• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neumann stochastic finite element method for calculating temperature field of frozen soil based on random field theory

    2013-10-09 08:11:48TaoWangGuoQingZhou
    Sciences in Cold and Arid Regions 2013年4期

    Tao Wang , GuoQing Zhou

    1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology,Xuzhou, Jiangsu 221116, China

    2. School of Architecture and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

    1 Introduction

    For frozen soil, the temperature field calculation is the basic problem for strength and stability. Because of the complexity of the analytical solution for the temperature field, the finite element (FE) method of numerical solution is widely popular with researchers. Traditional FE analysis of the temperature field generally does not consider the effects of random factors; all of the parameters in the study area are regarded as deterministic variables (Ge, 2008; Wang and Chen, 2008).

    Geotechnical soil can form only after long geological time. Its composition is very complicated as a result of many natural and human factors. Therefore, the parameters of geotechnical soil have the characteristics of random distribution. Also, because of the particularities of the soils, the geotechnical parameter values obtained by geotechnical engineering tend to have great variability and uncertainty (Wanget al., 2009; Zhanget al., 2009). If random parameters are simulated as random variables in the process of calculation,the original deterministic temperature field analysis becomes uncertain temperature field analysis including random variables; this is called the random variable FE method.

    Oktay and Kammer (1982) first took into account the randomness of the parameters in the temperature field.Madera and Sotnikov(1996) suggested a numerical method for computing the mathematical expectation and correlation distributions of a stochastic temperature field. After that, the random variable FE method was widely used to solve random temperature field problems (Liet al., 2007, 2009, 2010;Chenet al., 2009). Qiet al.(2005) calculated the random temperature field of frozen soil roadbeds in the Bailu River section of the Qinghai-Tibet Railway based on the first-order Taylor series expansion. Sunet al.(2011) calculated the random temperature field of a typical frozen soil roadbed by the Monte-Carlo stochastic FE method.

    In a broad sense, an FE method is considered stochastic as long as it takes into account the random variables in the FE calculation. But Vanmarcke and Grigoriu(1983) and Vanmarckeet al.(1986) pointed out that the "true" random FE method must include handling of the random field. The randomness of soil parameters needs to be modeled as a spatially random field instead of a traditional random variable. To take into account the random field, discretization is necessary and this is called the random field FE method.Because the calculation of random temperature fields including random fields is unusual, there is less research on this aspect. Zhang and Li (1993) analyzed the random temperature and thermal stresses in concrete structures based on the theory of stochastic progress. Wanget al.(2003) combined the stochastic process theory with the thermal transfer theory and analyzed the influence of the random thermal shock impacts on the piston in a gas engine. Also, Xiu and Karniadakis (2003) and Emery (2004) gave the solution of stochastic heat transfer problems based on the theory of stochastic progress.

    The stochastic process can be considered as a one-dimensional random field, but it is different with a two-dimensional random field and a three-dimensional random field. Liuet al.(2006) calculated the random temperature field of a frozen soil roadbed by the first-order perturbation stochastic FE method based on the local average theory of random field. However, a detailed description of the random field and numerical characteristics of the local average random field were not given, and the results obtained from the first-order perturbation stochastic FE method were not accurate when the perturbation was more than 20% to 30%.Using a second-order perturbation stochastic FE method would involve massive calculations and would thus be very time-consuming. Therefore, a more efficient and more accurate method is needed to calculate the random temperature field of frozen soil, and the objective of this paper is to introduce such a method.

    By modeling the heat transfer coefficient and specific heat capacity as a spatially continuous stationary random field, a series of local average random fields can be obtained based on the discrete theory of the local average theory of random fields. Combining elements of local average random fields with FE element, we calculated the random temperature field of seasonal frozen soil by the Neumann stochastic FE method. Based on the calculation flow chart, the stochastic FE calculation program for solving the random temperature field was compiled by MATLAB (MathWorks, Inc.,Natick, Massachusetts). An example is presented here to demonstrate the feasibility and effectiveness of this method.

    2 Transient heat conduction problems

    2.1 Heat conduction equation

    For the 2D heat conduction problem of the temperature field, the basic equation can be written as:

    whereTis the temperature,tis the time,Cfis the specific heat capacity of frozen soil,Cuis the specific heat capacity of unfrozen soil,Lis the latent heat of phase transition, ΔTis temperature range of the phase transition,kfis the heat transfer coefficient of frozen soil,kuis the heat transfer coefficient of unfrozen soil,Tmis the mean temperature of phase transition, and (x,y) is the position coordinate.

    2.2 Boundary conditions

    There are three kinds of common boundary conditions in the heat transfer problems. The first is:

    whereΓis the boundary surface.

    The second is:

    wherenis the external normal direction,andqwis the heat flux.

    The third is:

    wherehis the surface heat transfer coefficients,andTfis the temperature of the gas flow .

    2.3 Initial conditions

    In order to obtain the solutions of Equation(1), the initial conditions are:

    wheret0is the initial timeandT0is the initial temperature field.

    3 Finite element equations

    The FE equations of the temperature field based on the FE method is:

    where [K] is the stiffness matrix of temperature,[N] is the unsteady temperature matrix, {T}tis the column vector of temperature, {P}tis the right column vector, andtis the same time of every column vector.

    Based on the backward difference method, Equation(9)can be written as:

    where Δtis the time step.

    When solving the {T}tas long as {T}t-Δtis known, Equation(10)can be simplified as:

    where

    BothKandRare deterministic variables in the traditional deterministic FE method, soTof Equation(11)is a deterministic result. The random variable FE method models the heat transfer coefficient and specific heat capacity as random variables. That is to say, bothKandRare random variables, soTof Equation(11)is also a random result. But Vanmarcke (1977) pointed out that the variability of spatially random parameters is not accurately described by the random variables method. The variability of spatially random parameters needs to be modeled as spatially random fields. The main objective of this paper is to calculate the random temperature field by modeling the heat transfer coefficient and specific heat capacity as a spatially continuous stationary random field.

    4 Local average methods of the random field

    At present, both spatial discretization and abstract discretization can approximately describe the random fields.Spatial discretization methods include the central discrete method, the local average method, the interpolation method,the local average method, the local integral method and the orthogonal expansion method. Abstract discretization methods include the decomposition method of Karhumen-loeve and the orthogonal series expansion method. The methods of spatial discretization can use many of the basic relations of the FE method, but the methods of abstract discretization cannot use them; a large amount of programming work is necessary to modify the FE method program (Qin, 1994). In view of this, this paper uses the local average method to discretize the random field because it converges rapidly, has high precision, and it needs less statistical information than the other methods.

    4.1 Discretization

    The accuracy of calculation results for the random temperature field depends on the grids of the FE mesh and the random field mesh. The size of the FE mesh relates to the temperature gradient, and the size of the random field mesh relates to the correlation distance (Vanmarckeet al., 1986).When the number of the FE mesh is too much, a random field mesh can be chosen which is different from the FE mesh. This is appropriate when the length of the random field element is one-third or one-half of the correlation distance, and it is also suitable when every element of the random field contains one or two finite elements (Liu PL and Liu KG, 1993). Assuming that the random field mesh has been divided; the random field of some parameterwould be divided into many random vectors. According to the characteristics of the continuous stationary random field, the mathematical expectation of the local average random field is equal to the original random field. The variances of the local average random field are the main elements of the covariance matrix. Therefore, the main work of the random field FE method is the calculation of the covariance matrix.

    We modeled the heat transfer coefficient and specific heat capacity as a 2D continuous stationary random field.ξ(x,y) is a random variable of a physical parameter in a certain position. {X(x,y), (x,y)∈R2} constitute a 2D continuous stationary random field. IfE[X(x,y)] =mandVar[X(x,y)] =б2, the mathematical expectation, variance and covariance of{Y(x,y)=X(x,y)-m, (x,y)∈R2} are:

    Therefore, it is without loss of generality when we assume that the mean function is zero for the analysis of the numerical characteristics of the local average random field.

    4.2 Numerical characteristics of the quadrilateral element of the local average random field

    X(x,y) is a 2D continuous stationary random field. The mathematical expectation is zero and the variance is constant.That is to say,E[X(x,y)]=m=0 andVar[X(x,y)]=б2. The random field mesh of the arbitrary quadrilateral element is shown in Figure 1.

    Figure 1 Two-dimensional arbitrary quadrilateral element of a local average random field

    The local average random field of an element is defined as:

    whereAeis the area ofeand Ωeis the possessive section ofe.

    The mathematical expectation and covariance of the local average random field of an element are:

    where

    whereAeis the area ofe,Ae'is the area ofe′.ρ(r,s) is a standard relevant coefficient,Niis the shape function ofe,Ni′is the shape function ofe′,xiandyiare the position coordinates ofe,xi′andyi′arethe position coordinates ofe′,(ξ,η)and (ξ′,η′) are the local position coordinates.

    where |J| and |J′| are the Jacobian determinants of coordinate transformation. In order to guarantee the correctness of the conversion, it needs |J|≠0 and |J′|≠0. That is to say, every interior angle of the quadrilateral element of the local average random field must be less than 180°.

    It is difficult to obtain the explicit formulation of Equation(17), so we need the Gauss numerical method to perform the integration. Based on Gauss numerical integration method, Equation(17)can be rewritten as:

    whereHi,Hj,HmandHlare the weighting coefficients.

    4.3 Independent transformation of the local average random field

    After discretization of the continuous stationary random field by the local average theory, the statistical characteristics of the random field can be approximately described by a series of mathematical expectations and covariances of random variables. Because covariance matrices are full-rank matrices, the computational load is heavy for a large number of random variables of complex construction. Therefore, in this paper, a set of uncorrelated random variables is obtained by independent transformation of correlated random variables based on the proper orthogonal transformation method.The covariance matrix obtained by the local average theory is a real, symmetric, positive, definite matrix. Its eigenvectors are real numbers based on the theory of eigenvalues and eigenvector of the matrix. Also, there areMlinearly independent eigenvectors for anMorder real symmetric matrix.

    Assuming the zero mean random vectorαis (α1,α2, …αM)T, its covariance matrixAis [Cov(αi,αj)], the irrelevant random vectorβis (β1,β2, …,βM)T, its varianceBis diagonal matrix [Var(βi)]M×M, andPis the linear transformation matrix, there are:

    wherePis the eigenvector matrix ofA,Bis the eigenvalues matrix ofA,andmis the mean vector ofα.

    Therefore, as long as unrelated normal random variables produced by MATLAB obey the normal distribution ofN(0,Var(βi)) for every element of the random field, the samples of discretization of the local average random field can be obtained by Equation(25).

    5 Temperature field of frozen soil based on the Neumann stochastic FE method

    The temperature field of frozen soil can be calculated by FE equations,boundary conditions and the samples of discretization of the local average random field based on the Monte-Carlo method. The Monte-Carlo method is accurate when the perturbations are more than 20% to 30%. It can be perfectly combined with the deterministic FE method and thus avoid the complicated theoretical derivation. However,there are many related random variables when the numbers of finite elements and random fields are large; calculating the inverse of the stiffness matrix of the temperature will require lengthy computation time for every FE analysis. In order to improve the efficiency of such a calculation, the Neumann expansion (Yamazakiet al., 1988) is used in this paper.

    The random stiffness matrix of Equation(11)can be broken down into:

    whereK0is the average temperature stiffness matrix of the random variables or the random field, andΔKis the undulatory section.

    Only ΔKandRhave a change for every random sampling by the Monte-Carlo method. Based on the Neumann expansion, when ||K0-1ΔK||<1,

    whereEis the unit matrix, andP=K0-1ΔK.

    According to Equation(11), there is:

    whereT(0)=K0-1R,T(i)=Pi T(0).

    According to Equation(29), there is

    Therefore, theT(0)can be acquired byT(0)=K0-1R, theT(1),T(2),T(3),…can be obtained from Equation(30), and theTcan be obtained from Equation(29). The truncation method is needed because Equation(29)is the infinite number of the matrix. In a general way, it is not necessary to calculateT(m+1)when|T(m)i-T(m-1)i|<εfor arbitraryi(1≤i≤M;Mis the number of FE nodes,εis the smaller values). The result is the sum of the first (m+1) items.

    The mathematical expectation matrix, the variance matrix and the variable coefficient matrix can be obtained by statistical analysis of the temperatures of the FE nodes. The computational formulae are:

    whereTiis the temperature array of the FE nodes that can be obtained at theitime calculation,Nis the number of times for random calculation, andMis the number of FE nodes.

    In order to easily program the computer by MATLAB,according to the Equations(31)and(32), we can obtain:

    Based on the above analysis, Figure 2 is the flow chart for calculating the random temperature field of seasonal frozen soil. As shown in the figure, the stochastic FE calculation program for solving the random temperature field was compiled by MATLAB.

    6 Numerical examples

    Figure 3 is the section shape of a geotechnical structure.For melted soil,ku=2,785.2 kJ/(m3·°C), andCu=2.18 W/(m·°C); for frozen soil,kf=1,994.8 kJ/(m3·°C), andCf=3.05 W/(m·°C). For the boundary of AB,qw=8 W/m2; for the boundary of CD and DA,TCD=-10 °C,TDA=5 °C; and BC is adiabatic. The initial temperature field is 15 °C. If we assume that all random parameters follow a normal distribution and their variable coefficients are 0.25. Table 1 presents the statistics of the thermal parameters, and Table 2 presents the statistics of the boundary conditions. The problem to be answered is how to obtain the statistical properties of the temperature field.

    Table 1 Statistics of the thermal parameters

    Table 2 Statistics of the boundary conditions

    Figure 4 shows the mesh of the triangular elements based on the FE method. There are 310 elements and 181 nodes. We modeled the heat transfer coefficient and the specific heat capacity as continuous stationary random fields,and the heat flux density and the boundary temperature as random variables. Figure 5 shows the quadrilateral elements of the random field mesh. There are 150 quadrilateral elements and two different random fields. Therefore, there are 300 random variables. Comparing Figure 4 with Figure 5 indicates that every mesh of the local random field contains two or three meshes of finite elements. We assumed thatρ(r,s)=exp(-(r+s)/60) and randomly calculated 10,000 times by the stochastic FE calculation program. In order to make a comparative analysis, we analyzed the model that the heat transfer coefficient and the specific heat capacity are only dealt as random variables.

    Figures 6a,b show the distributions of the mean temperature after one day, and Figures 7a,b show them after three days. It can be seen from Figure 6 that the mean temperature field distributions are roughly the same when the heat transfer coefficient and specific heat capacity are treated as random fields or random variables. A similar conclusion can be made from Figure 7.

    To validate the method proposed in this paper, we calculated the temperature field based on the Monte-Carlo method. Figure 8 shows the distributions of the mean temperature after one day, and Figure 9 shows them after three days. It can be seen from Figures 6a and 8 that the mean temperature field distributions are roughly the same after one day, and from Figures 7a and 9 that the mean temperature field distributions are also roughly the same after three days. Therefore,the method proposed in this paper, the Neumann stochastic FE method based on random field theory, is reasonable and true. The same computer would spend 7,894.543 s by the method proposed here, and 9,876.423 s by the Monte-Carlo method. This proves that our method is more efficient.

    Figure 2 Calculation flow chart of the random temperature field

    Figures 10a,b show the distributions of variance of the temperature field after one day, and Figures 11a,b show them after three days. It can be seen from Figure 10 that the variance obtained by the random field model is smaller than the variance obtained by random variable model at the same position of the section. A similar conclusion can be made from Figure 11. Therefore, we can conclude that modeling the random parameters as spatially random fields will reduce the variability of the temperature field. These results conform to the theoretical analysis because the variances of the local average random field are smaller than the original random field.

    Figure 3 Cross section of the geotechnical structure

    Figure 4 Finite element mesh

    Figure 5 Random field mesh

    Figure 6 Distribution of mean temperature based on the Neumann expansion method (°C, 24 h). (a) The heat transfer coefficient and specific heat capacity are modeled as random fields; (b) The heat transfer coefficient and specific heat capacity are modeled as random variables

    Figure 7 Distribution of mean temperature based on the Neumann expansion method (°C, 72 h). (a) The heat transfer coefficient and specific heat capacity are modeled as random fields; (b) The heat transfer coefficient and specific heat capacity are modeled as random variables

    Figure 8 Distribution of mean temperature based on the Monte-Carlo method (°C, 24 h)

    Figure 9 Distribution of mean temperature based on the Monte-Carlo method (°C, 72 h)

    Figure 10 Distribution of variance based on the Neumann expansion method (°C2, 24 h). (a) The heat transfer coefficient and specific heat capacity are modeled as random fields; (b) The heat transfer coefficient and specific heat capacity are modeled as random variables

    Figure 11 Distribution of variance based on the Neumann expansion method (°C2, 72 h). (a) The heat transfer coefficient and specific heat capacity are modeled as random fields; (b) The heat transfer coefficient and specific heat capacity are modeled as random variables

    7 Conclusions and discussions

    1) The Neumann stochastic FE method can efficiently solve problems about random temperature fields of frozen soil based on random field theory. It is accurate when the perturbations are more than 20% to 30% and can perfectly combine with deterministic FE method.

    2) According to the calculation flow chart, the stochastic FE calculation program compiled by MATLAB can directly output the desired statistical results (the mathematical expectation matrix, the variance matrix, and the variable coefficient matrix [E(T),D(T), andV(T), respectively]) of the random temperature field.

    3) Modeling the random parameters as traditional random variables will increase the variability of the temperature field. Therefore, modeling the random parameters as spatially random fields is accurate and necessary.

    4) Using the Neumann stochastic FE method described in this paper, problems about the random temperature fields of multi-layer soil could be easily solved after making slight modifications.

    Several concepts and methods related to using random field theory for calculating the temperature field of frozen soil has been introduced here. However, several issues still need to be addressed concerning the engineering applications of this method, such as moisture migration and the spatial variability of frozen soil. Therefore, many researches still need to be done in the future.

    This research was funded by the National Basic Research Program of China (No. 2012CB026103), the National High Technology Research and Development Program of China(No. 2012AA06A401), and the National Natural Science Foundation of China (No. 41271096). We express our sincere thanks to the anonymous reviewers for their valuable comments and suggestions on the content of the paper and on the use of language.

    Chen JJ, Wang LG, Li JP, 2009. Thermal response analysis of stochastic pole structures under steady random temperature field. Engineering Mechanics, 26(suppl. 1): 12–15.

    Emery AF, 2004. Solving stochastic heat transfer problems. Engineering Analysis with Boundary Elements, 28(3): 279–291.

    Ge JJ, 2008. Numerical simulation of the temperature regime within an embankment with insulated berm of the Qinghai-Tibet Railway. Journal of Glaciology and Geocryology, 30(2): 274–279.

    Li JP, Chen JJ, Liu HF, Xu J, Huang XB, 2007. Analysis of stochastic temperature field by the Neumann expansions. Journal of Xidian University,34(3): 454–457.

    Li JP, Chen JJ, Yue LJ, Liu GL, 2009. Analysis of temperature field with fuzzy-random parameters based on general density function. Journal of Wuhan University of Technology, 31(15): 115–144.

    Li JP, Chen JJ, Zhu ZQ, Liu GL, 2010. Asymptotic-maximum entropy analysis of stochastic temperature field. Chinese Journal of Applied Mechanics, 27(1): 58–62.

    Liu PL, Liu KG, 1993. Selection of random field mesh in finite element reliability analysis. Journal of Engineering Mechanics, 119(4): 667–680.

    Liu ZQ, Lai YM, Zhang MY, Zhang XF, Lu H, 2006. Stochastic temperature field of frozen ground road-bed. Science in China (Series D), 36(6):587–592.

    Madera AG, Sotnikov AN, 1996. Method for analyzing stochastic heat transfer in a fluid flow. Applied Mathematical Modelling, 20(8): 588–592.

    Oktay S, Kammer HC, 1982. A conduction-cooled module for high-performance LSI devices. IBM Journal of Research and Development, 26(1): 55–66.

    Qi CQ, Wu QB, Shi B, Xu HZ, 2005. Stochastic finite element analysis for the temperature field of frozen soil roadbed of Qinghai-Tibet Railway.Journal of Engineering Geology, 13(3): 330–335.

    Qin Q, 1994. Progress in stochastic finite element methods, Part I. Discretization of random fields and moments of structural responses. Engineering Mechanics, 11(4): 1–10.

    Sun H, Niu FJ, Chen Z, Ge XR, 2011. Stochastic temperature field of frozen soil roadbed based on Monte-Carlo method. Journal of Shanghai Jiaotong University (Science), 45(5): 738–742.

    Vanmarcke E, 1977. Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division, 103(11): 1227–1246.

    Vanmarcke E, Grigoriu M, 1983. Stochastic finite element analysis of simple beams. Journal of Engineering Mechanics, 109(5): 1203–1214.

    Vanmarcke E, Shinozuka M, Nakagiri S, Schu?ller GI, Grigoriu M, 1986.Random fields and stochastic finite elements. Structural Safety, 3(3–4):143–166.

    Wang YZ, Hu YC, Hong RH, Yu ZT, Shen JS, 2003. Stochastic analysis of temperature for thermal shock on piston with lumped parameter model.Transactions of CSICE, 21(1): 81–85.

    Wang SJ, Chen JB, 2008. Nonlinear analysis for dimensional effects of temperature field of highway embankment in permafrost regions on Qinghai-Tibet plateau. Chinese Journal of Geotechnical Engineering,20(10): 1544–1549.

    Wang YH, Wang BT, An YY, 2009. Study of random field characteristics of soil parameters based on CPT measurements. Rock and Soil Mechanics,30(9): 2753–2758.

    Xiu DB, Karniadakis GE, 2003. A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer, 46(24): 4681–4693.

    Yamazaki F, Shinozuka M, Dasgupta G, 1988. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics,114(8): 1335–1354.

    Zhang DX, Li ML, 1993. Analysis of random thermal stresses of concrete slabs restricted on elastic bases. Journal of Tongji University, 21(1):91–97.

    Zhang JZ, Miao LC, Wang HJ, 2009. Methods for characterizing variability of soil parameters. Chinese Journal of Geotechnical Engineering, 31(12):1936–1940.

    亚洲精品美女久久av网站| 老司机午夜十八禁免费视频| 大型av网站在线播放| 亚洲视频免费观看视频| 新久久久久国产一级毛片| 啦啦啦啦在线视频资源| 在线 av 中文字幕| 中文字幕高清在线视频| 9色porny在线观看| 男女国产视频网站| 一本色道久久久久久精品综合| 欧美精品一区二区免费开放| 悠悠久久av| 久久热在线av| 中文精品一卡2卡3卡4更新| 亚洲七黄色美女视频| 午夜免费观看性视频| 好男人电影高清在线观看| 在线十欧美十亚洲十日本专区| 中文字幕最新亚洲高清| 欧美黄色淫秽网站| 桃红色精品国产亚洲av| 成人亚洲精品一区在线观看| 精品人妻1区二区| 狂野欧美激情性bbbbbb| 真人做人爱边吃奶动态| 欧美日韩亚洲国产一区二区在线观看 | 欧美性长视频在线观看| 国产高清国产精品国产三级| 国产97色在线日韩免费| 久久天躁狠狠躁夜夜2o2o| 亚洲精品粉嫩美女一区| 男人添女人高潮全过程视频| 啦啦啦啦在线视频资源| 不卡av一区二区三区| 久久国产亚洲av麻豆专区| 波多野结衣一区麻豆| 香蕉丝袜av| 欧美激情 高清一区二区三区| 亚洲全国av大片| 亚洲中文字幕日韩| 夜夜骑夜夜射夜夜干| 91老司机精品| 国产精品亚洲av一区麻豆| 91国产中文字幕| 日韩欧美免费精品| 精品乱码久久久久久99久播| 日本欧美视频一区| 999精品在线视频| 999久久久国产精品视频| 欧美乱码精品一区二区三区| 国产区一区二久久| 咕卡用的链子| 婷婷丁香在线五月| 精品国产乱码久久久久久小说| 精品免费久久久久久久清纯 | 国产一区二区三区av在线| 黄色视频,在线免费观看| a级片在线免费高清观看视频| 丝瓜视频免费看黄片| 亚洲精品第二区| 国产亚洲精品一区二区www | 日本欧美视频一区| 老汉色∧v一级毛片| 欧美精品亚洲一区二区| 一级毛片精品| 男女高潮啪啪啪动态图| 少妇人妻久久综合中文| 欧美日韩成人在线一区二区| 91av网站免费观看| 国产精品二区激情视频| 亚洲成人免费av在线播放| 999久久久精品免费观看国产| 色老头精品视频在线观看| 天堂8中文在线网| 婷婷丁香在线五月| 操出白浆在线播放| 国产亚洲精品久久久久5区| 亚洲精品美女久久久久99蜜臀| 日韩精品免费视频一区二区三区| 欧美+亚洲+日韩+国产| 在线观看www视频免费| 不卡av一区二区三区| 中文字幕高清在线视频| 亚洲国产精品一区三区| 久久ye,这里只有精品| 国产97色在线日韩免费| 女警被强在线播放| 国产欧美日韩一区二区精品| 丝袜人妻中文字幕| 黑丝袜美女国产一区| 欧美激情极品国产一区二区三区| 91麻豆精品激情在线观看国产 | 啦啦啦啦在线视频资源| 一边摸一边做爽爽视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 色播在线永久视频| 精品国产乱子伦一区二区三区 | 国产高清视频在线播放一区 | 最近最新中文字幕大全免费视频| 国产伦理片在线播放av一区| 日本五十路高清| 少妇粗大呻吟视频| 国产亚洲av高清不卡| 夜夜骑夜夜射夜夜干| 丁香六月欧美| 国产人伦9x9x在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲人成电影免费在线| 波多野结衣一区麻豆| 国产精品久久久久久人妻精品电影 | 夜夜骑夜夜射夜夜干| 一级毛片精品| 成人三级做爰电影| 人人妻人人澡人人看| 欧美成狂野欧美在线观看| 免费高清在线观看视频在线观看| 欧美激情高清一区二区三区| 欧美激情极品国产一区二区三区| 亚洲视频免费观看视频| 亚洲成人国产一区在线观看| 一区二区日韩欧美中文字幕| 日韩视频在线欧美| av在线老鸭窝| 十八禁高潮呻吟视频| 日韩制服丝袜自拍偷拍| 妹子高潮喷水视频| 精品一区二区三区av网在线观看 | 亚洲男人天堂网一区| 亚洲熟女毛片儿| 夜夜骑夜夜射夜夜干| 欧美国产精品一级二级三级| 精品熟女少妇八av免费久了| 桃红色精品国产亚洲av| 国产黄色免费在线视频| 国产黄色免费在线视频| 久久精品成人免费网站| 最新的欧美精品一区二区| 久久精品成人免费网站| 久久免费观看电影| 色精品久久人妻99蜜桃| 成年人黄色毛片网站| 国产色视频综合| 极品人妻少妇av视频| 大片电影免费在线观看免费| 伦理电影免费视频| 午夜福利视频精品| 欧美 亚洲 国产 日韩一| 国产视频一区二区在线看| 丝瓜视频免费看黄片| 国产日韩欧美在线精品| 久久精品熟女亚洲av麻豆精品| 国产在线免费精品| 91成年电影在线观看| 天堂中文最新版在线下载| 亚洲精华国产精华精| 久久精品久久久久久噜噜老黄| 老司机午夜福利在线观看视频 | videosex国产| 黄色视频,在线免费观看| 久久人妻熟女aⅴ| 人人妻人人澡人人爽人人夜夜| 丝袜美腿诱惑在线| 亚洲七黄色美女视频| 美女大奶头黄色视频| 日韩中文字幕视频在线看片| 久久影院123| 欧美精品一区二区大全| 久久狼人影院| 在线永久观看黄色视频| 精品人妻熟女毛片av久久网站| 在线天堂中文资源库| 精品人妻熟女毛片av久久网站| 日韩欧美国产一区二区入口| 我的亚洲天堂| 欧美人与性动交α欧美精品济南到| 亚洲精品自拍成人| 亚洲精品自拍成人| 超色免费av| 午夜精品久久久久久毛片777| 免费不卡黄色视频| 午夜成年电影在线免费观看| 国产成人欧美在线观看 | 精品国产乱码久久久久久小说| 国产欧美日韩精品亚洲av| 精品国产国语对白av| 在线观看免费日韩欧美大片| 国产不卡av网站在线观看| 亚洲成av片中文字幕在线观看| 亚洲av国产av综合av卡| 汤姆久久久久久久影院中文字幕| 丝袜人妻中文字幕| 精品免费久久久久久久清纯 | 亚洲国产精品成人久久小说| 一区二区三区激情视频| 欧美成人午夜精品| 黄网站色视频无遮挡免费观看| 国产精品久久久久久精品电影小说| 好男人电影高清在线观看| 夜夜骑夜夜射夜夜干| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区免费欧美 | 在线精品无人区一区二区三| 国产xxxxx性猛交| 80岁老熟妇乱子伦牲交| 又黄又粗又硬又大视频| 日韩免费高清中文字幕av| 多毛熟女@视频| 欧美精品一区二区免费开放| 亚洲七黄色美女视频| 国内毛片毛片毛片毛片毛片| 欧美日本中文国产一区发布| 高清视频免费观看一区二区| 人人妻人人澡人人爽人人夜夜| www.av在线官网国产| 亚洲国产精品999| 日韩视频在线欧美| 亚洲久久久国产精品| 欧美黑人欧美精品刺激| 91麻豆精品激情在线观看国产 | 色精品久久人妻99蜜桃| 亚洲av欧美aⅴ国产| 国产精品久久久久久人妻精品电影 | 美女国产高潮福利片在线看| 一级毛片女人18水好多| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品一区三区| 黑人欧美特级aaaaaa片| 精品高清国产在线一区| 亚洲天堂av无毛| 亚洲性夜色夜夜综合| 香蕉丝袜av| 十八禁人妻一区二区| 欧美xxⅹ黑人| 免费观看av网站的网址| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲综合一区二区三区_| 啦啦啦 在线观看视频| 一二三四社区在线视频社区8| 日韩欧美一区二区三区在线观看 | 亚洲av欧美aⅴ国产| 男女边摸边吃奶| 免费观看a级毛片全部| 99香蕉大伊视频| 丝袜美腿诱惑在线| www.999成人在线观看| 欧美激情 高清一区二区三区| 2018国产大陆天天弄谢| 亚洲欧洲日产国产| 美女主播在线视频| 最近中文字幕2019免费版| 国产免费av片在线观看野外av| 黑人巨大精品欧美一区二区mp4| 精品卡一卡二卡四卡免费| 中文字幕精品免费在线观看视频| 一本一本久久a久久精品综合妖精| 精品一区二区三区四区五区乱码| 妹子高潮喷水视频| 大型av网站在线播放| 黄色a级毛片大全视频| 精品人妻一区二区三区麻豆| 成年人黄色毛片网站| av电影中文网址| 亚洲,欧美精品.| 少妇人妻久久综合中文| 亚洲精品国产区一区二| 欧美在线一区亚洲| 91九色精品人成在线观看| 他把我摸到了高潮在线观看 | 桃花免费在线播放| 蜜桃国产av成人99| a级毛片在线看网站| 美女福利国产在线| 国产伦理片在线播放av一区| 久久久国产一区二区| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 啦啦啦视频在线资源免费观看| 美女中出高潮动态图| 后天国语完整版免费观看| 天天躁日日躁夜夜躁夜夜| 国产91精品成人一区二区三区 | 天天添夜夜摸| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区mp4| 国产精品九九99| 亚洲精品国产一区二区精华液| 国产一级毛片在线| 日韩 欧美 亚洲 中文字幕| 性色av一级| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 国产一区有黄有色的免费视频| 国产一区二区三区综合在线观看| 国产一级毛片在线| 极品人妻少妇av视频| 精品少妇久久久久久888优播| 国产高清视频在线播放一区 | 免费少妇av软件| 日本91视频免费播放| 一个人免费在线观看的高清视频 | 久久久久精品国产欧美久久久 | 亚洲熟女精品中文字幕| 亚洲国产精品成人久久小说| 99国产综合亚洲精品| 91老司机精品| 91麻豆精品激情在线观看国产 | 99精品欧美一区二区三区四区| 操美女的视频在线观看| 操美女的视频在线观看| 日韩制服丝袜自拍偷拍| 别揉我奶头~嗯~啊~动态视频 | 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 午夜激情av网站| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 国产精品欧美亚洲77777| 久久精品国产a三级三级三级| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| cao死你这个sao货| 欧美精品啪啪一区二区三区 | 精品国产乱子伦一区二区三区 | 精品第一国产精品| 不卡一级毛片| 欧美国产精品va在线观看不卡| 午夜激情av网站| 欧美精品高潮呻吟av久久| 飞空精品影院首页| xxxhd国产人妻xxx| 自线自在国产av| 国产伦人伦偷精品视频| 色婷婷av一区二区三区视频| 亚洲一区中文字幕在线| 美女视频免费永久观看网站| 丰满饥渴人妻一区二区三| 亚洲第一青青草原| 两性夫妻黄色片| 国产一区二区 视频在线| 亚洲精品第二区| 少妇被粗大的猛进出69影院| 交换朋友夫妻互换小说| 制服人妻中文乱码| 中文字幕制服av| 成人国产一区最新在线观看| 亚洲全国av大片| 亚洲av电影在线进入| 久久久久久久大尺度免费视频| 交换朋友夫妻互换小说| 亚洲avbb在线观看| 在线观看www视频免费| 国产淫语在线视频| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 不卡av一区二区三区| 极品少妇高潮喷水抽搐| 欧美日本中文国产一区发布| 国产麻豆69| 女性被躁到高潮视频| 亚洲,欧美精品.| 成人国产av品久久久| 亚洲天堂av无毛| 大片免费播放器 马上看| 亚洲国产看品久久| 一级片免费观看大全| 一区二区三区四区激情视频| 亚洲欧美色中文字幕在线| 美女主播在线视频| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| bbb黄色大片| 日日夜夜操网爽| 亚洲精品一区蜜桃| 日韩人妻精品一区2区三区| 免费黄频网站在线观看国产| 美女国产高潮福利片在线看| 国产一卡二卡三卡精品| 99热国产这里只有精品6| 久久久久网色| 大香蕉久久网| av线在线观看网站| 在线看a的网站| 久久久久精品国产欧美久久久 | 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 50天的宝宝边吃奶边哭怎么回事| 一二三四在线观看免费中文在| av视频免费观看在线观看| 精品国产一区二区久久| 欧美精品啪啪一区二区三区 | 黄片大片在线免费观看| 男男h啪啪无遮挡| 91成人精品电影| 欧美亚洲 丝袜 人妻 在线| 丁香六月欧美| 久久久国产欧美日韩av| 交换朋友夫妻互换小说| 中文字幕高清在线视频| 久久人人爽av亚洲精品天堂| 手机成人av网站| 亚洲精品一区蜜桃| 国产精品久久久久久人妻精品电影 | 国产精品免费视频内射| 一本久久精品| 国产精品麻豆人妻色哟哟久久| cao死你这个sao货| 久久 成人 亚洲| 99精品欧美一区二区三区四区| 久久国产精品大桥未久av| 一进一出抽搐动态| 国产亚洲精品一区二区www | 在线观看免费午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久 | 99香蕉大伊视频| 久久国产精品影院| 精品国产一区二区三区久久久樱花| 久久久久久久久免费视频了| 欧美精品av麻豆av| 久久久久网色| 女性生殖器流出的白浆| 成人三级做爰电影| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| 国产亚洲精品一区二区www | 黄片小视频在线播放| 国产熟女午夜一区二区三区| 亚洲午夜精品一区,二区,三区| 日韩,欧美,国产一区二区三区| 99热网站在线观看| 97人妻天天添夜夜摸| 在线精品无人区一区二区三| 亚洲综合色网址| www.自偷自拍.com| 汤姆久久久久久久影院中文字幕| 丝袜美足系列| 免费在线观看完整版高清| 爱豆传媒免费全集在线观看| 999精品在线视频| 久久天躁狠狠躁夜夜2o2o| 啦啦啦视频在线资源免费观看| 成年动漫av网址| 日本wwww免费看| 欧美亚洲日本最大视频资源| 性高湖久久久久久久久免费观看| av网站在线播放免费| 女人高潮潮喷娇喘18禁视频| 黄片大片在线免费观看| 女性被躁到高潮视频| 91成年电影在线观看| 亚洲国产精品一区三区| 精品人妻1区二区| 日韩欧美一区视频在线观看| 99热网站在线观看| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 女性被躁到高潮视频| 精品久久久久久久毛片微露脸 | 久久久水蜜桃国产精品网| 国产成人欧美在线观看 | 高清在线国产一区| 巨乳人妻的诱惑在线观看| 日韩有码中文字幕| 啦啦啦啦在线视频资源| 亚洲精华国产精华精| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 丝袜美足系列| 午夜福利,免费看| 黑人猛操日本美女一级片| 一个人免费看片子| 老司机午夜十八禁免费视频| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91| 大片免费播放器 马上看| 深夜精品福利| 亚洲国产中文字幕在线视频| 国产成人系列免费观看| 亚洲黑人精品在线| 青草久久国产| 欧美 亚洲 国产 日韩一| 欧美日韩中文字幕国产精品一区二区三区 | 水蜜桃什么品种好| 国产免费福利视频在线观看| 99九九在线精品视频| 国产在线免费精品| 国产免费视频播放在线视频| 女性生殖器流出的白浆| 黄色怎么调成土黄色| 亚洲av美国av| 男女国产视频网站| 一区二区日韩欧美中文字幕| 法律面前人人平等表现在哪些方面 | 叶爱在线成人免费视频播放| 午夜日韩欧美国产| 欧美午夜高清在线| 大片电影免费在线观看免费| 久久国产精品男人的天堂亚洲| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 黄频高清免费视频| 国产亚洲精品一区二区www | 无限看片的www在线观看| av有码第一页| 国产99久久九九免费精品| www.av在线官网国产| 欧美久久黑人一区二区| 美女高潮喷水抽搐中文字幕| 亚洲avbb在线观看| avwww免费| av网站在线播放免费| 日韩精品免费视频一区二区三区| 国产亚洲欧美精品永久| 国产在线观看jvid| 一级片'在线观看视频| 国产一区有黄有色的免费视频| 一本色道久久久久久精品综合| 日本五十路高清| 国产精品秋霞免费鲁丝片| 国产精品影院久久| 操美女的视频在线观看| 在线观看人妻少妇| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 免费不卡黄色视频| 男女午夜视频在线观看| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 两人在一起打扑克的视频| 丝袜喷水一区| 色综合欧美亚洲国产小说| av欧美777| 多毛熟女@视频| kizo精华| 91大片在线观看| 建设人人有责人人尽责人人享有的| 亚洲成人免费av在线播放| 日韩制服骚丝袜av| 91字幕亚洲| 大香蕉久久成人网| 国产视频一区二区在线看| 亚洲人成电影观看| 国产精品久久久久久精品古装| 免费女性裸体啪啪无遮挡网站| 人人妻人人澡人人看| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女 | 法律面前人人平等表现在哪些方面 | 日本av手机在线免费观看| 99久久综合免费| 老司机影院毛片| 色播在线永久视频| 国产免费现黄频在线看| 天天躁日日躁夜夜躁夜夜| 美女脱内裤让男人舔精品视频| 亚洲国产精品成人久久小说| 中亚洲国语对白在线视频| 老司机深夜福利视频在线观看 | 国产一区二区 视频在线| 国产一卡二卡三卡精品| 两个人看的免费小视频| 欧美黑人欧美精品刺激| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久| 久久中文看片网| 我的亚洲天堂| 性高湖久久久久久久久免费观看| 一本综合久久免费| cao死你这个sao货| 亚洲欧美激情在线| 久久精品久久久久久噜噜老黄| 精品亚洲成国产av| 高清在线国产一区| 欧美日本中文国产一区发布| 脱女人内裤的视频| 午夜福利在线免费观看网站| 欧美乱码精品一区二区三区| 不卡一级毛片| 桃红色精品国产亚洲av| 国产欧美日韩一区二区三区在线| 国产区一区二久久| 日本欧美视频一区| 国产精品 欧美亚洲| 亚洲男人天堂网一区| 亚洲精品av麻豆狂野| 一个人免费在线观看的高清视频 | 91字幕亚洲| 777米奇影视久久| 国产一卡二卡三卡精品| 国精品久久久久久国模美| 欧美+亚洲+日韩+国产| 中亚洲国语对白在线视频| 国产一级毛片在线| av片东京热男人的天堂| 国产在线观看jvid| 深夜精品福利| 啦啦啦中文免费视频观看日本| 女人久久www免费人成看片| 在线观看免费高清a一片| 一个人免费在线观看的高清视频 |