• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    油氣生產(chǎn)中的沖刷腐蝕(一)

    2013-10-16 03:04:42BaotongLu
    石油與天然氣化工 2013年1期
    關(guān)鍵詞:工程部西南沖刷

    Baotong Lu

    (美國西南研究院材料工程部)

    1 Background

    Wit h a few exceptions,most metals owe t heir corrosion resistance to a protective surface fil m.E-rosive fl uids can da mage t he pr otective fil m,and re move s mall pieces of material as well,leading to a significant increase in penetration rate.For instance,carbon steel pipe carrying water is usually protected by a fil m of rust and its corrosion rates are typically <1 mm/y (or 40 mils/y).The removal of the fil m by erosive slurry gives corrosion rates of t he or der of 10 mm/y(400 mils/y)in addition to t he any er osion of underl ying metal[1]The damage to the pr otect fil m may be t he results of the fl uid-induced mechanical f orces or flowing-enhanced dissolution[2-3].Meanwhile,the corrosion can cause degradation in surface pr operties and promote the mechanical erosion under action of the mechanical f orces[4].This conjoint action of er osion and corrosion is kno wn as erosion-corr osion[5].er osion-corrosion enco mpasses a wide range of flow-induced corr osion[6].It is also regar ded as a subject within the broader area of tribo-corrosion which covers all aspects of tribol ogically(mainl y mechanically)induced interactions wit h electr ochemical pr ocesses[7].As su mmarized by Postlet hwaite and Nesic[6],t he sources of t he various mechanical f orces that cause erosion-corrosion include:

    (1)Tur bulent flow,fl uct uating shear stress and pressure i mpacts.

    (2)Impact of suspended solid particles.

    (3)Impacts of suspended liquid dr oplets in high-speed gas flow.

    (4)Impact of suspended gas bubbles in aqueous flow.

    (5)The violent collapse of vapor bubbles f oll owing cavitation.

    The five mechanical force sources mentioned above can be f ound in oil and gas pr oduction.The fl uids to induce erosion-corr osion may be single phase like the portable water or multiphase flows such as various combinations of gas,oil,water and solid particles in petr oleu m industry[8].It is well known t hat the t ur bulent fl ow,fl uct uating shear stress and pressure i mpacts are sources of flow accelerated corrosion in pipelines transporting oil and water[9]and the violent collapse of vapor bubbles in pu mps and val ves can result in cavitation-corr o-sion[10].A f ew typical pr oblems of er osion-corr osion in oil and gas production are specifically mentioned as f ollows.

    · The downhole co mponents.Petr oleu m and mining drill bits are subjected to highl y abrasive rock and high velocity fluid so that erosion-corrosion is among t he most f ail ure mechanis ms of downhole co mponents[11]. The entire downhole tubing string is exposed to erosion-corrosion,but points if radical fl ow diversion or constr uction such as pu mps,downhole screens,chokes and subsurface safety valves are particularly at risk[12-13].In t he downholes of gas wells,the er osion-corr osion may result from the i mpingement of mixture of corrosive liquid droplets[14].

    · The systems used to contain,transport and process erosive mineral slurries.This is particularl y i mportant f or the oil sand industry of nort her n Al berta,Canada,where handling the processing of essentially silica-based sand (tar sand)results in ser ver er osion-corr osion pr oblems[7,15].

    ·With the technique of CO2injection f or enhanced oil recovery and active exploitation of deep nat ure gas reser voirs containing CO2,ser ver corr osion of car bon steel is experienced[16].In CO2-sat urated envir on ments,t he Fe CO3scale may f or m and it can pr ovide pr otection to so me extent.The sand present in production fl uids may damage and/or remove the protective scale,leading to erosion-corrosion[17].

    ·Petroleu m refinery equip ment components,typically,pu mp inter nals,t her mo wells,piping elbows,nozzle,valves seats and guides,experience varying degrees of high temperature erosion and corrosion.The erosion-corrosion effects are predo minant in fl uidized catalytic crackers,delayed cokers,flexicokers,t her mal crackers and vacuu m distillation units[18].High temperat ure cr ude oil moving with high velocity across the tube wall surf ace may cause ser ver localized damage.Such kind of damage may be related to t he naphet henic acids that are highly aggressive in a temperature range from 220℃to 400℃[19]and the high turbulence of fl uid[20-21].The material loss is increased significantly by t he s mall amount of fine er odent in the cr ude oils that are extracted from bitu men of oil sand.

    Accor ding to a recent sur vey,er osion-corr osion was rated in the top 5 most prevalent f or ms of corrosion damage in the oil and gas production[22]and cause an i mmense economic loss[23-24].Many review articles on topic of er osion-corr osion investigation fr o m different view angles can be f ound in open literature[3,6-7,23].In this paper,an attempt will be made to over view t he pr ogresses achieved in t he eval uation of er osion-corr osion resistance of materials and the mitigation methods.The e mphasis will be put on t he syner gistic eff ects in er osioncorr osion in flowing sl urries.

    2 Erosion,corrosion and their synergism

    The mechanis ms of flo w accelerated corrosion relate to the destr ucting and ref or ming of protect fil ms.The pr otect fil ms fall into t wo categories:(1)t he relative t hick por ous diff usion barriers,f or med on car bon steels(red r ust)and copper all oys(cupr ous oxide)and (2)t he thin invisible passive fil ms on stainless steels,nickel alloy and other passive metals like titaniu m[6].A spectr u m of erosion-corrosion process in Table 1 was su mmarized by Poulson[3,24].Actually,this spectru m is more suitable to t he metals wit h loose and less pr otective surface scale exposed to a single phase flow.The erosion-corrosion mechanis ms of passive metals in fl owing sl urries are much more co mplicated t han t hose shown in Table 1.For example,t he mechanical erosion may contribute a major part of total material l oss of stainless steels in marine pu mping applications where solid er odent are present,even under t he condition t hat t he pr otect fil m is only partially removed[25].A lar ge amount of experi mental data have indicated that,even if the corrosion co mponent is very s mall,e.g.less t han 5%of t he pure mechanical erosion rate in absence of corrosion,the resulting erosion-corrosion rate may be much greater t han t hat without corr osion[14,26-30].Wit h i mplantation of sand pr oduction controls,such as gravel-packing completion,the pr one reser voirs pr oduce still sand up to 5 pounds per t housand barrels and results in considerable material l oss due to er osion-corr osion[12].Experimental evidence indicated that the corrosion due to wet CO2might accelerate the erosion of C-Mn steel by a f actor of 2~4[12].Because of t he damage and re moval of pr otective scale caused by t he sand i mpingement,the corrosion rate also increased significantly[12,17].

    Table 1 Spectrum of erosion-corrosion processes[3,23]

    As mentioned above,t wo different material loss mechanisms are involved in erosion-corrosion of metals,mechanical er osion and electrochemical corrosion.The mechanical er osion relates to plastic def or mation and r upt ure in surface layer.Small pieces of metal are removed fr o m t he surface by various mechanical f orces before being ionized.The electrochemical corrosion relates to the metal being dissol ved into t he sl urr y after it is ionized.Theref ore,the total material loss rate˙w is the su m of material loss rates caused by erosion˙e and corrosion˙c,

    To be more accurate,t he corrosion rate is the more suitable ter m in the place of‘erosion-corr osion rate’in Table 1.The total material loss of material in corrosive fluids is nor mally larger than t he su m of t hose caused by pure mechanical erosion and pure electr ochemical corr osion.Accor ding to standard of AST M G119,the pure mechanical erosion is defined as t he er osion in an inert envir onment and the pure electrochemical corrosion is the corrosion under erosion-free condition.The additional wastages of er osion and corr osion co mponents caused by t he syner gistic eff ects are regar ded as t he corr osion-enhanced erosion˙ecand t he er osion-enhanced corr osion˙ce[31],

    The erosion-corrosion mechanism is affected by all the f actors which control corrosion and all the fact ors which aff ect er osion.In co mbination,the damage is synergistic and can be extremely aggressive.The syner gis m of er osion and corr osion,˙s ,is expressed as the su m of˙ecand˙ce[31]:

    The syner gis m often contributes to such a lar ge part of the total material loss[26-30,32-34],that it cannot be ignored in ser vice lif eti me assess ment in engineering.The corrosion is erosive liquid can be deter mined using the standard procedures that used in erosion-free condition,such as t he one to measure the linear polarization resistance(AST M G59)[35]and t he one to generate t he potentiodynamic cur ves(AST M G5)[36].The pure mechanical erosion rate in corr osive sl urries shoul d be conducted under the same hydrodynamic conditions under cat hodic pr otection.AST M G119 reco mmended polarizing the speci men to one volt cathodic wit h respect t he open circuit potential to guarantee a f ully protected condition.However,caution must be taken because hydrogen embrittlement may occur in so me materials under the cathodic pr otection.Besides,t he gas bubbles pr oduced by the hydrogen evol ution may affect the hydrodynamic conditions.A recent st udy indicated t hat the erosion rates under cathodic protection in the slurries prepared by dil ute acidic sol utions are much higher t han t hose in neutral and al kaline sl urries[37].In line with AST M G119,the f ollowing dimensionless factors can be defined to describe the degree of syner gis m:

    Alt hough eff orts have been made,it is still difficult buil d an integral model of er osion-corr osion[38-40].Because a lar ge amount of factors are involved in the er osion-corrosion pr ocesses incl uding t he metall ur gical features of material[41-44],the hydrodynamics of fluid[45-46]and flow field[47],the characteristics of erodent[48-51],the temperat ure[52-53]and corr osivity of media[37,54].

    During i mpingement,the sand degradation may result fr o m t he br oken of sand particles and/or the bluntness of particle corner or edge,leading to a reduced er osion rate.If t he eff ect of sand degradation is excluded,the erosion rate under a given hydrodynamic condition is independent of ti me[40,55],The total material loss rate resulting from a cavitating liquid or i mpingement of liquid dr oplets is a f unction of ti me.There is an incubation ti me wit hin which the rate of material l oss is negligible.After t he incubation,t he material loss rate increases rapidl y,reaches a peak val ue and t hen reduces to a steady val ue gradually[56-57].

    3 Corrosion in fluids

    3.1 Corrosion under control of mass transfer at electrode/electrolyte interface

    When corrosion is controlled by the mass transfer of dissolved oxygen or in the boundary layer of the liquid at the electrolyte/electrode or diff usion of so me ot her sol uble species away fr o m t he surface[24],the corrosion rate is for mulated as f oll ows[58-62],

    The non-di mensional parameters in Eq.(8)are Sher wood nu mber Sh=Kd/D,Reynol ds nu mber Re=Ud/v and Sch midt nu mber Sc=v/D;where α,βandγare constants depending upon t he flow conditions and the geo metr y of the test devices;K is the specific mass transfer coefficient,d is the specific size depending on t he geo metry of test device;D is the diff usion coefficient of the species of which diff usion in t he boundar y layer contr ols the corrosion process;U is the flow velocity;and v is t he kinematic viscosity of t he fl uid.

    Equation(8)was originally established in the rotating disk electrode(RDE)system based on kinetics of electroche mical reaction[63]. When the electr ochemical reaction over t he RDE surface is mass transf er contr ol,α=0.791,β=0.7 andγ=0.356.Eq.(8)was extended to various systems.In a straight pipe,d in eq.(8)coul d be t he pipe diameter.Corr osion rate˙c=KΔC,as t he corrosion is do minated by t he mass transfer pr ocess in the boundary layer at t he electr ode/electrolyte interf ace.ΔC is t he concentration driving f orce or concentration drop of species wit hin t he boundar y layer,of which t he diff usion contr ols t he corrosion pr ocess.Thus

    Eq.(9)has been validated experi mentally,such as the test data sho wn in Fig.1.Dissolved oxygen is often believed to be t he species in t he fl owing electr olyte contr olling t he corr osion process.If the corrosion reaction at the tar get surface is solely controlled by the diff usion of dissolved oxygen wit hin t he boundar y layer,t he corr osion rate is pr oportional to t he li mited current density ilimof dissolved oxygen[59-62]and the corrosion rate˙c is given by

    where C0t he dissol ved oxygen concentration in bul k liquid mediu m.Theoretically,η=1.Postlet hwaite et al.pointed out onl y 2/3 of dissol ved oxygen reaching the wall is used in oxidizing the iron into ferrous ions and that the rest is used in the oxidization of t he f err ous ions to ferric ions close to t he wall,so t hatη=2/3[11].

    In Fig.1,the exponent deter mined t he fl owing tailing water free of solid particle is around 0.75 and that in f ollowing slurries is about 0.55.This is because the linear relationship˙c=KΔC not al ways hel d.Generally,˙c∝Km[3,24].The deviation of mval ue fr o m 1 suggests the corr osion reaction is not f ully under t he mass transf er contr ol,as depicted in Fig.2[3,8,24].In the flowing electrolyte free of sand,corrosion scale would f or m on the target surf ace(n>1:case 2 in Fig.2).In flowing sl urr y,t he i mpingement of solid particles would re move t he corr osion scale and t he activation of electr ode may result from the dynamic plastic strain in the surface layer(n<1:case 4 in Fig.2).In real pipe system,the surface roughness can affect theβ-value[58,64].For a mass transf er-contr olled corr osion reaction,t he val ue f orβmay range fr o m 0.5 to 1[6].

    When the protective corrosion product scale exists on the surface,the apparent mass transport coefficient K is f or mulated as f ollows[66],

    where KBand KFare t he mass transport coefficients in the boundary layer and the corrosion pr oduct fil m,respectively.If t he metal is under the passive condition,the mass transfer in the passive fil m will be much slower than that the liquid phase,KB>>KF,and K≈KF.If t he fl uid does not induce t he breakdown of passive fil m,t he corrosion of ir on-based alloys is contr olled by t he diff usion of oxygen vacancy within t he passive fil m[67]and hence the corr osion rate is controlled by the density and diff usion coefficient of oxygen vacancy density within the passive fil m[68].If the fluid cannot destr oy t he passive fil m,a high fl owing vel ocity can increase the dissolved oxygen supply at the electr ode/electr ol yte interf ace,leading to a reduced oxygen vacancy density in the passive fil m.As a result,the passive current density is likely to be reduced.If t he fl uid da mages and/or destr ucts t he passive fil m,t he corr osion rate will increased dra matically[69].

    3.2 Critical i mpingement velocity

    The exact mechanis m of pr otective fil m da mage during erosion-corrosion in single-phased turbulent flow is still in doubt.There is uncertainty regar ding the roles of mechanical forces and mass transfer in fil m disr uption since bot h of t hem are directl y related to t ur bulence intensity[6]. An industr y standar d,API RP-14E[70]reco mmends an empirical f or mula,originall y devel oped fr o m t he experience in electric power industry with erosion-corrosion of car bon steel by stea m condensate,to estimate the critical velocity Ue(ft/s)beyond which the corrosion rate will become unacceptable high due to onset of er osion-corr osion.

    whereρFis t he density of fl uid in Ibft-3and CAPIis a constant.A constant 450 is reco mmended f or use in seawater injection systems constr ucted fr o m corrosion-resistant alloys,100 is f or ot her materials and 150~200 f or inhibited systems.The liquid jet i mpingement tests on API 5CT L80 12Cr steel indicate t he er osion-corr osion resistance in absence of solid particle is considerably higher than that predicted by API RP-14E[69].The critical velocity is also a f unction of envir on ment and syste m geo metr y[8].Eff orts have been made to modif y Eq.(8)to pr ovide more universal CAPIf actor,by taking the har dness of surf ace fil ms into account[71].Because t he pr otective fil m (passive fil m or corr osion pr oduct scale)is very thin(~10 n m or less),both the t heory and experi mental techniques f or eval uating t he mechanical properties of t he pr otective fil m are not well established[72].The critical velocity Uecan be regar ded as t he critical condition leading to passive fil m breakdown and,theref ore,it is usef ul tool to eval uate t he er osion-corr osion susceptibility of materials under i mpingement liquid dr oplet suspending in high velocity gas flow[14].However,it does not relate to the corr osion rate after the passive fil m breakdown.

    3.3 Wall shear stresses

    Based on the experi mental observation of copper alloy tubes with a diameter of 25 mm[73],Efir d[74]pr oposed t he concept of ‘critical wall shear stress’f or fil m disr uption.

    where f is the Fanning friction factor[75]and its val ues f or pipes wit h various surface r oughness can be obtained fr o m a Moody chart[76].The concept of critical wall shear stress has been used to evaluate the perf or mance of protective fil m of inhibitor in CO2corr osion of car bon steel[77].However,t his idea was not tested to see if the concept of critical wall shear stress was applicable to ot her geo metries[8].It has been pointed out that the wall shear stresses obtained are too low to remove the corrosion product scale fro m the pipe wall[6,8,24,78]

    The most severe er osion-corr osion pr oblems occur under conditions of dist ur bed t ur bulent fl ow at sudden changes on the fl owing system,such as bends,heat-exchanger-tube inlets,orifice plates,val ues,fittings and in tur bo-machinery including pu mps,co mpressors,t ur bines and pr opellers[6].The experi mental evidence indicated t hat it is difficult to correlate t he corrosion rate in t he detached flow pr oduced by t he downstrea m of pipe expan-sion to the wall shear stress[24].In reality,t here are fluctuating shear stress and pressure at the wall and the largest values are obtained quasi-cyclic bursting events close to the wall[6].It is worthy of studying t he possibility t hat t he corrosion pr oduct scale is physicall y re moved by t he stress resulting fr o m t he t ur bulent fl uid[24].

    In addition to corrosion process in fluid,the wall shear stress may cause an extra material loss in a corroding mediu m.It was f ound that the actual material loss in flowing electrolytes free of solid particle measured wit h weight l oss met hod was higher t han t hat calculated with t he Faraday’s law based on t he anodic current density deter mined by t he electr ochemical appr oach[79-80].The extra material loss is defined as non-Faraday’s material loss.

    where˙w is total material loss measured wit h the weight loss met hod and t he Faraday’s material l oss is equal to t he corr osion rate

    The non-Faraday material loss disappears as the corrosion is ceased by cathodic protection.However,it increases with increasing anodic current density and the wall shear stress(Fig.3),suggesting it is a result of synergistic effect bet ween the mechanical f orce and corrosion.

    3.4 Corrosion of passive metals in flowing slurry

    When t he kinetic ener gy of solid particles in flowing slurry exceeds a threshold val ue,the particle i mpingement will remove a s mall piece of passive fil m and pr oduce a crater.It will lead to a shar p rise of local corr osion current over t he crate surface.Then the local current will decay with ti me because of repassivation[81].As a result,the corrosion current density over target surface that is i mpacted by sl urry is no longer unif or m and the average corr osion current density will depends on the rate of passive fil m removal and repassivation kinetics.In line with the kinetic analysis of slurry i mpingement,the average current density over the whole electrode surface can be expressed as[82]

    where i is the local current density that is a f unction of t he repassivation kinetics,A is t he surf ace area of target and˙Ae(=CpUsinθAˉcrater/mˉp)is the generation rate of t he active surf ace area caused by sl urry i mpingement.Cpand mˉpare the concentration(kg/m3)and average mass(kg)of solid particle,respectively,θis t he i mpinge ment angle,Aˉcrateris the average surface area of crater produced by t he individual particle i mpingement t hat can be measured from SEM i mage of surface i mpacted by the slurry.The kinetic mode and parameters of repassivation depend on the nat ure of tar get materials,as well as chemical characteristics and hydr odynamics of corrosion media,and can be determined directl y using t he single particle i mpingement or scratch test[52,83].When t he repassivation f ollows t he bi-exponential law,as indicated by 304 stainless steel in the tap water[52],

    where t he second ter m in Eq.(15)(i1,τ1)relates to certain quickly decaying processes such as the f or mation of a passive fil m wit h monolayer t hickness on a bared crater surface,and t he t hir d ter m(i2,τ2)relates to a sl owly decaying pr ocess f or gr owth of a passive fil m[84];i1+i2=ipeak,ipeakis the peak response of local current density over the crate surface to t he particle i mpingement;iSis the stable current density in the flowing water free of sand.In t his case,the corr osion current density in flowing sl urr y is f or mulated as f ollows by inserting Eq.(17)into Eq.(16)and integrating[52]

    The non-di mensional para meters areλ1=τ1˙Aeandλ2=τ2˙Aet hat represent t he co mbined eff ects of the hydrodynamic conditions and repassivation kinetics.An exa mple in Figs.4 and 5 indicates t hat Eq.(18)gives a good prediction to the corrosion current density of 304SS in t he flowing sl urries.iScan be regarded as the corrosion rate under the erosion-free condition,so t hat t he corr osion aug mentation defined by AST M G119 is given by

    When the repassivation f ollows the power law,as indicated by car bon steels in the sl urries prepared wit h t he borate buffer sol ution[52,83]

    The corrosion current density in flowing slurry and t he corrosion augmentation will be f or mulated as[52]

    whereτ0and m(0<m<1)are experi mental con stants,t he non-di mensional parameterλ0=τ0˙Ae.In the practical situations in engineering,λ0<<1.It has been demonstrated t hat Eq.(21)gives good prediction to the corr osion current densities of pipeline steels[52].

    [1] Postlet h waite J,Dobbin M H,Bergevin K.Corr osion,1986,42:514-524.

    [2] Burstein G T,Sasaki K.Electrochi m.Acta,2001,46:3675-3683.

    [3] Poulson B.Corr osion Science,1983,23(4):391-430.

    [4] Lu B T,Luo J L.J.Phys.Chem.B,2006,110:4217-4231.

    [5] AST M G 15-05.Standard ter minology relating to corr osion and corrosion testing.Annual Book of AST M Standards,Vol.03.02,Wear and Erosion,Metal Corrosion,West Conshohocken,PA,2005:65-68.

    [6] Postlet h waite J,Nesic S.Er osion-corr osion in single and multiphase flow.Uhlig's Handbook,2nd Edition by W.Revie,2000,John Wiley &Sons,Inc.,249-272.

    [7] Wood R J K.Wear,2006,261:1012-1023.

    [8] Pouslson P B.Erosion-corrosion in corrosion.Shreir L L,Jarman R A,Burstein G T.(ed.).3rd Edition.Elsevier,1994:293-303.

    [9] Efird K D.Corrosion 2000.Paper No.52.NACE International,Huston,TX.,2000.

    [10] Owen I,Madadnia J.ASME,F(xiàn)l uids Engineering Division,(Publication),V.226,Cavitation and gas-liquid flow in fl uid machinery and devices,1995:59-62.

    [11] Kembaiyan K T,Keshavan K.Wear,1995,186-187:487-492.

    [12] Ha mzah R,Stephenson D J,Str utt J E.Wear,1995,186-1987:493-496.

    [13] Procyk A,Whitelock M,Ali S.Oil & Gas Journal,1998,July:80-90.

    [14] Andrews P,Illson T F,Mathews S J.Wear,1999,233-235:568-574.

    [15] Clar k H M,l wellyn R J.Wear,2003,250:206-218.

    [16] Wang C,Neville A,Ra machanfran S and Jovancicevic V.Wear,2005,258:649-658.

    [17] Shaley J R,Shirazi S A,Dayalan E,et al.Corrosion,1998,54:972-978.

    [18] Raghu D,Mc Kee B,Sheriff C.et al.Corrosion'01.Paper No.513.NACE Inter national.Houston.TX.USA,2001.

    [19] Kane R D,Cayard M S.Corrosion'02.Paper No.555.NACE International.Houston.TX.USA,2002,

    [20] Klenowicz Z,Darowicki K,Krakowiak S,et al.Mater.Corr.,2003,54:181-187.

    [21] Wu X Q,Jing H M,Zheng Y G,et al.Wear,2004,256:134-141.

    [22] Mc Lintyre P.Marine Corr osion Club Meeting,Aber deen,A-pril,1999.

    [23] Wood R J K,Jones T F,Miles N J,et al.Wear,2001,250:770-778.

    [24] Poulson B.Wear,1999,233-235:497-405.

    [25] Neville A,Hodgkiess T,Dallas J T.Wear,1995,186-187:497-507.

    [26] Matsu mura M,Oka Y.Slurr y Erosion-corrosion on Co mmercial Pure Iron in Fountain-Jet Facility,Proc.7th Int.Conf.on Er osion by Liquid and Solid Impact,Ca mbridge,UK,Cavendish Lab.University of Ca mbridge,1987,40.

    [27] Hu X,Neville A.Wear,2005,258:641-648.

    [28] Yue Z,Zhou P,Shi J.Wear of Materials.ASME.New York,1987:763-771.

    [29] Madson B W.Wear,1988,123:127-142.

    [30] Pitt C H,Chang Y M.Corr osion,1986,42:312-317.

    [31] AST M G119-04.Standard guide f or deter mining synergis m bet ween wear and corrosion.West Conshohocken.PA,2006:519-523.

    [32] Watson S W,F(xiàn)riederdorf F J,Madson B W,et al.Wear,1995,181-183:476-484.

    [33] Stack M M.Inter national Materials Reviews,2005,50:1.

    [34]Madsen B W.Wear,1988,123:127-136.

    [35] AST M G59-97.Conducting potentiodyna mic polarization resistance measurement.West Conshohocken,PA,2005:519-523.

    [36] AST M G5-94.Making potentiostatic and potentiodyna mic anodic polarization measurements.West Conshohocken,PA,1994.

    [37] Lu B T,Wang K,Wan X M,et al.Correlation bet ween degradations of mechanical properties in surface layer and erosion resistance of car bon steel-effects of slurry chemistry.Tribology Inter national,2012,in revision.

    [38] Postlethwaite J.Corrosion,1981,37:1-5.

    [39] Neville A,Hu X.Wear,2001,250-251:1284-1294.

    [40] Li Y,Burstein G T,Hutchings I M.Wear,1995,186-187:515-522.

    [41] Christodoulou P,Dr otlew A,Gutowski W.Wear,1997,211:129.

    [42] Pugsley V A,Allen C.Wear,1999,233-235:93.

    [43] Wang M C,Ren S Z,Wang X B,et al.Wear,1993,160:259.

    [44] Huang X,Wu Y J.Mater.Eng.Perf or m.,1998,7:463.

    [45] Clar k H M.Wear,1992,152:223-240.

    [46] Blatt W,Kohloey W,Lotz U,et al.Corrosion,1989,45:793.

    [47] Hutchings I M.The Erosion of Materials by Liquid Flow.MTI Publication No.25.Materials Technology Institute of the Chemical Process Industries,Inc.,1986.

    [48] Lu B T,Lu J F,Luo J L.Corr os.Sci.,2011,53:1000-1008.

    [49] Bjordal M,Bardal E,Rogne T ,et al.Surface and Coatings Technology,2005,70:215.

    [50] Das S,Mondal D P,Modi O P,et al.Wear,1999,231:195.

    [51] Prasad B K.Wear,2000,238:151.

    [52] Lu B T,Luo J L.Electrochi mica Acta,2008,53:7022-7031.

    [53] Neville A,Hodgkiess T.British Corr osion Jour nal,1997,32:197.

    [54] Poulson B.Corrosion Science,1983,23:391.

    [55] AST M G76-05.Standar d test met hod f or conducting er osion tests by solid particle i mpingement using gas Jet.West Conshohocken,PA,2006:310-315.

    [56] AST M G134-95.Standar d test met hod for erosion of solid materials by a cavitating liquid jet.West Conshohocken,PA,2006:559-571.

    [57] AST M G72-04.Standar d practice f or liquid i mpingement er osion testing.West Conshohocken.PA,2006:273-290.

    [58] Silver man D C.Corrosion,2004,60:1003-1024.

    [59] Postlet h waite J,Dobbin M H,Ber gevin K.Corrosion,1986,42:514-521.

    [60] Chen T V,Moccari A A,Medonald D D.Corr osion,1992,48:239-255.

    [61] Poulson B.Corrosion Science,1983,23:391-430.

    [62] Heitz E.Corrosion,1991,47:135-145.

    [63] Newman J S and Tho mas-Alyea K E.Electrochemical Systems,Wiley-IEEE,2004:378-400.

    [64] Poulson B.Corrosion Science,1990,30:743-746.

    [65] Chen C W,Yu T,Lu B T,et al.Corr osion during Waster Slurry Transporation.

    [66] Heitz E.Corrosion,1991,47:135-145.

    [67] Mcdanold D D.J.Electr ochem.Soc.,1992,196:3434-3449.

    [68] Sikora S,Sikora J,Mcdanald D D.Electrochi m.Acta,1996,41:783.

    [69] Andrews P,Illson I F,Matt hews S J.Wear,1999,233-235:568-574.

    [70] API RP 14E:Recp mmended practice f or design and installation of offshore production platfor m piping system.Washington DC,API,1991.

    [71] Craig B D.Mater.Perf or m.,Sept.1998:59-60.

    [72] Seo M,Chiba M.Electrochi mica Acta,2001,47:319-325.

    [73] ASM Metals Handbook.13,624.ASM metals Par k.Ohio,1981.

    [74] Efird K D.Corr osion,1976,33:3.

    [75] Streeter V L,Wylie E B,Bedford K W.Fl uid Mechanics.9th ed.Me Graw-Hill m New Yor k,1998:105,291.

    [76] Perr y R H,Green D,ed.Perry's Chemical Engineers'Handbook,7th ed.Mc Graw-Hill.New York,1998,6:10.

    [77] Sch mitt G,Wer ner C,Schoning M J.Corr osion'02.Paper no 280.NACE Inter national.TX.USA,2002.

    [78] Syrett B C.Corrosion,1975,32:242.

    [79] Lu B T,Luo J L.Electrochi mica Acta,2010,56:559-565.

    [80] Guo H X,Lu B T,Luo J L.Electrochi mica Acta,2006,51:5341-5348.

    [81] Sasaki K,Burstein G T.Philosophical Magazine Letters,2000,80:489-493.

    [82] Lu B T,Luo J L,Ma H Y.J.Electrochem.Soc.,2007,154:C159-C168.

    [83] Staehle R W.Corr osion Science,2007,49:7-19.

    [84] Oltra R,Chapey B,Renaud L.Wear,1995,186-187:533.

    [85] Lu B T,Mao L C,Luo J L,Electrochi mica Acta,2010,56:85-95.

    猜你喜歡
    工程部西南沖刷
    “潮”就這么說
    “兩把劍,一避免”在項(xiàng)目管理中的重要性
    名城繪(2019年2期)2019-10-21 10:20:07
    Country Driving
    透射槽波探測技術(shù)對煤層沖刷帶的研究與應(yīng)用
    一路向西南——然烏湖、米堆冰川
    西南絲綢之路及其對西南經(jīng)濟(jì)的影響
    奏好鐵塔銀線交響曲——濟(jì)源供電公司豐源輸變電工程部線路一班工作側(cè)記
    河南電力(2016年5期)2016-02-06 02:11:33
    水庫壩區(qū)沖刷漏斗的形成機(jī)理
    基于CFD的液固兩相流沖刷腐蝕預(yù)測研究
    堤防工程沖刷深度的計(jì)算探討
    欧美3d第一页| 免费看不卡的av| 亚洲情色 制服丝袜| 久久热精品热| 免费高清在线观看视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲精品一区在线观看| 免费av不卡在线播放| 十八禁网站网址无遮挡 | a级片在线免费高清观看视频| av黄色大香蕉| 欧美变态另类bdsm刘玥| 我的老师免费观看完整版| 一区二区av电影网| 18禁在线无遮挡免费观看视频| 啦啦啦啦在线视频资源| 国产毛片在线视频| 国产精品国产三级专区第一集| 日韩三级伦理在线观看| 六月丁香七月| 成年av动漫网址| 久久毛片免费看一区二区三区| 亚洲电影在线观看av| 国产熟女午夜一区二区三区 | 国产av国产精品国产| 国产黄色视频一区二区在线观看| 午夜免费观看性视频| 欧美日本中文国产一区发布| av有码第一页| 十八禁网站网址无遮挡 | 91久久精品国产一区二区成人| videossex国产| 精品人妻熟女av久视频| 国产黄色视频一区二区在线观看| 亚洲国产成人一精品久久久| 丝瓜视频免费看黄片| 观看免费一级毛片| 99热这里只有精品一区| 高清在线视频一区二区三区| 国产伦精品一区二区三区四那| kizo精华| 亚洲无线观看免费| 国产在线视频一区二区| 岛国毛片在线播放| 成人毛片a级毛片在线播放| 91aial.com中文字幕在线观看| 日韩精品有码人妻一区| 精品一区在线观看国产| 亚洲精品国产成人久久av| 欧美另类一区| 午夜激情久久久久久久| 亚洲av福利一区| 久久久久久伊人网av| 亚洲内射少妇av| 欧美日韩国产mv在线观看视频| 中文字幕制服av| 麻豆成人av视频| 男女边摸边吃奶| 国产国拍精品亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 国产有黄有色有爽视频| 各种免费的搞黄视频| 国产在视频线精品| av在线老鸭窝| 天堂中文最新版在线下载| 亚洲精品乱久久久久久| 热99国产精品久久久久久7| 中文在线观看免费www的网站| 熟女av电影| 日本免费在线观看一区| 国内少妇人妻偷人精品xxx网站| 久久99一区二区三区| 五月伊人婷婷丁香| 日韩不卡一区二区三区视频在线| 一区在线观看完整版| 亚洲综合色惰| 黑人猛操日本美女一级片| 人人澡人人妻人| 一区二区三区四区激情视频| 夜夜骑夜夜射夜夜干| 精品一区二区三区视频在线| 欧美成人午夜免费资源| 午夜久久久在线观看| 噜噜噜噜噜久久久久久91| 日日爽夜夜爽网站| 校园人妻丝袜中文字幕| 99久国产av精品国产电影| 六月丁香七月| 最近2019中文字幕mv第一页| 国产日韩欧美亚洲二区| 少妇被粗大的猛进出69影院 | 夜夜爽夜夜爽视频| 亚洲av男天堂| 亚洲精品色激情综合| av又黄又爽大尺度在线免费看| 免费久久久久久久精品成人欧美视频 | 免费黄频网站在线观看国产| 18+在线观看网站| 午夜福利网站1000一区二区三区| 2018国产大陆天天弄谢| 2021少妇久久久久久久久久久| 国产色婷婷99| 久久久久久久久久久久大奶| 激情五月婷婷亚洲| 日韩一区二区三区影片| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 免费看不卡的av| av播播在线观看一区| 人人妻人人添人人爽欧美一区卜| 特大巨黑吊av在线直播| 成年人免费黄色播放视频 | 国产黄色视频一区二区在线观看| 高清视频免费观看一区二区| 久久久久精品久久久久真实原创| 亚洲综合精品二区| 精品亚洲成国产av| 伊人亚洲综合成人网| 多毛熟女@视频| 少妇 在线观看| 熟女av电影| 69精品国产乱码久久久| av国产精品久久久久影院| 性色av一级| 日韩精品免费视频一区二区三区 | 乱人伦中国视频| 色网站视频免费| 亚洲精品乱久久久久久| 亚洲人与动物交配视频| 免费看光身美女| 国产伦精品一区二区三区视频9| videossex国产| 国产免费又黄又爽又色| 街头女战士在线观看网站| 少妇裸体淫交视频免费看高清| 欧美成人精品欧美一级黄| 大香蕉久久网| 婷婷色综合大香蕉| 女性被躁到高潮视频| 免费看不卡的av| 免费观看a级毛片全部| 久久 成人 亚洲| 丁香六月天网| 久久99精品国语久久久| 国产亚洲91精品色在线| 午夜福利影视在线免费观看| 高清在线视频一区二区三区| 久久鲁丝午夜福利片| 国内少妇人妻偷人精品xxx网站| 夫妻午夜视频| 亚洲精品第二区| 精品亚洲成a人片在线观看| 久久婷婷青草| 人妻制服诱惑在线中文字幕| 精品国产露脸久久av麻豆| 午夜福利在线观看免费完整高清在| 我的老师免费观看完整版| 日韩人妻高清精品专区| 最近中文字幕高清免费大全6| 欧美 日韩 精品 国产| 插逼视频在线观看| 日韩av免费高清视频| 美女cb高潮喷水在线观看| tube8黄色片| av.在线天堂| 精品午夜福利在线看| 国产成人aa在线观看| 另类亚洲欧美激情| 亚洲怡红院男人天堂| 男人和女人高潮做爰伦理| 亚洲精华国产精华液的使用体验| 久久精品久久久久久噜噜老黄| 日韩欧美精品免费久久| 亚洲精华国产精华液的使用体验| 精品一区二区免费观看| 久久精品国产亚洲网站| 免费观看av网站的网址| 亚洲情色 制服丝袜| 精品亚洲乱码少妇综合久久| 亚洲欧美精品专区久久| 插阴视频在线观看视频| 精品人妻熟女毛片av久久网站| 日本vs欧美在线观看视频 | 最新的欧美精品一区二区| av又黄又爽大尺度在线免费看| 免费在线观看成人毛片| 欧美激情极品国产一区二区三区 | 日本色播在线视频| 夜夜骑夜夜射夜夜干| 久久婷婷青草| 最新中文字幕久久久久| 成年人午夜在线观看视频| 免费看光身美女| 亚洲精品乱久久久久久| 亚洲欧美中文字幕日韩二区| 精品久久久噜噜| 久久国产精品大桥未久av | 亚洲欧美日韩另类电影网站| av黄色大香蕉| 成人亚洲欧美一区二区av| 精华霜和精华液先用哪个| 亚洲内射少妇av| 五月天丁香电影| 三上悠亚av全集在线观看 | 日本av手机在线免费观看| 久久 成人 亚洲| 日韩中文字幕视频在线看片| 男人和女人高潮做爰伦理| 老女人水多毛片| 国产精品一区二区性色av| 极品人妻少妇av视频| 国内精品宾馆在线| 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区黑人 | av免费观看日本| 人人妻人人添人人爽欧美一区卜| 久久人人爽人人片av| 久久久久久久国产电影| 国产精品一区二区在线观看99| a级毛色黄片| 亚洲精品中文字幕在线视频 | 大香蕉久久网| 欧美日韩精品成人综合77777| 久久精品久久精品一区二区三区| 国产日韩欧美视频二区| 久久毛片免费看一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲精品国产色婷婷电影| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区| 日韩欧美精品免费久久| 亚洲无线观看免费| 国产精品人妻久久久影院| 人妻系列 视频| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 大又大粗又爽又黄少妇毛片口| 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 少妇的逼水好多| 亚洲av.av天堂| 午夜激情福利司机影院| 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 成年女人在线观看亚洲视频| 亚洲一级一片aⅴ在线观看| 国产日韩欧美视频二区| 亚洲精品aⅴ在线观看| 精品少妇内射三级| 亚洲国产精品999| 人人妻人人澡人人看| 日韩 亚洲 欧美在线| 成人免费观看视频高清| 国产黄片视频在线免费观看| 国产在线男女| 高清av免费在线| 久久精品国产a三级三级三级| 一区二区三区精品91| 一本一本综合久久| 国产白丝娇喘喷水9色精品| 97在线视频观看| 久热久热在线精品观看| 亚洲精品久久久久久婷婷小说| 精品国产国语对白av| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 自线自在国产av| 国产精品偷伦视频观看了| 久久久久网色| 欧美日韩综合久久久久久| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 少妇人妻 视频| 99热全是精品| 边亲边吃奶的免费视频| 王馨瑶露胸无遮挡在线观看| 国产成人一区二区在线| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 女人精品久久久久毛片| 久久久久久久国产电影| 精品久久久久久久久亚洲| 国产美女午夜福利| 精品熟女少妇av免费看| av卡一久久| 精品少妇黑人巨大在线播放| 免费av中文字幕在线| 高清在线视频一区二区三区| 日本wwww免费看| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 水蜜桃什么品种好| 亚洲av欧美aⅴ国产| 久久午夜福利片| 国产成人午夜福利电影在线观看| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 亚洲,欧美,日韩| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 免费av不卡在线播放| 亚洲精品国产成人久久av| 狠狠精品人妻久久久久久综合| 久久人妻熟女aⅴ| 欧美精品国产亚洲| 秋霞在线观看毛片| 国产精品99久久久久久久久| 久久精品国产自在天天线| 99久久精品国产国产毛片| 国产又色又爽无遮挡免| 亚洲天堂av无毛| 丰满少妇做爰视频| 国产欧美日韩精品一区二区| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 亚洲国产精品一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| 欧美激情极品国产一区二区三区 | 九色成人免费人妻av| av线在线观看网站| 少妇人妻久久综合中文| 国产精品久久久久成人av| 人妻制服诱惑在线中文字幕| 高清不卡的av网站| 欧美+日韩+精品| 在线观看国产h片| 少妇被粗大的猛进出69影院 | 又黄又爽又刺激的免费视频.| 色网站视频免费| 狂野欧美激情性xxxx在线观看| 久久久久网色| 99re6热这里在线精品视频| 亚洲怡红院男人天堂| 最近的中文字幕免费完整| 一个人看视频在线观看www免费| 国产精品人妻久久久影院| 妹子高潮喷水视频| 免费观看av网站的网址| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 又爽又黄a免费视频| 欧美bdsm另类| 老司机影院成人| 美女中出高潮动态图| 亚洲国产精品国产精品| 欧美区成人在线视频| 久久久久久久久大av| 男人爽女人下面视频在线观看| h视频一区二区三区| 最新中文字幕久久久久| 亚洲欧美中文字幕日韩二区| 看免费成人av毛片| 色哟哟·www| 亚洲精品成人av观看孕妇| 一级毛片黄色毛片免费观看视频| 免费观看无遮挡的男女| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 黄色配什么色好看| 大片免费播放器 马上看| 色94色欧美一区二区| av卡一久久| h日本视频在线播放| 久久97久久精品| 国产在线免费精品| videossex国产| 久久国产精品大桥未久av | 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 岛国毛片在线播放| 午夜91福利影院| 色94色欧美一区二区| 18禁在线无遮挡免费观看视频| 国产精品一区二区在线观看99| 在线观看美女被高潮喷水网站| 美女中出高潮动态图| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 国产精品一区二区在线不卡| 精品亚洲成a人片在线观看| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 国产成人精品福利久久| 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 国产男女超爽视频在线观看| 高清av免费在线| 欧美成人午夜免费资源| 欧美精品一区二区大全| 男男h啪啪无遮挡| 亚洲国产精品999| 日韩中文字幕视频在线看片| 久久久久久久大尺度免费视频| 人妻夜夜爽99麻豆av| 一级毛片久久久久久久久女| 亚洲av成人精品一区久久| 深夜a级毛片| 丝袜脚勾引网站| .国产精品久久| 91久久精品国产一区二区成人| 亚洲成色77777| 丰满少妇做爰视频| 国产女主播在线喷水免费视频网站| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看 | 午夜福利,免费看| 久久青草综合色| 国产精品.久久久| 丰满少妇做爰视频| 天天操日日干夜夜撸| 色婷婷久久久亚洲欧美| freevideosex欧美| 亚洲av不卡在线观看| 看非洲黑人一级黄片| 97精品久久久久久久久久精品| 寂寞人妻少妇视频99o| 不卡视频在线观看欧美| 视频区图区小说| 建设人人有责人人尽责人人享有的| 99视频精品全部免费 在线| 中文字幕av电影在线播放| 欧美高清成人免费视频www| 成人国产麻豆网| 亚洲精品中文字幕在线视频 | 少妇人妻久久综合中文| 国产精品伦人一区二区| 男人舔奶头视频| 能在线免费看毛片的网站| 色94色欧美一区二区| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 少妇人妻精品综合一区二区| 美女主播在线视频| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 一级黄片播放器| 日韩欧美 国产精品| 国产精品国产三级国产专区5o| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美 | 日韩欧美精品免费久久| 天天操日日干夜夜撸| 三级国产精品片| 久久久午夜欧美精品| 超碰97精品在线观看| 精品国产一区二区久久| 欧美精品高潮呻吟av久久| 欧美精品国产亚洲| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久成人| 午夜福利视频精品| 国产免费一级a男人的天堂| 韩国av在线不卡| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 日韩制服骚丝袜av| 久久狼人影院| 美女xxoo啪啪120秒动态图| 女性生殖器流出的白浆| 在线 av 中文字幕| 国内少妇人妻偷人精品xxx网站| 久久精品久久久久久久性| 国产精品秋霞免费鲁丝片| 夜夜爽夜夜爽视频| 在线观看美女被高潮喷水网站| 黄色日韩在线| 国产老妇伦熟女老妇高清| 日韩av在线免费看完整版不卡| 色视频www国产| 日韩制服骚丝袜av| 国产伦精品一区二区三区四那| 人人妻人人添人人爽欧美一区卜| 大香蕉久久网| 免费观看无遮挡的男女| 伦理电影大哥的女人| 欧美老熟妇乱子伦牲交| 久久6这里有精品| 免费观看在线日韩| 久久99热6这里只有精品| 精品国产一区二区久久| 日韩欧美一区视频在线观看 | 九草在线视频观看| 一本一本综合久久| 欧美日韩在线观看h| 久久久久久久国产电影| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 97在线视频观看| 九草在线视频观看| 久久久久网色| 日本色播在线视频| 免费少妇av软件| 18禁在线播放成人免费| 国产av码专区亚洲av| 亚洲精品第二区| 亚洲av成人精品一二三区| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 高清黄色对白视频在线免费看 | 我的女老师完整版在线观看| 亚洲欧美成人精品一区二区| 日日爽夜夜爽网站| 天天操日日干夜夜撸| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 亚洲欧美成人精品一区二区| 国模一区二区三区四区视频| 2022亚洲国产成人精品| 亚洲精品中文字幕在线视频 | 亚洲国产最新在线播放| 中文字幕久久专区| 亚洲欧美日韩东京热| 欧美另类一区| 少妇被粗大的猛进出69影院 | 日韩一区二区三区影片| 久久99精品国语久久久| 国产乱来视频区| 亚洲精品视频女| 国产精品国产三级国产专区5o| 国产精品福利在线免费观看| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 美女视频免费永久观看网站| 久久精品久久久久久噜噜老黄| 在线观看人妻少妇| 青青草视频在线视频观看| 免费观看在线日韩| 亚洲精品456在线播放app| 在线观看三级黄色| 看免费成人av毛片| 国产 精品1| 搡女人真爽免费视频火全软件| 午夜视频国产福利| 六月丁香七月| 蜜臀久久99精品久久宅男| 99久久人妻综合| 午夜久久久在线观看| 国产白丝娇喘喷水9色精品| 最近2019中文字幕mv第一页| 极品人妻少妇av视频| 亚洲欧美成人精品一区二区| 夜夜骑夜夜射夜夜干| 国产精品无大码| 久久久a久久爽久久v久久| 观看美女的网站| 最近中文字幕2019免费版| 99热全是精品| 亚洲精品乱久久久久久| 日本黄色日本黄色录像| 国产老妇伦熟女老妇高清| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 欧美亚洲 丝袜 人妻 在线| 久久久a久久爽久久v久久| 人人妻人人添人人爽欧美一区卜| 制服丝袜香蕉在线| 久久久久久久国产电影| 91久久精品国产一区二区三区| 亚洲成人av在线免费| 丰满饥渴人妻一区二区三| 国产精品人妻久久久影院| 亚洲国产日韩一区二区| 国产精品久久久久久精品电影小说| 成人黄色视频免费在线看| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久av不卡| 国产精品国产三级专区第一集| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 人妻夜夜爽99麻豆av| 免费黄网站久久成人精品| 久久久久人妻精品一区果冻| 女性生殖器流出的白浆| 99热全是精品| 国产精品人妻久久久影院| av有码第一页| 麻豆乱淫一区二区| 中国三级夫妇交换| 欧美老熟妇乱子伦牲交| 老司机影院成人| 亚洲美女视频黄频| 色5月婷婷丁香| 插阴视频在线观看视频| 69精品国产乱码久久久| 欧美变态另类bdsm刘玥| 夜夜骑夜夜射夜夜干| 少妇被粗大猛烈的视频| 男女无遮挡免费网站观看| 久久精品久久精品一区二区三区| 一级,二级,三级黄色视频| 狠狠精品人妻久久久久久综合| 狂野欧美激情性xxxx在线观看| 成年美女黄网站色视频大全免费 | 看免费成人av毛片| 亚洲精品第二区| 亚洲自偷自拍三级| h日本视频在线播放| 国产69精品久久久久777片| 亚州av有码| 亚洲欧美成人精品一区二区| 色婷婷久久久亚洲欧美| 99久久精品热视频| 国产探花极品一区二区| 欧美xxxx性猛交bbbb| 黑人高潮一二区| 久久久国产精品麻豆| 日本欧美国产在线视频|