• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on EPS application to very wide highway embankments in permafrost regions

    2013-10-09 08:11:52YaHuTianJianHongFangYuPengShen
    Sciences in Cold and Arid Regions 2013年4期

    YaHu Tian , JianHong Fang , YuPeng Shen

    1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

    2. Qinghai Research Institute of Transportation, Xining, Qinghai 810008, China

    1 Introduction

    The construction of highway and railway embankments on permafrost may induce substantial disturbance in the heat and mass transfer balance between the ground surface and atmosphere, which results in more heat absorption in the embankments. This causes the temperature of the underlying permafrost to increase as the permafrost thaws, resulting in serious damage to embankments in the Qinghai-Tibetan Plateau due to thaw settlement. To prevent such damage, many techniques are utilized, such as embankment insulation, sun shields on the embankments, crushed-stone embankments, embankment ventilation pipelines, and installing thermosyphons in the embankments.In recent years these techniques have been developed in China and successfully used on the Qinghai-Tibetan Highway and Railway.

    The G214 highway, currently being built from Gonghe County to Yushu City in Qinghai Province, is the first major highway to be constructed in permafrost regions in the Qinghai-Tibetan Plateau. It is about 435 km long, passing across the frozen soil regions; almost 200 km of it crosses high-temperature, unstable permafrost regions. The width of its embankments is 24 m in some zones. The annual mean temperature of the highway’s asphalt pavement on permafrost is about 6 °C higher than the annual mean air temperature, and about 3.5 °C higher than gravel pavement (Zhu, 1988). As the pavement width increases, the heat absorbed by asphalt pavement greatly increases, causing serious disturbances in the permafrost beneath the embankments and greater settlement of foundations, especially in high-temperature permafrost regions. The stability of very wide highway embankment in permafrost regions will be a new challenge after the construction of Qinghai-Tibetan Railway, because the technical standard of controlling of uneven deformation of pavement is stricter for the G214 highway.

    One effective method for stabilizing the subgrade in permafrost regions is the utilization of thermal insulation material in the subgrade body at certain depths. This approach was first used in roadbed engineering on permafrost in the 1950s in Norway. Since the 1970s, EPS has been used as insulation in embankment engineering in America, Japan, and Canada (Gandahl, 1978; Johnson,1983; Olson, 1984). In China in 1970, a field test was conducted at the Fenghuoshan Experimental Station in Tibet to examine the efficiency of this countermeasure(Zhang and Yao, 1994). In 1992, another experimental section of thermal insulation was built on the Qinghai-Tibetan Highway (Shenget al., 2002). Liu and Tian(2002) and Wenet al.(2005) evaluated the EPS application to embankments of the Qinghai-Tibetan Railway.The results of these researches showed that the insulation functioned effectively.

    The embankments of the G214 highway are being built differently from those on the Qinghai-Tibetan Railway, which has railway ballast on its embankment surfaces, and the Qinghai-Tibetan Highway, which has 8-m-wide embankments. Therefore, these embankment protection techniques may not be indiscriminately applied to the G214 highway. This paper assesses the design data and geologic and climate conditions of the G214 highway in permafrost areas, using two-dimensional finite element analysis of temperature fields for varying widths of highway embankments with insulation under current climate warming conditions. In this simulation study, the heights of the embankments are all 3.65 m and the widths are 12 m, 16 m, 18 m, 20 m,and 24 m. The evolutionary trends of embankment thermal regimes are analyzed and, finally, EPS application in a 24-m-width highway embankment in permafrost regions is evaluated. Our conclusions will hopefully be relevant and useful in the construction of the G214 highway.

    2 Governing equations and finite element formulation

    Assuming that no water infiltrates into the embankment and that water appears in the active layer, the 2-D heat conduction with phase change in the roadbed and base can be described as:

    whereρrefers to soil density,сrefers to specific heat capacity of soil,trefers to time,λrefers to coefficient of heat conductivity, andTrefers to temperature.

    For the problem of heat transfer with phase change in soil, the enthalpy transformation method has been proved to be effective. Enthalpy is the integral of specific heat of soil with respect to temperature:

    Since enthalpy is a smooth function of temperature even in the phase change zone, it is therefore reasonable to interpolate the enthalpy rather than the heat capacity directly. By definition, it is:

    This yields the following equation:

    The physical domain can be divided into elements.By using the Galerkin residual weighted method for Equation(4), the following finite element matrices are obtained:

    where:

    in whichNiandNjrefer to element shape functions.

    3 Computational domain

    Based on the design specifications of the G214 highway and the actual embankment geometries, in our computations the height of embankment was 3.65 m and the slide slope was 1:1.5 (vertical to horizontal). During simulation calculation, five embankment widths were selected: 12 m, 16 m, 18 m, 20 m, and 24 m. The embankment was regarded as infinitely long with a constant cross section; thus, the heat conduction process could be modeled in two dimensions. Figure 1 shows the computational model and its dimensions. Part S1 is sand-gravel,Part S2 is gravel with fine inclusions, Part S3 is meadow soil and subclay, Part S4 is subclay with gravel, and Part S5 is weathered mudstone. The location of the EPS insulation was 1.65 m below the subgrade. The thermal parameters are given in Table 1. Given the symmetry of the left and right boundaries, the right side of the embankment was selected as the computational domain.During the calculation, 11 different cases were simulated,and they are summarized in Table 2.

    The thermal conductivity of EPS is 0.03 W/(m·°C).The specific heat capacity and density are 1,400 J/(kg·°C)and 40 kg/m3, respectively.

    Figure 1 Illustration of computational model

    Table 1 Soil properties

    Table 2 Summary of simulated cases

    4 Boundary and initial conditions

    According to Zang and Wu (1999) and Fu (2011),and referencing Figure 1, the temperatures at the native surfaces AB and EF vary per the following formula:

    The temperatures at the side slopes BC and DE change as follows:

    The temperatures at pavement surface CD change as follows:

    wherethrefers to time (hour).

    The lateral boundaries (AH and FG) are assumed to be adiabatic. The temperature gradient at the bottom boundary HG is 0.03 °C/m.

    5 The influence of width of embankment without insulation

    Initially, the location of the permafrost table was 2.45 m under the natural surface. Based on the calculation results, when the widths of the uninsulated embankments were 12 m and 24 m, the permafrost tables at the center of the embankments were 2.86 m and 3.67 m, respectively, at 10 years after the construction. Their isotherms are shown in Figures 2a and 2b. Figure 2a shows that the maximum thaw depth increases less for the 12-m-wide uninsulated embankment, but the temperature of the permafrost at 4.5-m to 13-m depth beneath the native surface increases obviously and a high-temperature core occurs. Figure 2b shows that the maximum thaw depth increases more for the 24-m-wide uninsulated embankment and the zone of the high-temperature core is larger.These results indicate that for asphalt highway pavement in permafrost regions, the wider the uninsulated embankment is, the more severely the permafrost is disturbed.

    Figure 2 Simulated isotherms of the embankments on October 1, 10 years after the construction(a) width of the embankment = 12 m; (b) width of the embankment = 24 m

    With the passage of time and increased climate warming, at 30 years after construction the maximum thaw depths below the centers of the 12-m-wide and 24-m-wide embankments would increase 1.0 m and 3.5 m, respectively, compared to the depth of the natural permafrost table. Figures 3a and 3b show that the zones of high temperature are increasingly larger. These results indicate that, in permafrost regions, the effect of thermal aggregation on asphalt pavement is more obvious when highway embankments are wider.

    Figure 3 Simulated isotherms of the embankments on October 1, 30 years after the construction(a) width of the embankment = 12 m; (b) width of the embankment = 24 m

    6 The influence of width of embankment with 0.1-m-thick EPS

    Figure 4 shows the predicted maximum thaw depths for 12-m-, 16-m-, 18-m-, 20-m-, and 24-m-wide embankments with 0.1-m-thick EPS over 30 years. It can be seen that when the width of embankment with 0.1-m-thick EPS is less than 20 m, the permafrost tables below the center of the embankments all are uplifted to different extents 10 years after the construction. After that, the maximum thaw depth begins to increase gradually. When the widths of embankments are 12 m, 16 m,18 m, 20 m, and 24 m, the permafrost tables below the center of embankment are 1.60 m, 2.49 m, 3.06 m, 3.76 m, and 5.40 m, respectively, under the natural surface 30 years after the construction. This is because there is heat accumulation under the insulation, which may cause the permafrost temperature to increase. Consequently, in permafrost regions, the wider a highway embankment is,the poorer the insulation efficiency is. When the width of an embankment is more than 16 m, 0.1-m-thick EPS might not maintain the stability of the highway.

    Figure 4 The predicted maximum thawing depth below the center of embankments with 0.1-m-thick EPS

    7 The influence of the insulation layer thickness

    Figure 5 shows the predicted maximum thaw depths for 24-m-wide embankments with different thicknesses of EPS: the maximum thaw depth decreases in increments as the thickness of the insulation increases. When the thicknesses of insulation are 0.1 m, 0.15 m, 0.2 m,0.25 m and 0.3 m, the permafrost tables below the center of embankment are 5.40 m, 4.26 m, 3.31 m, 2.74 m and 2.10 m, respectively, under the natural surface 30 years after the construction. This demonstrates that the insulation should be more than 25 cm thick in order to maintain the stability of a 24-m-wide embankment. However,consideration of other factors such as the structural rationality of the embankment and high engineering costs;it might not be feasible to install EPS insulation in 24-m-wide embankments of the G214 highway in permafrost regions.

    8 Conclusions

    Based on the numerical results and analysis, we can conclude:

    1) The effect of thermal aggregation on asphalt pavement in permafrost regions is more obvious when a highway embankment is wider, which may cause the permafrost table to decline severely.

    2) The wider the embankment of a highway is, the thicker is the insulation necessary to maintain the embankment stability in permafrost regions. On the G214 highway, the insulation thickness should be more than 25 cm for 24-m-wide embankments. However, considering other factors such as the structural rationality of the embankments and high engineering costs, it might not be feasible to install EPS insulation in 24-m-wide embankments of the G214 highway in permafrost regions when the height of the embankments is less than 3.65 m.

    Figure 5 The predicted maximum thawing depth below the centers of 24-m-wide embankments insulated with EPS

    The authors wish to acknowledge the support provided by the Fundamental Research Funds for the Central Universities (No. 2011JBZ009), the National Natural Science Foundation of China (No. 41271072 and No.41171064), and the Open Fund of the Qinghai Research Institute of Transportation (No. 20121208).

    Fu J, 2011. Study of design methods on special subgrade of expressway for permafrost regions in G214 highway. Master’s Thesis of School of Highway, Chang’an University, Xi’an, China.

    Gandahl R, 1978. Some aspects of the design of roads with boards of plastic foam. Proceedings of 3rd International Conference on Permafrost, National Research Council of Canada, Edmonton, Canada,pp. 791–797.

    Johnson GH, 1983. Performance of an insulated roadway on permafrost. Proceedings of the 4th International Conference on Permafrost. USA CRREL, Fairbanks, Alaska, pp. 548–553.

    Liu JK, Tian YH, 2002. Numerical studies for the thermal regime of a roadbed with insulation on permafrost. Cold Regions Science and Technology, 35: 1–13.

    Olson ME, 1984. Synthetic insulation in arctic roadway embankment.Proceedings of the 3rd International Cold Regions Engineering Specialty Conference. Canadian Society of Civil Engineering,Montréal, Canada, pp. 739–752.

    Sheng Y, Zhang LX, Yang CS, Fang JH, 2002. Application of thermal-insulation treatment to roadbed engineering in permafrost regions. Journal of Glaciology and Geocryology, 24(5): 618–622.

    Wen Z, Sheng Y, Ma W, Qi JL, 2005. Evaluation of EPS application to embankment of Qinghai-Tibetan Railway. Cold Regions Science and Technology, 41: 235–247.

    Zang EM, Wu ZW, 1999. The Degradation of Permafrost and Highway Engineering. Lanzhou University Press, Lanzhou, China.

    Zhang JZ, Yao C, 1994. Applications of the industrial insulation material in roadbed engineering on permafrost. Proceedings of the 1st Conference of Young Researchers in Cold Region Environment and Engineering. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou,China, pp. 78–83.

    Zhu LN, 1988. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 10(1): 8–14.

    久久人人爽人人片av| 我的女老师完整版在线观看| 九九久久精品国产亚洲av麻豆| 亚洲综合色惰| 国产亚洲5aaaaa淫片| 菩萨蛮人人尽说江南好唐韦庄| 99热网站在线观看| 九色成人免费人妻av| 大码成人一级视频| 久久ye,这里只有精品| 国产视频首页在线观看| 色视频在线一区二区三区| a级毛片免费高清观看在线播放| 国产亚洲91精品色在线| 最近最新中文字幕免费大全7| 精品人妻视频免费看| 99久久中文字幕三级久久日本| 精品久久久久久久久av| 青春草亚洲视频在线观看| 嫩草影院入口| 久久久久精品性色| videos熟女内射| 人妻 亚洲 视频| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 插逼视频在线观看| 两个人的视频大全免费| 亚洲精品自拍成人| 久久国产乱子免费精品| 亚洲第一区二区三区不卡| 国产精品福利在线免费观看| 街头女战士在线观看网站| 精品一区二区免费观看| 99久久精品热视频| 亚洲av福利一区| 欧美性感艳星| 国产精品久久久久久久久免| videossex国产| 国产精品熟女久久久久浪| 亚洲精品第二区| 久久精品国产亚洲网站| 老熟女久久久| 久久这里有精品视频免费| 久久精品国产亚洲av涩爱| 天堂中文最新版在线下载| 一级毛片黄色毛片免费观看视频| 只有这里有精品99| 亚洲天堂av无毛| av在线观看视频网站免费| 男人舔奶头视频| 少妇被粗大猛烈的视频| 亚洲精品久久久久久婷婷小说| 少妇人妻 视频| 亚洲自偷自拍三级| 一级二级三级毛片免费看| 天堂8中文在线网| 91在线精品国自产拍蜜月| 亚洲精品国产av成人精品| 亚洲精品第二区| 日本黄色片子视频| 在线观看人妻少妇| 伦理电影大哥的女人| 中文字幕av成人在线电影| 91aial.com中文字幕在线观看| 亚洲美女黄色视频免费看| 视频区图区小说| 多毛熟女@视频| 国产成人免费无遮挡视频| 成人18禁高潮啪啪吃奶动态图 | 久久99热这里只有精品18| 少妇人妻久久综合中文| 色吧在线观看| 又粗又硬又长又爽又黄的视频| 久久ye,这里只有精品| 精品一区二区三区视频在线| 国产精品伦人一区二区| 久久久a久久爽久久v久久| 日韩视频在线欧美| 伦理电影大哥的女人| 国产黄频视频在线观看| 亚洲av.av天堂| 夫妻午夜视频| 国产av国产精品国产| 水蜜桃什么品种好| 国产爽快片一区二区三区| 美女中出高潮动态图| 亚洲最大成人中文| 制服丝袜香蕉在线| 久久精品人妻少妇| 搡女人真爽免费视频火全软件| 国产亚洲欧美精品永久| 91在线精品国自产拍蜜月| av不卡在线播放| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 亚洲av不卡在线观看| 大香蕉久久网| 午夜激情久久久久久久| 国产精品一区www在线观看| 国产av一区二区精品久久 | 美女内射精品一级片tv| 亚洲第一av免费看| 在线观看免费日韩欧美大片 | 多毛熟女@视频| 日韩一区二区三区影片| 国产精品一区二区在线观看99| 99热网站在线观看| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添av毛片| 99久久精品热视频| 乱系列少妇在线播放| 少妇的逼水好多| 中文欧美无线码| 亚洲色图综合在线观看| 在线观看人妻少妇| 亚洲av中文av极速乱| 色视频在线一区二区三区| 精品99又大又爽又粗少妇毛片| 99精国产麻豆久久婷婷| 欧美另类一区| 欧美 日韩 精品 国产| 亚洲成色77777| 各种免费的搞黄视频| 下体分泌物呈黄色| 国产欧美亚洲国产| 日日撸夜夜添| 建设人人有责人人尽责人人享有的 | 国产毛片在线视频| 国产精品一及| 最近2019中文字幕mv第一页| 日韩国内少妇激情av| 精品久久久久久电影网| 乱系列少妇在线播放| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 亚洲国产色片| 黄色配什么色好看| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 久久久久久久久久人人人人人人| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看| 人妻少妇偷人精品九色| 国产在线免费精品| 麻豆国产97在线/欧美| 成年免费大片在线观看| 欧美日韩一区二区视频在线观看视频在线| 欧美一区二区亚洲| 97在线人人人人妻| 欧美亚洲 丝袜 人妻 在线| 亚洲aⅴ乱码一区二区在线播放| 中文字幕人妻熟人妻熟丝袜美| 1000部很黄的大片| 啦啦啦视频在线资源免费观看| 老女人水多毛片| 久久精品国产a三级三级三级| 国产免费福利视频在线观看| 日本av手机在线免费观看| 欧美成人午夜免费资源| 免费观看在线日韩| 黄色怎么调成土黄色| av黄色大香蕉| 国产一区二区三区av在线| 成人无遮挡网站| 久久婷婷青草| 菩萨蛮人人尽说江南好唐韦庄| a 毛片基地| 不卡视频在线观看欧美| 精品久久国产蜜桃| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 男女免费视频国产| 午夜福利视频精品| 午夜免费男女啪啪视频观看| 亚洲综合色惰| 男人狂女人下面高潮的视频| 边亲边吃奶的免费视频| 精品久久久久久久末码| 久久久精品免费免费高清| 少妇人妻一区二区三区视频| 色婷婷久久久亚洲欧美| 国产成人精品福利久久| 一级a做视频免费观看| 国产v大片淫在线免费观看| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 国产免费又黄又爽又色| 亚洲美女视频黄频| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 欧美少妇被猛烈插入视频| 中文字幕免费在线视频6| 男女免费视频国产| 久久6这里有精品| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 97热精品久久久久久| 国产精品国产av在线观看| 久久久久精品久久久久真实原创| 国产精品国产三级国产专区5o| 国产精品一区二区在线观看99| 97在线视频观看| 国产爽快片一区二区三区| 久久久久久九九精品二区国产| 久久 成人 亚洲| 精品视频人人做人人爽| 久久久久久伊人网av| 在线免费观看不下载黄p国产| 女人久久www免费人成看片| 国产男女内射视频| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 午夜福利视频精品| 99re6热这里在线精品视频| 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 成人黄色视频免费在线看| 国内精品宾馆在线| 国产精品.久久久| 免费av中文字幕在线| 国产久久久一区二区三区| 久久久午夜欧美精品| 国模一区二区三区四区视频| 在线播放无遮挡| 97超视频在线观看视频| 国产久久久一区二区三区| 久久久午夜欧美精品| 日韩免费高清中文字幕av| 欧美激情国产日韩精品一区| 久久久精品94久久精品| 国产免费又黄又爽又色| 一级毛片 在线播放| 久久精品久久久久久久性| 亚洲欧美精品自产自拍| 97热精品久久久久久| 国产伦在线观看视频一区| 亚洲av福利一区| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 国模一区二区三区四区视频| 女人久久www免费人成看片| 91久久精品国产一区二区三区| 国产日韩欧美亚洲二区| 日韩精品有码人妻一区| 日本黄色片子视频| 中文天堂在线官网| 春色校园在线视频观看| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 久久久欧美国产精品| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 视频区图区小说| 国产精品国产三级国产专区5o| 永久网站在线| 18禁裸乳无遮挡免费网站照片| 日韩,欧美,国产一区二区三区| 有码 亚洲区| 新久久久久国产一级毛片| 深夜a级毛片| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 免费大片黄手机在线观看| 多毛熟女@视频| 免费黄频网站在线观看国产| 久久久久久久久大av| 免费看av在线观看网站| 免费人妻精品一区二区三区视频| 51国产日韩欧美| av.在线天堂| 在线观看免费高清a一片| 亚洲无线观看免费| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 九九久久精品国产亚洲av麻豆| 国产无遮挡羞羞视频在线观看| 中文天堂在线官网| 麻豆成人午夜福利视频| 成人亚洲欧美一区二区av| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 久久人人爽人人爽人人片va| 国产高清三级在线| www.色视频.com| 如何舔出高潮| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 男的添女的下面高潮视频| 亚洲国产最新在线播放| .国产精品久久| 天美传媒精品一区二区| 99re6热这里在线精品视频| 精品一区在线观看国产| 国产av一区二区精品久久 | 国产深夜福利视频在线观看| 成人国产麻豆网| 免费看av在线观看网站| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 国产爱豆传媒在线观看| videossex国产| 大香蕉久久网| 综合色丁香网| 中文资源天堂在线| 一级a做视频免费观看| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 超碰97精品在线观看| 亚洲精品久久久久久婷婷小说| 国产 精品1| 寂寞人妻少妇视频99o| 日韩欧美精品免费久久| 国产精品一区二区在线观看99| 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 国产亚洲最大av| 一级毛片aaaaaa免费看小| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 91久久精品国产一区二区三区| 亚洲丝袜综合中文字幕| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 中文字幕久久专区| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 黑人猛操日本美女一级片| 大又大粗又爽又黄少妇毛片口| 十分钟在线观看高清视频www | 日韩视频在线欧美| 日日撸夜夜添| 亚洲av成人精品一区久久| av免费在线看不卡| 国产精品麻豆人妻色哟哟久久| 国产精品一及| 亚洲第一av免费看| 国产精品免费大片| 国产又色又爽无遮挡免| 噜噜噜噜噜久久久久久91| 国产在线男女| 亚洲精品国产色婷婷电影| 国产在线男女| 18禁在线播放成人免费| 欧美+日韩+精品| 中国国产av一级| 在线播放无遮挡| 久久久久人妻精品一区果冻| 久久av网站| 深爱激情五月婷婷| 在线精品无人区一区二区三 | 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| 亚洲经典国产精华液单| 成人无遮挡网站| 色网站视频免费| 18禁裸乳无遮挡免费网站照片| 最近中文字幕2019免费版| 能在线免费看毛片的网站| 黑丝袜美女国产一区| 丰满少妇做爰视频| 天堂中文最新版在线下载| 男人和女人高潮做爰伦理| 亚洲av日韩在线播放| 久久久色成人| 亚洲激情五月婷婷啪啪| 美女高潮的动态| 国产 一区精品| 婷婷色av中文字幕| 男女下面进入的视频免费午夜| 纯流量卡能插随身wifi吗| 在线观看一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 激情 狠狠 欧美| 亚洲无线观看免费| 免费观看无遮挡的男女| 波野结衣二区三区在线| 夜夜骑夜夜射夜夜干| 国产成人精品久久久久久| 日韩亚洲欧美综合| 亚洲一区二区三区欧美精品| 免费看av在线观看网站| 日韩精品有码人妻一区| 久久精品国产a三级三级三级| 亚洲av.av天堂| av在线老鸭窝| 欧美国产精品一级二级三级 | 国产精品福利在线免费观看| 中文字幕制服av| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| 少妇人妻久久综合中文| 国产色婷婷99| 舔av片在线| 十八禁网站网址无遮挡 | 狠狠精品人妻久久久久久综合| 国产精品av视频在线免费观看| 国产精品蜜桃在线观看| 99久久精品热视频| 国产色婷婷99| 我要看日韩黄色一级片| 免费看光身美女| 欧美成人a在线观看| 国产精品一区二区在线观看99| 亚洲综合精品二区| 身体一侧抽搐| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 中文字幕制服av| 久久99热这里只有精品18| 一个人免费看片子| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 色视频在线一区二区三区| 亚洲中文av在线| 午夜老司机福利剧场| 制服丝袜香蕉在线| 麻豆乱淫一区二区| 美女主播在线视频| 观看免费一级毛片| 激情五月婷婷亚洲| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人| 亚洲经典国产精华液单| 老司机影院成人| 国产乱人视频| 亚洲成人一二三区av| 日韩不卡一区二区三区视频在线| 免费少妇av软件| 黑人猛操日本美女一级片| 国产伦在线观看视频一区| 一二三四中文在线观看免费高清| 一级毛片黄色毛片免费观看视频| 最近2019中文字幕mv第一页| av免费观看日本| 国产在线一区二区三区精| 精品午夜福利在线看| 80岁老熟妇乱子伦牲交| 色视频在线一区二区三区| 久久女婷五月综合色啪小说| 亚洲国产精品成人久久小说| av播播在线观看一区| 久久久久久久大尺度免费视频| 日日撸夜夜添| av视频免费观看在线观看| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说 | 国产在视频线精品| 亚洲精品视频女| 国产v大片淫在线免费观看| 99热网站在线观看| 国产在线男女| 国产免费视频播放在线视频| av在线蜜桃| 色视频www国产| 国产伦精品一区二区三区视频9| 日韩 亚洲 欧美在线| 日韩中文字幕视频在线看片 | 国产免费一级a男人的天堂| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 国模一区二区三区四区视频| 黄色一级大片看看| 青青草视频在线视频观看| 熟女av电影| 久久综合国产亚洲精品| 午夜免费男女啪啪视频观看| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 国产免费视频播放在线视频| 国产高清不卡午夜福利| av卡一久久| 欧美日韩综合久久久久久| 久久午夜福利片| 大陆偷拍与自拍| 毛片女人毛片| 我的老师免费观看完整版| 亚洲国产色片| 亚洲精品乱码久久久久久按摩| 午夜激情福利司机影院| 伦理电影大哥的女人| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 色哟哟·www| 人妻 亚洲 视频| 欧美少妇被猛烈插入视频| av.在线天堂| 午夜福利视频精品| 成人亚洲精品一区在线观看 | 特大巨黑吊av在线直播| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 哪个播放器可以免费观看大片| 超碰97精品在线观看| 自拍偷自拍亚洲精品老妇| 欧美丝袜亚洲另类| 亚洲精品亚洲一区二区| 久久精品夜色国产| 男人舔奶头视频| 国产精品一二三区在线看| 久久99精品国语久久久| 国产精品国产三级国产专区5o| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| 深夜a级毛片| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 亚洲美女搞黄在线观看| 99久久精品热视频| videos熟女内射| xxx大片免费视频| 久久久精品免费免费高清| av一本久久久久| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲午夜精品一区二区久久| 成年女人在线观看亚洲视频| 色哟哟·www| 另类亚洲欧美激情| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 国产av国产精品国产| 久久久久久久久久久免费av| 大片免费播放器 马上看| 久久人妻熟女aⅴ| 丝袜脚勾引网站| 91午夜精品亚洲一区二区三区| 人妻系列 视频| 国产精品成人在线| 国产乱来视频区| 深夜a级毛片| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| 99久久精品一区二区三区| 青春草亚洲视频在线观看| 一个人看视频在线观看www免费| 在线观看国产h片| 国产成人一区二区在线| 国精品久久久久久国模美| 亚洲经典国产精华液单| 国产在视频线精品| 欧美精品一区二区大全| 国产中年淑女户外野战色| 久久国产乱子免费精品| 成年av动漫网址| 97超视频在线观看视频| 久久婷婷青草| 99九九线精品视频在线观看视频| 久久鲁丝午夜福利片| 欧美xxxx黑人xx丫x性爽| 制服丝袜香蕉在线| 少妇人妻精品综合一区二区| 国产一区二区三区av在线| 欧美高清性xxxxhd video| 各种免费的搞黄视频| 午夜视频国产福利| 午夜免费鲁丝| 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 永久免费av网站大全| 国产亚洲一区二区精品| 亚洲美女视频黄频| 精品久久久噜噜| 夫妻午夜视频| 亚洲国产日韩一区二区| 夜夜骑夜夜射夜夜干| 久久精品人妻少妇| 欧美极品一区二区三区四区| 大码成人一级视频| 91狼人影院| 欧美xxxx黑人xx丫x性爽| 永久免费av网站大全| 国产精品伦人一区二区| 亚洲av男天堂| 久热这里只有精品99| 一区二区三区四区激情视频| 亚洲国产高清在线一区二区三| 久久久久国产精品人妻一区二区| 欧美日韩精品成人综合77777| 精品99又大又爽又粗少妇毛片| 爱豆传媒免费全集在线观看| 国产精品人妻久久久久久| 亚洲av电影在线观看一区二区三区| 色5月婷婷丁香| av国产久精品久网站免费入址| 在线看a的网站| 久久99热6这里只有精品| 日本wwww免费看| 国产淫语在线视频| 免费av中文字幕在线| 国产在线视频一区二区| 丰满少妇做爰视频| 亚洲激情五月婷婷啪啪| 中文字幕制服av| 午夜福利网站1000一区二区三区| 久久国内精品自在自线图片| 亚洲av国产av综合av卡| 蜜桃久久精品国产亚洲av|