• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a dynamic load direct shear apparatus for the study of permafrost

    2013-10-09 08:11:12YingHuiCuiJianKunLiuPengLv
    Sciences in Cold and Arid Regions 2013年4期

    YingHui Cui , JianKun Liu, Peng Lv

    School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

    1 Introduction

    The dynamic parameters of permafrost directly affect the accuracy of engineering design and numerical simulation.This paper describes a newly developed dynamic load direct shear apparatus, including its power system and monitoring system, to measure those parameters. Our validation results show that this apparatus and alternative methodology are appropriate for accurately determining the dynamic shear parameters of permafrost.

    Compared to frozen soil statics, research on the dynamic aspects of permafrost started later. The dynamic constitutive relations, intensity changes, and dynamic creep properties of frozen soil have been previously studied from different perspectives, including temperature, moisture content, soil texture, confining pressure, loading frequency, and vibration amplitude. Currently, scholars generally test the dynamic properties of permafrost through triaxial tests. For example,Xuet al. (1998) defined the constitutive relations, parameters, and dynamic elasticity modulus of frozen soil based on triaxial tests at low temperature using an MTS-810 vibration triaxial apparatus, which calculated the dynamic Poisson ratio for the first time in China. Wuet al. (2004) also used an MTS-810 apparatus to quantitatively study change laws for the dynamic constitutive model and dynamic elasticity modulus of the deformation of frozen Lanzhou loess at different temperatures (-2 °C, -5 °C, -7 °C, and -10 °C) under seismic loading, which established a correspondence model considering the effects of temperature. Zhaoet al.(2003), using a vibration triaxial apparatus (MTS), conducted a great number of constant stress amplitude experiments under cyclic dynamic loading with confining pressures of 0.3–1.8 MPa at a frequency of 2 Hz. They found that the dynamic strength change of permafrost was not only related to the number of vibrations, but also to the effective energy absorption, confining pressure, and cyclic loading. Zhanget al. (2008), also using the MTS-810 dynamic triaxial testing machine, under the confining pressure of 0.3–1.6 MPa, at a frequency of 2 Hz, -4 and -6 °C temperature conditions,through a series of constant stress amplitude cyclic dynamic load test and found that changes in permafrost dynamic strength with damage not only relate to the size of the vibration times, but also have some relationship with confining pressure and cyclic times.

    The advantages of the direct shear apparatus,e.g., simple structure, relatively few required specimens, rapid consoli-dation, time savings, large-instrument stiffness, explicit force transmission, and easy operation, have made it widely used in the world. Compared to the higher cost of a low-temperature vibration triaxial apparatus, the dynamic load direct shear apparatus described here is a lower-cost and more convenient test method which has been readily adopted by engineering and technical personnel and meets project requirements more directly. Moreover, in exceptional cases such as field tests of landslides, shear strength tests of weak planes, contact friction strength tests of some materials,and direct shear experiments, the dynamic load direct shear apparatus may be the only feasible method. This paper reports on the development of a dynamic load direct shear apparatus to test the strength of frozen soil under dynamic loading, and also to test the dynamic friction between different materials.

    2 Components of the dynamic load direct shear apparatus

    This dynamic load direct shear apparatus, as a complete set of work systems, includes a dynamic loading system, a vertical loading device, a temperature and displacement test apparatus, and a data acquisition system(DAS). The apparatus is able to research the dynamic behaviors of a specimen as well two different kinds of materials influenced by different factors. Its components were designed by the Geotechnical Engineering Lab at Beijing Jiaotong University, and the main frame was built by the Nanjing Soil Instrument Plant. The design included the performance parameters, the design of the dynamic loading system, the direct shear workbench design, and the temperature DAS. The working principle of the apparatus is shown in Figure 1.

    Figure 1 Schematic of the dynamic load direct shear apparatus

    3 Actuator design and performance parameters

    The dynamic load direct shear apparatus consists of two direct shear boxes. The upper one (150mm×150mm×30mm)is a square hollow tube, and the lower one (150mm×150 mm×30mm) is a square box without a cover, so the shear plane area is 22,500 mm2. The lever structure of the normal force loading device has ratio of 1:24, a maximum load of 9.6 kN, and a normal force of 0–400 kPa.

    The dynamic shear strength of soil can be written as:

    where:τfddenotes the dynamic shear strength of soil;cddenotes the dynamic cohesive force of soil;σdenotes the normal stress of the specimen; andφddenotes the kinetic friction angle of the specimen.

    In our study the general axial compression and tension was less than 10.7 kN when the specimen was a failure whose deformation was more than 15% of the specimen’s size, so the telescopic scope of the dynamic loading head was ±22.5 mm.For an ordinary vibration test, the characteristic frequency was 2 Hz. Based on the above values and maintaining allowances for other tests, the dynamic loading system performance parameters are presented in Table 1.

    Table 1 Dynamic loading system performance parameters

    4 Dynamic loading actuator and direct shear apparatus workbench

    The dynamic loading actuator provides power and records the feedback values of the direct shear apparatus in dynamic loading direct shear tests. It was necessary to design the splicing apparatus according to the size of the actuator in order to ensure the stability of the workbench.

    The actuator shown in Figure 2 has an axial length of 680 mm, and the shaft of the actuator is 35 mm with a maximum elongation of 200 mm. A square steel plate (400 mm×400mm×20mm) was welded onto the axle body, 340 mm away from the right side of the axle. Holes of diameter φ28 were punched on the corners of the plate and were spaced at 320 mm, and the plate was attached with four screws. Spring gaskets and rubber gaskets were placed at the interface of the screws and nuts to reduce the vibration. A hydraulic pipeline and a control circuit are installed on the rear end of the actuator.

    A φ100 hole in the center of the plate enables the telescopic chuck of the actuator to reach the direct shear apparatus workbench. A hinged joint (φ18) in the front of the telescopic chuck is attached to the lower box of the apparatus to confine the lower box’s movement in the axial direction. In these ways the direct shear apparatus is affixed to the actuator, as shown in Figure 2.

    Figure 2 Assembly diagram of the actuator and the direct shear apparatus

    5 Dynamic loading test measurement system

    The instrumented measurement system is mainly composed of a force feedback/stress measurement system, a displacement/strain measurement system, and a temperature measurement system (Liet al., 2012). These three systems can provide automatic data acquisition of stress, strain, and temperature, and then output data files including stress-time,strain-time, and temperature-time in the testing process,which makes it possible to obtain the dynamic physical parameters of the soil specimen.

    The force feedback/stress measurement system is affixed to the actuator and consists of a dynamometer and stress sensors. The force value, as collected by computer with an accuracy of 0.02 N, is delivered by the end of the actuator in real time. The sampling frequency of the computer data acquisition can be set; generally, the force feedback/stress and displacement/strain acquisition frequency is set to 50 Hz.

    The displacement/strain measurement system is mainly composed of a displacement meter and a DAS. The displacement meter is installed on one side of the direct shear apparatus, and the thimble of the displacement meter sits atop a steel plate affixed to the lower box of the apparatus.Thus, the shear displacement of the lower box can be precisely measured by the displacement meter. In our study the displacement meter was connected to a Donghua DH5956 data acquisition device, enabling the displacement-time data to be seen on the computer monitor.

    The temperature DAS consists of a data acquisition instrument and a pt100 thermistor sensor with plug-in joint and an accuracy of 0.1 °C. The pt100 thermistor sensor connector is engraved with scales through which the temperature in the direct shear box can be read out. In our tests,the sensor plug was used to measure the internal temperature of the direct shear box and was generally inserted into the middle of the direct shear box through the opening on the direct shear box cover. In permafrost tests, the internal temperature of soil samples can be monitored in real time.

    6 Characteristics of the dynamic loading direct shear apparatus

    Compared with a conventional direct shear apparatus,this dynamic load direct shear apparatus has the following characteristics:

    1) The dynamic load direct shear apparatus can perform dynamic load tests that an ordinary direct shear apparatus cannot, due to its direct shear apparatus platform and dynamic load actuator components. It is cheaper than a dynamic triaxial apparatus and is easy to operate, and the physical principle of the experimental process is easy to interpret.

    2) With the added insulation and the temperature measurement system installed in the direct shear box, the dynamic load direct shear apparatus can conduct permafrost soil sample tests and the soil temperature can be monitored in real time during the tests, which cannot be achieved by a conventional direct shear apparatus in frozen soil tests.

    3) The stress and strain measurement system of the dynamic load direct shear apparatus is equipped with automatic data acquisition instruments. Compared to the artificial reading accuracy in a conventional direct shear apparatus,the dynamic load shear apparatus is more accurate because of its high-precision measurement equipment.

    7 Verification tests

    To test the performance of the direct shear apparatus for dynamic load of frozen soil, we tested the soil comes from subgrade plain fill of Harbin to Shenyang section of the Harbin-Dalian Passenger Dedicated Line. The physical properties of the soil samples are shown in Table 1. In order to test the reliability, we used the standard batch sample preparation methods, that is, made it into 10% water content loose soil before the sample preparation, kept the loose soil under the evaporation limited condition for about 6 hours to evenly, and loaded mode in layers, compacted the soil to the dry bulk density as the test required, then put the soil samples into the -3 °C temperature control box cooling for 48 hours to make sure that different parts of the sample were in the same temperature, met the test requirements. The test procedure was continued for 10 minutes, inserted the thermal sensor in the soil samples during the experimental process, temperature maintained at -3 °C ± 0.2 °C.

    The test used the frequency of 1 Hz which is the working condition frequency of typical power system, the vibration waveform used a sine wave, started with the amplitude of 2.5 kN, and increased the interval of 0.1 kN, each stage of loading sustained for 30 seconds, filtered the value fed back by the end of the actuator head sensor and collected by the data acquisition system at the computer end to obtain a dynamic load feedback curve shown in Figure 3, and the horizontal displacement time curves at the same time is shown in Figure 4. Converted the feedback dynamic load value and the horizontal displacement value into stress and strain of the soil samples. We can see that the 28th cycle of stress-strain hysteresis loop as shown in Figure 5 is consistent with the literature, from which the instrument developed in this paper can be validated successfully.

    Figure 3 Dynamic load feedback curve

    Figure 4 Displacement time curves

    Figure 5 Stress–strain hysteresis loop

    8 Conclusions

    This paper reports on a newly developed dynamic load direct shear apparatus designed for scientific research on permafrost. Compared to a conventional direct shear apparatus, this apparatus provides a new, more accurate method to conduct dynamic shear tests on frozen soil. The structure and working principle of the instrument are described, as is the verification of the performance of the apparatus through a set of experiments. Our results showed that the system can efficiently analyze the dynamic performance of permafrost.Further comparison with traixal test methods will be done in the future.

    The authors wish to acknowledge the support provided by the National 973 Project of China (No. 2012CB026104),the National Science Foundation of China (NSFC) (No.41171064), and the Fundamental Research Funds for the Central Universities (No. 2011JBZ009).

    Xu XY, Zhong CL, Chen YM, Zhang JY, 1998. Research on dynamic characters of frozen soil and determination of its parameters. Chinese Journal of Geotechnical Engineering, 20(5): 77–82.

    Wu ZJ, Zhong CL, Ma W, Cheng JJ, Feng WJ, 2004. Laboratory study on dynamics parameters of frozen soil under seismic dynamic loading.Northwestern Seismological Journal, 25(3): 220–224.

    Zhao SP, Zhu YL, He P, Wang DY, 2003. Testing study on dynamic mechanics parameters of frozen soil. Chinese Journal of Rock Mechanics and Engineering, 22(suppl. 2): 2677–2681.

    Zhang SJ, Lai YM, Li SY, Chang XX, 2008. Dynamic strength of frozen soils. Chinese Journal of Geotechnical Engineering, 30(4): 595–599.

    Li YB, Zhang HR, Quan KJ, 2012. Development of model test system for dynamic frozen soil-pile interaction. Chinese Journal of Geotechnical Engineering, 34(4): 774–780.

    人妻丰满熟妇av一区二区三区| www.999成人在线观看| 欧美性猛交╳xxx乱大交人| 十分钟在线观看高清视频www| 欧美激情极品国产一区二区三区| 中文字幕最新亚洲高清| 久久中文看片网| 欧美色欧美亚洲另类二区| 99国产精品一区二区蜜桃av| 亚洲中文av在线| 一进一出好大好爽视频| 男人舔女人的私密视频| 日本成人三级电影网站| 我的亚洲天堂| 久久人妻av系列| √禁漫天堂资源中文www| 亚洲第一欧美日韩一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久精品成人免费网站| 精品免费久久久久久久清纯| 黄色视频,在线免费观看| 国产精品九九99| 99精品欧美一区二区三区四区| 国产精品久久久久久精品电影 | 亚洲精品在线美女| 日韩国内少妇激情av| 久久青草综合色| √禁漫天堂资源中文www| 狂野欧美激情性xxxx| 成年人黄色毛片网站| 最近最新免费中文字幕在线| 欧美乱妇无乱码| 一边摸一边抽搐一进一小说| 亚洲国产欧美一区二区综合| 亚洲av第一区精品v没综合| 成在线人永久免费视频| 国产精品日韩av在线免费观看| 国产av不卡久久| 美女高潮喷水抽搐中文字幕| 色综合亚洲欧美另类图片| 男人舔女人下体高潮全视频| 亚洲成人久久性| 母亲3免费完整高清在线观看| 亚洲中文字幕日韩| 人妻丰满熟妇av一区二区三区| 99精品久久久久人妻精品| 久久中文字幕人妻熟女| 国产精品爽爽va在线观看网站 | 国产主播在线观看一区二区| 日韩成人在线观看一区二区三区| 无遮挡黄片免费观看| 国产精品久久久久久精品电影 | 亚洲成av人片免费观看| 99riav亚洲国产免费| 最近最新免费中文字幕在线| 国产精品 国内视频| 欧美黑人巨大hd| 免费搜索国产男女视频| 女性生殖器流出的白浆| a级毛片a级免费在线| 免费高清视频大片| 亚洲成人国产一区在线观看| 久热这里只有精品99| 91成人精品电影| 午夜免费成人在线视频| 一进一出抽搐gif免费好疼| 午夜两性在线视频| 搞女人的毛片| 不卡av一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲国产精品合色在线| 亚洲国产精品合色在线| 成年版毛片免费区| 老熟妇乱子伦视频在线观看| 国产精品一区二区精品视频观看| 日韩精品中文字幕看吧| 九色国产91popny在线| 精品午夜福利视频在线观看一区| 最近最新免费中文字幕在线| 夜夜爽天天搞| 又黄又爽又免费观看的视频| av片东京热男人的天堂| 麻豆国产av国片精品| 精品福利观看| 一级毛片精品| 久久热在线av| 精品久久久久久久久久久久久 | 高清在线国产一区| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 欧美zozozo另类| 国产亚洲精品一区二区www| 精品久久久久久久久久久久久 | 亚洲av成人av| 免费av毛片视频| 国产精品久久久人人做人人爽| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av香蕉五月| 亚洲第一青青草原| 国产91精品成人一区二区三区| 草草在线视频免费看| 大型黄色视频在线免费观看| 亚洲专区国产一区二区| 国产成人精品久久二区二区免费| 热re99久久国产66热| 看片在线看免费视频| 亚洲国产欧美网| 国产免费男女视频| 大香蕉久久成人网| 哪里可以看免费的av片| 波多野结衣高清作品| 男人舔女人下体高潮全视频| 好男人电影高清在线观看| 丝袜在线中文字幕| 在线观看免费视频日本深夜| 超碰成人久久| 在线十欧美十亚洲十日本专区| 国产成+人综合+亚洲专区| 免费在线观看成人毛片| 怎么达到女性高潮| 亚洲专区中文字幕在线| 波多野结衣高清作品| 成人午夜高清在线视频 | 老司机深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 岛国视频午夜一区免费看| av超薄肉色丝袜交足视频| 美女 人体艺术 gogo| 日韩一卡2卡3卡4卡2021年| 无人区码免费观看不卡| 日本成人三级电影网站| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡欧美一区二区| 欧美在线黄色| 国产91精品成人一区二区三区| 淫秽高清视频在线观看| 69av精品久久久久久| a级毛片在线看网站| 国产视频内射| 在线播放国产精品三级| 久久午夜综合久久蜜桃| 一级毛片女人18水好多| 亚洲 欧美一区二区三区| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 日本精品一区二区三区蜜桃| 亚洲性夜色夜夜综合| 亚洲人成77777在线视频| 国产精品精品国产色婷婷| 1024视频免费在线观看| 亚洲欧美激情综合另类| 国产区一区二久久| 成人三级做爰电影| 亚洲精品av麻豆狂野| 一级毛片高清免费大全| 白带黄色成豆腐渣| 国产精品亚洲一级av第二区| 嫩草影视91久久| 久久精品人妻少妇| 妹子高潮喷水视频| 精品电影一区二区在线| 婷婷精品国产亚洲av在线| 好男人电影高清在线观看| 久久久久久亚洲精品国产蜜桃av| 成人国语在线视频| 最新美女视频免费是黄的| 精品卡一卡二卡四卡免费| 精品高清国产在线一区| 色尼玛亚洲综合影院| 人人澡人人妻人| 亚洲人成伊人成综合网2020| 日韩大码丰满熟妇| 久久久久亚洲av毛片大全| 国产精品综合久久久久久久免费| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 精品久久久久久,| 久久欧美精品欧美久久欧美| 白带黄色成豆腐渣| 可以免费在线观看a视频的电影网站| 国产av又大| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合久久99| 国产人伦9x9x在线观看| 白带黄色成豆腐渣| 日韩免费av在线播放| 亚洲精品在线美女| 一边摸一边抽搐一进一小说| 亚洲国产精品sss在线观看| 精品电影一区二区在线| 亚洲人成网站高清观看| 可以在线观看毛片的网站| 亚洲自偷自拍图片 自拍| 亚洲成人精品中文字幕电影| 美女高潮到喷水免费观看| 男女视频在线观看网站免费 | 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 黄片大片在线免费观看| aaaaa片日本免费| xxx96com| 亚洲午夜精品一区,二区,三区| 久久久久久九九精品二区国产 | 日本黄色视频三级网站网址| 免费在线观看影片大全网站| 日日夜夜操网爽| 亚洲一区中文字幕在线| 在线观看66精品国产| 成人三级做爰电影| 首页视频小说图片口味搜索| 国产精品久久电影中文字幕| 9191精品国产免费久久| 欧美日韩瑟瑟在线播放| 亚洲精品一卡2卡三卡4卡5卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品美女久久久久99蜜臀| 人成视频在线观看免费观看| 久久久国产成人精品二区| 成人一区二区视频在线观看| 成人国产综合亚洲| 此物有八面人人有两片| 久久久久久久久久黄片| 午夜a级毛片| 老汉色av国产亚洲站长工具| 在线观看免费日韩欧美大片| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久人人精品亚洲av| 十八禁网站免费在线| 亚洲狠狠婷婷综合久久图片| 一本久久中文字幕| 99热这里只有精品一区 | 99riav亚洲国产免费| av片东京热男人的天堂| 亚洲 欧美一区二区三区| 国语自产精品视频在线第100页| 激情在线观看视频在线高清| 波多野结衣高清无吗| 91麻豆精品激情在线观看国产| 久久中文字幕一级| 一边摸一边抽搐一进一小说| 国产国语露脸激情在线看| 欧美中文综合在线视频| 亚洲精品av麻豆狂野| 久久久精品国产亚洲av高清涩受| 法律面前人人平等表现在哪些方面| 好看av亚洲va欧美ⅴa在| 黄色成人免费大全| 欧美最黄视频在线播放免费| 不卡一级毛片| 香蕉av资源在线| 亚洲五月天丁香| 人妻久久中文字幕网| 亚洲国产欧美网| 身体一侧抽搐| 他把我摸到了高潮在线观看| а√天堂www在线а√下载| 操出白浆在线播放| 午夜福利成人在线免费观看| 亚洲avbb在线观看| 亚洲成av人片免费观看| 欧美另类亚洲清纯唯美| av电影中文网址| 久久久久久免费高清国产稀缺| 亚洲精品一区av在线观看| 日韩三级视频一区二区三区| 俺也久久电影网| 日韩欧美在线二视频| 国产黄片美女视频| 美女午夜性视频免费| 男女之事视频高清在线观看| 国产国语露脸激情在线看| 日韩大尺度精品在线看网址| 亚洲欧美精品综合一区二区三区| 国产真人三级小视频在线观看| 欧美激情高清一区二区三区| 精品久久蜜臀av无| 两个人看的免费小视频| 久久久国产成人精品二区| 精品第一国产精品| 免费无遮挡裸体视频| 99国产极品粉嫩在线观看| 88av欧美| 18禁裸乳无遮挡免费网站照片 | 国产成人精品久久二区二区91| 好男人在线观看高清免费视频 | 久久国产精品影院| 国产精品二区激情视频| 国产高清激情床上av| 满18在线观看网站| 麻豆av在线久日| 国产亚洲欧美精品永久| 中文资源天堂在线| 亚洲一区中文字幕在线| 成人av一区二区三区在线看| 丁香欧美五月| www.999成人在线观看| 亚洲国产欧美一区二区综合| 视频区欧美日本亚洲| 日韩视频一区二区在线观看| 欧美色视频一区免费| 亚洲人成电影免费在线| 制服丝袜大香蕉在线| 在线观看免费日韩欧美大片| 老司机午夜福利在线观看视频| xxx96com| 国产亚洲精品久久久久久毛片| 亚洲 国产 在线| 一夜夜www| 免费看日本二区| 91成年电影在线观看| 最近最新中文字幕大全免费视频| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 国产一区二区三区视频了| 99精品欧美一区二区三区四区| 51午夜福利影视在线观看| 可以免费在线观看a视频的电影网站| 欧美乱码精品一区二区三区| 久久久久久人人人人人| 久久精品国产清高在天天线| 最近最新中文字幕大全免费视频| 最新在线观看一区二区三区| 国产亚洲精品一区二区www| av天堂在线播放| 成人免费观看视频高清| 亚洲成人久久爱视频| 丁香六月欧美| 成人av一区二区三区在线看| 国产蜜桃级精品一区二区三区| 母亲3免费完整高清在线观看| 亚洲精品国产一区二区精华液| 色老头精品视频在线观看| 看黄色毛片网站| 两个人看的免费小视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久亚洲精品国产蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 久久久国产欧美日韩av| 久久久水蜜桃国产精品网| 国产色视频综合| 国产久久久一区二区三区| 亚洲一区中文字幕在线| av中文乱码字幕在线| 国产精品av久久久久免费| 精品无人区乱码1区二区| 中文字幕高清在线视频| 变态另类成人亚洲欧美熟女| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 很黄的视频免费| 91在线观看av| 男人舔女人的私密视频| 国产成人欧美| avwww免费| 最近最新中文字幕大全免费视频| 非洲黑人性xxxx精品又粗又长| 亚洲av片天天在线观看| 欧美日本亚洲视频在线播放| 色在线成人网| 男女视频在线观看网站免费 | 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| or卡值多少钱| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 最近最新中文字幕大全电影3 | 中文亚洲av片在线观看爽| 免费在线观看完整版高清| 午夜精品久久久久久毛片777| 怎么达到女性高潮| 999久久久国产精品视频| 女性生殖器流出的白浆| 亚洲av熟女| 色精品久久人妻99蜜桃| 美国免费a级毛片| 日韩欧美三级三区| 国产v大片淫在线免费观看| 国产亚洲精品久久久久久毛片| 日韩视频一区二区在线观看| 中文字幕最新亚洲高清| 人人澡人人妻人| 老司机在亚洲福利影院| 国产一区二区在线av高清观看| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 亚洲va日本ⅴa欧美va伊人久久| 国产男靠女视频免费网站| or卡值多少钱| 人人妻人人澡人人看| 国产成人精品久久二区二区免费| av天堂在线播放| 免费高清在线观看日韩| 亚洲一区高清亚洲精品| 韩国av一区二区三区四区| 最好的美女福利视频网| 久久久久久久久久黄片| 亚洲黑人精品在线| e午夜精品久久久久久久| 高清在线国产一区| 国产精品1区2区在线观看.| 国产亚洲精品一区二区www| 男女那种视频在线观看| 一级黄色大片毛片| 国产在线观看jvid| 日韩视频一区二区在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲午夜理论影院| 国产麻豆成人av免费视频| √禁漫天堂资源中文www| 欧美日韩瑟瑟在线播放| 国产成人欧美| 50天的宝宝边吃奶边哭怎么回事| 中文字幕精品免费在线观看视频| 成人国产一区最新在线观看| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| svipshipincom国产片| 中文亚洲av片在线观看爽| 深夜精品福利| 午夜福利视频1000在线观看| 久久 成人 亚洲| 巨乳人妻的诱惑在线观看| 亚洲一码二码三码区别大吗| 亚洲中文av在线| 我的亚洲天堂| 亚洲一区二区三区色噜噜| 99国产极品粉嫩在线观看| 国产精品九九99| 大型av网站在线播放| 久久亚洲真实| 夜夜夜夜夜久久久久| 亚洲国产精品合色在线| 国产91精品成人一区二区三区| 欧美zozozo另类| 人妻丰满熟妇av一区二区三区| 999精品在线视频| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕| 国产97色在线日韩免费| 身体一侧抽搐| 又大又爽又粗| 婷婷精品国产亚洲av| 最近最新中文字幕大全免费视频| 女人爽到高潮嗷嗷叫在线视频| av有码第一页| 50天的宝宝边吃奶边哭怎么回事| 一进一出好大好爽视频| 欧美中文综合在线视频| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 日韩精品青青久久久久久| 中文字幕人妻熟女乱码| 国产一区二区三区视频了| 俺也久久电影网| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | 欧美最黄视频在线播放免费| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| 18禁黄网站禁片免费观看直播| 国产视频内射| 免费在线观看影片大全网站| 久久中文字幕一级| 99久久99久久久精品蜜桃| 久久久久久久午夜电影| 日日夜夜操网爽| 久久精品影院6| 亚洲在线自拍视频| avwww免费| 午夜精品久久久久久毛片777| 一本大道久久a久久精品| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 少妇熟女aⅴ在线视频| 1024香蕉在线观看| 精品无人区乱码1区二区| 一级毛片女人18水好多| 又紧又爽又黄一区二区| 国产蜜桃级精品一区二区三区| 国产精品 国内视频| 亚洲avbb在线观看| 欧美激情久久久久久爽电影| 久久国产乱子伦精品免费另类| 嫩草影院精品99| 桃色一区二区三区在线观看| 搡老熟女国产l中国老女人| 亚洲精品在线观看二区| av在线天堂中文字幕| 伦理电影免费视频| 色婷婷久久久亚洲欧美| 国产真人三级小视频在线观看| 精品国产乱码久久久久久男人| 美女大奶头视频| 亚洲片人在线观看| 午夜精品在线福利| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 九色国产91popny在线| 亚洲真实伦在线观看| tocl精华| 9191精品国产免费久久| netflix在线观看网站| 欧美av亚洲av综合av国产av| 色播亚洲综合网| 很黄的视频免费| 中文亚洲av片在线观看爽| 51午夜福利影视在线观看| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕人妻熟女乱码| 欧美性长视频在线观看| 国产精品日韩av在线免费观看| 国内久久婷婷六月综合欲色啪| 亚洲精品在线美女| 亚洲黑人精品在线| 国产1区2区3区精品| 久久精品国产亚洲av香蕉五月| 久久久久国产一级毛片高清牌| 久久精品夜夜夜夜夜久久蜜豆 | 精品国产乱码久久久久久男人| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 1024视频免费在线观看| 国产亚洲精品久久久久久毛片| 黄片大片在线免费观看| 亚洲精品国产区一区二| 欧美日韩一级在线毛片| 波多野结衣高清无吗| 国产视频内射| 亚洲国产精品999在线| 久久精品国产99精品国产亚洲性色| 中文字幕另类日韩欧美亚洲嫩草| 欧美不卡视频在线免费观看 | 女人爽到高潮嗷嗷叫在线视频| 免费看美女性在线毛片视频| 亚洲成人免费电影在线观看| 最近在线观看免费完整版| 91字幕亚洲| 国产97色在线日韩免费| av在线播放免费不卡| 精品第一国产精品| 亚洲av成人av| 亚洲av片天天在线观看| 18禁美女被吸乳视频| 精品高清国产在线一区| 国产不卡一卡二| av在线播放免费不卡| 久久中文字幕一级| 精品久久久久久久久久免费视频| 国产乱人伦免费视频| 91av网站免费观看| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 午夜久久久久精精品| 成人国产一区最新在线观看| a在线观看视频网站| 亚洲色图av天堂| 听说在线观看完整版免费高清| 国产精品一区二区免费欧美| 国产一区在线观看成人免费| 亚洲成人久久爱视频| 亚洲一区中文字幕在线| 91麻豆精品激情在线观看国产| 日韩三级视频一区二区三区| 麻豆一二三区av精品| 免费看美女性在线毛片视频| 69av精品久久久久久| 久99久视频精品免费| 人人澡人人妻人| 深夜精品福利| 淫妇啪啪啪对白视频| 久久久久久久午夜电影| av电影中文网址| 免费搜索国产男女视频| 精品不卡国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| xxxwww97欧美| 日韩精品免费视频一区二区三区| 级片在线观看| 美女高潮到喷水免费观看| 亚洲国产精品合色在线| 久久久久国内视频| 日韩欧美 国产精品| 国产视频内射| 久热这里只有精品99| 脱女人内裤的视频| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品综合一区在线观看 | 免费人成视频x8x8入口观看| 国产av在哪里看| 精品一区二区三区av网在线观看| 色播亚洲综合网| 午夜免费成人在线视频| 中文字幕久久专区| 欧美成人一区二区免费高清观看 | 亚洲精品在线观看二区| 级片在线观看| 最近最新中文字幕大全免费视频| 亚洲精品在线观看二区| 一级毛片女人18水好多| 一边摸一边抽搐一进一小说|