| xxx96com| 一二三四社区在线视频社区8| 午夜精品一区二区三区免费看| 88av欧美| 看免费av毛片| 90打野战视频偷拍视频| 欧美日韩国产亚洲二区| а√天堂www在线а√下载| 少妇熟女aⅴ在线视频| 搡老妇女老女人老熟妇| 又黄又爽又免费观看的视频| 欧美xxxx黑人xx丫x性爽| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 亚洲专区国产一区二区| 久久久久九九精品影院| 曰老女人黄片| 免费大片18禁| 国产亚洲精品av在线| 久久香蕉国产精品| 国产高清三级在线| 他把我摸到了高潮在线观看| 欧美一级a爱片免费观看看| 老汉色av国产亚洲站长工具| 久久久久久久久中文| 成在线人永久免费视频| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩卡通动漫| 在线观看免费视频日本深夜| 毛片女人毛片| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| 久久精品人妻少妇| 国产成人欧美在线观看| 国产精品av视频在线免费观看| 日本在线视频免费播放| 97超视频在线观看视频| 看片在线看免费视频| 视频区欧美日本亚洲| 国产亚洲精品av在线| 免费看美女性在线毛片视频| 岛国在线观看网站| cao死你这个sao货| 国产亚洲av高清不卡| 国产成人影院久久av| 欧美日韩黄片免| 男人和女人高潮做爰伦理| 亚洲 欧美 日韩 在线 免费| 国产亚洲av嫩草精品影院| 亚洲精品在线美女| 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 国产欧美日韩一区二区三| 在线播放国产精品三级| 亚洲熟妇熟女久久| 亚洲av成人一区二区三| 国产成人精品无人区| 三级男女做爰猛烈吃奶摸视频| 久久亚洲真实| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 色av中文字幕| 18禁国产床啪视频网站| 亚洲av中文字字幕乱码综合| 免费大片18禁| 在线a可以看的网站| 性色avwww在线观看| 成年女人看的毛片在线观看| 欧美成狂野欧美在线观看| 一区二区三区高清视频在线| 欧美丝袜亚洲另类 | 在线播放国产精品三级| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 国产主播在线观看一区二区| 国内精品久久久久精免费| 一个人免费在线观看的高清视频| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 久久精品国产综合久久久| 欧美性猛交╳xxx乱大交人| 久久久久久久久中文| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 国产精品美女特级片免费视频播放器 | 国产成人福利小说| 国产伦在线观看视频一区| 欧美黑人巨大hd| 亚洲 欧美 日韩 在线 免费| 免费在线观看亚洲国产| 国产主播在线观看一区二区| 脱女人内裤的视频| 黄频高清免费视频| 99视频精品全部免费 在线 | 久久这里只有精品中国| 人妻丰满熟妇av一区二区三区| 天堂动漫精品| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 日本黄色视频三级网站网址| tocl精华| 亚洲国产精品sss在线观看| 伦理电影免费视频| 久久久久久久午夜电影| 国产精品乱码一区二三区的特点| 日韩高清综合在线| 欧美又色又爽又黄视频| svipshipincom国产片| 天堂√8在线中文| 91在线观看av| 国模一区二区三区四区视频 | 亚洲av电影不卡..在线观看| 深夜精品福利| 9191精品国产免费久久| 99久久无色码亚洲精品果冻| 悠悠久久av| 亚洲成a人片在线一区二区| 在线观看一区二区三区| 久久热在线av| 最近视频中文字幕2019在线8| 韩国av一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| ponron亚洲| 欧美成人免费av一区二区三区| 88av欧美| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| 国产av在哪里看| 亚洲国产中文字幕在线视频| 国产精品一区二区三区四区久久| 国产免费男女视频| 久久九九热精品免费| 午夜影院日韩av| 99久久成人亚洲精品观看| 久久香蕉国产精品| 亚洲色图av天堂| 在线观看免费午夜福利视频| 嫩草影视91久久| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 午夜免费激情av| 男女午夜视频在线观看| 精品午夜福利视频在线观看一区| 国产精品免费一区二区三区在线| 国产亚洲精品综合一区在线观看| 国模一区二区三区四区视频 | 久久伊人香网站| 99在线人妻在线中文字幕| 在线十欧美十亚洲十日本专区| 久久久色成人| 国产真人三级小视频在线观看| 欧美一级a爱片免费观看看| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 久久精品国产99精品国产亚洲性色| 99热只有精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 久久午夜亚洲精品久久| 18禁黄网站禁片免费观看直播| 欧美一级a爱片免费观看看| 男女之事视频高清在线观看| 999精品在线视频| 亚洲欧美精品综合久久99| АⅤ资源中文在线天堂| 亚洲午夜精品一区,二区,三区| 99精品久久久久人妻精品| 啦啦啦免费观看视频1| 99热精品在线国产| 母亲3免费完整高清在线观看| 国产乱人视频| 日本三级黄在线观看| 欧美一区二区国产精品久久精品| 一二三四在线观看免费中文在| x7x7x7水蜜桃| 美女黄网站色视频| 99国产精品一区二区三区| 国产精华一区二区三区| 美女免费视频网站| 丁香六月欧美| 成人无遮挡网站| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 69av精品久久久久久| 91字幕亚洲| 天堂影院成人在线观看| 制服丝袜大香蕉在线| 色哟哟哟哟哟哟| 亚洲avbb在线观看| 国产一区二区三区在线臀色熟女| 亚洲中文字幕日韩| 国产单亲对白刺激| 国产黄a三级三级三级人| 亚洲午夜精品一区,二区,三区| 黄色片一级片一级黄色片| 18禁裸乳无遮挡免费网站照片| 2021天堂中文幕一二区在线观| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 又粗又爽又猛毛片免费看| 国产人伦9x9x在线观看| 午夜亚洲福利在线播放| 日韩欧美 国产精品| 久久伊人香网站| or卡值多少钱| 国产午夜福利久久久久久| 成人三级做爰电影| 淫秽高清视频在线观看| 一个人看的www免费观看视频| 99热6这里只有精品| 宅男免费午夜| 成人高潮视频无遮挡免费网站| bbb黄色大片| 香蕉av资源在线| 国产精品99久久久久久久久| 亚洲人成电影免费在线| 国产欧美日韩一区二区三| 熟妇人妻久久中文字幕3abv| 99精品久久久久人妻精品| 他把我摸到了高潮在线观看| 熟妇人妻久久中文字幕3abv| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区精品| avwww免费| 久久精品国产综合久久久| tocl精华| 久久久成人免费电影| 超碰成人久久| 在线免费观看不下载黄p国产 | 国产精品99久久久久久久久| 在线观看免费午夜福利视频| 香蕉av资源在线| 国内精品一区二区在线观看| 亚洲人成电影免费在线| 18禁国产床啪视频网站| 又黄又爽又免费观看的视频| 老司机午夜十八禁免费视频| 深夜精品福利| 黄色成人免费大全| 国产单亲对白刺激| 久久久国产精品麻豆| 国内精品美女久久久久久|