• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of Tungsten Oxide Nanostructures

    2013-09-29 02:23:52QINYuXiangBAOZhiYingHUMingSUNPengSchoolofElectronicsandInformationEngineeringTianjinUniversityTianjin300072
    關(guān)鍵詞:熱法氣敏納米線

    QIN Yu-Xiang BAO Zhi-Ying HU Ming SUN Peng(School of Electronics and Information Engineering,Tianjin University,Tianjin 300072)

    Synthesis and Characterization of Tungsten Oxide Nanostructures

    QIN Yu-Xiang*BAO Zhi-Ying HU Ming SUN Peng
    (School of Electronics and Information Engineering,Tianjin University,Tianjin 300072)

    One-and two-dimensional tungsten oxide nanostructures were synthesized by solvothermal method using tungsten hexachloride (WCl6)as the precursor.The effects of the solvent and the concentration of WCl6on the phase and the morphology of the as-synthesized tungsten oxide nanostructures were investigated and the NO2-sensing properties were evaluated.X-ray diffraction,field emission scanning electron microscope,transmission electron microscope,X-ray photoelectron spectroscopy were employed to characterize the as-synthesized products and the results indicate that the W18O49nanorod,W18O49nanowire and WO3nanosheet with monoclinic structure can be formed by adjusting the solvent and WCl6concentration.The NO2-sensing properties measurements show that the synthesized tungsten oxides have reversible response to NO2at different concentrations.In comparison with WO3nanosheet or W18O49nanorod,the W18O49nanowire exhibits much higher response to NO2gas.

    tungsten oxide;nanostructure;solvothermal method;gas sensitive properties

    Tungsten oxide is a versatile wide band gap semiconductor material,and it has wide applications in gas sensors[1-2],electrochromic devices[3]and photocatalysts[4].Especially,tungsten oxide has been found to be a promising material for detection of toxic gases such as NOx,H2S,Cl2,NH3[5-6].The gas sensing mechanism of oxide semiconductors lies in the fact that the electrical resistance of the materials will be changed when they are exposed to the gases.Consequently,the sensing response of oxides is highly dependent on their surface structure and morphology.A lot of sensing tests for tungsten oxide polycrystalline thin films indicate that the sensing response steeply increases when the grain size decreases.Recently,tungstennanostructuressuch asnanowires,nanobeltsand nanorods have been evaluated as ideal candidates for gas sensing applications due to their larger specific surface area and smaller dimensions compared to the Debye length[7-8].Typically,tungsten oxide nanostructures can be fabricated by various growth techniques[9-11].One interesting technique is solvothermal method featuring in simple operation and low cost.In this work,differenttungsten oxide nanostructures including nanorod,nanowire and nanosheet were synthesized by solvothermal method.The phase and morphology of the as-synthesized tungsten oxide nanostructures were characterized and the sensing properties of the material to NO2gas were also evaluated.

    1 Experimental

    1.1 Synthesis and characterization of tungsten oxide nanostructures

    Tungsten oxide nanostructureswith different morphologies were synthesized by solvothermal method with tungsten hexachloride(WCl6)as the precursor and cyclohexanol or 1-propanol as the solvent.First,a pre-determined amount of WCl6was dissolved in 2~4 mL ethanol to form a solution.Then,cyclohexanol or 1-propanol was added to the solution which was subsequently transferred to and sealed in a 100 mL Teflon-lined stainless steel autoclave.The concentration of WCl6in the solvent of cyclohexanol or 1-propanol varied from 0.003 mol·L-1to 0.02 mol·L-1.The solvothermal reaction was conducted at 200℃for 6~9 h in an electric oven.After that,the autoclave was cooled naturally to room temperature.The final products were centrifuged and washed sequentially by deionized water and ethanol several times,and the obtained powder was dried at 70 ℃ for 6 h in air.

    The crystalline phases of the tungsten oxides were analyzed using a RIGAKU D/MAX 2500V/PC X-ray diffractometer(XRD)fitted with a curved graphite diffracted-beam monochromator and 0.15 mm receiving slit and scintillation counter as the detector.The 2θ investigation region was in the range of 10°~80°with a step of 0.02°and a scanning speed of 4°·min-1.Cu Kα1(λ=0.154 06 nm)radiation was obtained after Kα1stripping from a Cu X-ray target operated at 40 kV and 200 mA.The morphology and crystalline structure were observed by a FEI Nanosem 430 field emission scanning electron microscope(FESEM)at an accelerating voltage of 10 or 15 kV and a TECNAI G2F-20 field emission transmission electron microscope (FETEM)operated at 300 kV of accelerated voltage.The chemical state of the tungsten oxide nanostructures was studied by X-ray photoelectron spectroscopy (XPS)using PERKIN ELEMER PHI-1600 ESCA with Mg Kα source and a charge neutralizer.X-ray irradiation was generated under 250 W.All the binding energies were corrected for charging effect by calibration on the graphite C1s peak at 284.6 eV.

    1.2 NO2-sensing properties test

    Gas sensors were fabricated by pouring a few drops of tungsten oxide powder-suspended ethanol onto the cleaned alumina substrates attached with a pair of interdigitated Pt electrodes with a thickness of 100 nm.The electrodes were deposited by using RF magnetron sputtering method,and the dropping suspension was prepared by ultrasonically dispersing tungsten oxide powders in ethanol for 30 min.The coated film was dried in air for 10 min.The above drop-coating process was repeated for 3 times to achieve the desired film thickness.Finally,the resulted films were heated in air using an infra-red dryer for 1 h,to evaporate the solvents residues in the coating layers.

    The NO2gas sensing measurements were carried out in a computer-controlled gas sensing characterization system.The sensors were placed on the heating plate fixed in test chamber,and the operating temperature of the sensors was achieved by adjusting the temperature controller of the heat plate.The pure NO2gas was injected into the chamber directly to get the desired concentration.A professional digital multimeter with the function of measuring range automatic adjustment was used for continuously monitoring the resistance change of the sensors during the whole measurement process and the sampling interval was set to 1s.The gas response was defined as(Rg-R0)/R0,where Rgand R0are the resistance of a sensitive filmin a measuring gas and that in clean air,respectively.

    2 Results and discussion

    2.1 Effect of WCl6concentration on morphologies of tungsten oxide

    The morphologies of tungsten oxide nanostructures synthesized at different WCl6concentrations in 1-propanol are shown in Fig.1(a)~(d).The solvothermal reaction temperature and reaction time were maintained constant at 200 ℃ and 9 h,respectively.It can be seen from Fig.1(a),the product synthesized at a concentration of 0.003 mol·L-1exhibits ultrathin nanowire structure with diameters of several ten nanometers and lengths up to several micrometers.Further TEM investigation can identify the bundled feature,giving evidence that several nanowires with diameters of 5~10 nm assembled along their main growth direction and formed a bundled structure,as shown in the inset in Fig.1(a).This bundle structure is often formed in 1-D nanostructured materials to minimize the surface energy of the system and the lateral capillary force may act as the driving force for the nanorod assembly along the axis direction[12-13].Increasing WCl6concentration to 0.01 mol·L-1,it is obvious from Fig.2 (b)that the nanowire bundles become thicker,indicating that a possible agglomeration between the adjacent nanowires or nanowire bundles has occurred.The estimated bundle diameter is 40~60 nm.The inset TEM image in Fig.1(a)shows that each nanowire in the bundles is with a diameter of about 10 nm.

    Fig.1 SEM images of tungsten oxide nanostructures synthesize in 1-propanol at different WCl6concentration

    When the concentration increases to 0.015 mol·L-1,apparent evolution in the morphology can be observed.As shown in Fig.1(c),the product synthesized at 0.015 mol·L-1is a mixture structure of nanowires and nanosheets.Up to a much higher WCl6concentration of 0.02 mol·L-1,a pure nanosheets structure with thicknesses of 10~30 nm is obtained (Fig.1(d)).From these results,it can be speculated that the WCl6concentration has a great effect on the specific morphologies of tungsten oxide nanostructures synthesized by solvothermal method.This is in agreement with the previous report[14].Low solution concentration contributestothelowersupersaturation oftungsten source,promoting the growth oftungsten oxide nanowires[15].At higher concentration,the highly saturated WCl6could prohibit the growth of tungsten oxide nanowires along the main growth direction.

    2.2 Effect of solvent on morphologies of tungsten oxide

    Fig.2(a)and(c)respectively show the morphologies of tungsten oxide nanostructures synthesized in the solvents of 1-propanol and cyclohexanol with a constant WCl6concentration of 0.005 mol·L-1.The solvothermal reaction in cyclohexanol and 1-propanol were conducted at 200℃for 6 h and 9 h,respectively,because there was no any precipitates obtained in 1-propanol when reacting for 6 h.The SEM image shown in Fig.2(a)exhibits that the product obtained in cyclohexanol is mainly composed of short nanorods with diameter of 30~40 nm and length of 300~400 nm.Several thinner nanorods assemble together along the axis direction and form nanorod bundles.Fig.2(b)shows the TEM image of one nanorod bundle.The stacked bundles shown in Fig.2(b)can be as-cribed to physical agglomeration,which can be easily dispersed by ultrasonic vibration.When substituting 1-propanol with cyclohexanol,the nanowire bundles exhibiting thin and long features are obtained,as shown in Fig.2(c).

    Fig.2 (a)SEM and(b)TEM images of the tungsten oxide synthesized in cyclohexanol;(c)SEM image of the tungsten oxide synthesized in 1-propanol

    2.3 Structure characterization of tungsten oxide nanostructures

    XRD results are show in Fig.3.As shown in Fig.3(a)and(b),the XRD patterns for the bundled tungsten oxide nanorods and nanowires synthesized by solvothermal method are very similar as evidence of the comparability of diffraction peaks in 2θ position and intensity.The main two diffraction peaks of both products can be well indexed to the monoclinic phase of W18O49with lattice parameters of a=1.832 nm,b=0.379 nm,c=1.404 nm and β =115.04°(PDF No.65-1291).It is also observed that there are no other impurity phase peaks.The strongest peak intensity of(010)plane indicates that the growth is preferentially along the b-axis,i.e.the [010]direction.In the present experiments,the monoclinic W18O49structures obtained in the solvent of cyclohexanol and 1-propanol are identical,which can be seen from the same diffraction peaks of monoclinic W18O49in Fig.3.The formation oftheseone-dimensionalnanostructures arises from the anisotropic properties of monoclinic W18O49crystals[16].The XRD pattern of the tungsten oxide nanosheet shown in Fig.3(c)corresponds to the monoclinic structure of WO3with lattice of a=0.729 7 nm,b=0.753 9 nm,c=0.768 8 nm and β=90.91°(PDF No.43-1035).From thisXRD pattern,thetwo strongest diffraction peaks appear at 2θ=23.58°and 2θ=24.34°corresponding to(020)and(200)facets and the peak intensity of the (002)reflection is much weaker,which implies that the nanosheets grow along the[010]and[100]crystallographic direction and are enclosed by ±(001)facets.

    Fig.3 XRD patterns of the as-synthesized tungsten oxide nanostructures

    Fig.4(a)~(c)show the high resolution(HR)TEM images of the nanorod,nanowire and nanosheet.Here,the lattice spacings for nanorod and nanowire are 0.378 nm and 0.380 nm,respectively,corresponding to (010)plane of monoclinic W18O49according to PDF No.65-1291.This result indicates that the as-synthesized one-dimensional nanostructures all consist of monoclinic W18O49and the dominant growth direction is along the b-axis direction.The HRTEM of tungsten oxide nanosheet indicates that the crystal plane distances are about 0.363 nm and 0.378 nm,almost equal to the crystal plane distance of monoclinic WO3(200)and (020)planes,respectively.The results shown in Fig.4 are in agreement with the ones from XRD characterization(Fig.3).

    XPS spectra are shown in Fig.5,which highlights the survey and the high-resolution spectra of W4fpeaks.Tungsten is identified in the survey spectrum(Fig.5(a))by the presence of the W4f,W4d,and W4p transitions.Also labeled are the OKLL and O1s features and the C1s line probably coming from the surface contamination during the annealing treatment.Fig.5(b)shows the high-resolution spectra of the W4f region,which contains the W4f7/2and W4f5/2peaks with binding energies of 35.2/35.2/35.7 eV and 37.2/37.2/37.8 eV for nanorod/nanowire/nanosheet,respectively.It is well established that the fully oxidized tungsten oxide (WO3)has the doublet due to W4f7/2at 35.8 eV and W4f5/2at 38 eV,which represents the W6+[17].In Fig.5(b),the position shift of the peaks corresponding to W4f7/2and W4f5/2indicates that there are some oxygen vacancies existing in three tungsten oxide nanostructures.The larger peaks shift of tungsten oxide nanorod and nanowire implies much more oxygen vacancies.Because the electron density in semiconductors depends on the density of oxygen vacancies,the vacancies play a significant role in the gas detection mechanism for the oxide semiconductors[18],and the existence of oxygen vacancies is much beneficial to the gas-sensing application of this kind of materials.From Fig.5(b),it also can be seen that,for the nanorods and nanowires,the binding energies for the peaks of W4f7/2and W4f5/2are the same,which suggests the same W valence state.This result is consistent with the one of XRD measurements that the nanorod and nanowire has the same crystalline structure of monoclinic W18O49.

    Fig.4 HR-TEM images of as-synthesized(a)nanowire,(b)nanorod and(c)nanosheet

    Fig.5 XPS spectra of tungsten oxide nanorod,nanowire and nanosheet

    2.4 Gas sensing properties

    The gas-sensing properties of the as-synthesized tungsten oxide nanostructures were evaluated upon exposure to NO2gas.Fig.6 shows the dynamic responses of tungsten oxide nanorod,nanowire and nanosheet to NO2gas at an operating temperature of 200℃.As shown in the figure,the measured resistances increase upon exposure to NO2gas.This result is expected because the oxidizing analyte NO2withdraws electrons from the n-type tungsten oxide surface and induces the formation of electron-depleted space-charge layers[19].Notably,the resistances could almost recover to its initial value after NO2removal,indicating a good reversibility of these nanostructure materials.Fig.7 shows the effect of NO2concentration in the range of 1~20 μL·L-1on the responses of tungsten oxide nanostructures at 200℃.From the figure,the W18O49nanowire shows the highest response at different NO2concentrations,while the lowest response is obtained from the W18O49nanorod.The response values of the W18O49nanowires upon exposure to 1,5,10 and 20 μL·L-1NO2are 13.4,123.6,203.4 and 332.3,while those of the WO3nanorod are 6.9,49.7,89.1 and 152.8,respectively.

    Fig.6 Dynamic response of tungsten oxide nanostructure to varying NO2concentration at an operating temperature of 200℃

    Fig.7 NO2gas response of tungsten oxide nanostructures as a function of NO2concentration at an operating temperature of 200℃

    Tungsten oxide is a typical n-type semiconductor,and its gas-sensing mechanism belongs to the surfacecontrolled type,i.e.the change in resistance of tungsten oxide is primarily caused by the adsorption and desorption of the gas molecules on the surface of the sensing film[20-21].Atmospheric oxygen absorbed on the oxide surface captures electrons from the conduction band of tungsten oxide and forms chemisorbed O-,O2-and O2-,creating a thin electron-depleted space-charge layer at the surface of the oxide.When the tungsten oxide is exposed to the oxidizing NO2,the gas molecules can be directly adsorbed onto the surface by extracting electrons from the conduction band(Eq.(1)and(2))or they can interact with the chemisorbed oxygen on the surface(Eq.(3)and(4))[22-23]:

    These reactions consume further electrons in the conduction band of tungsten oxide,leading to an increase of the electron-depleted layer and the height of the Schottky barrier,which then leads to the increase in the resistance.Therefore,large specific surface area is beneficial to achieving a high gas response.In our experiments,Brunauer-Emmett-Teller(BET)gas-sorption measurements were employed to evaluate the specific surface area of the as-synthesized tungsten oxide nanostructures by using Quantachrome NOVA automated gas sorption system.The measurements results show that the W18O49nanowires have much larger specific surface area (90 m2·g-1)than the WO3nanosheets(47 m2·g-1)or W18O49nanorods(69 m2·g-1).The larger surface area can provide more adsorptiondesorption sites and a larger amount of surface adsorbed oxygen species interacting with detected gas molecules.Thus,W18O49nanowires with higher specific surface area can show much larger change in resistance upon exposure to NO2than the WO3nanosheets or W18O49nanorod with lower specific surface area.Another important factor for high response of W18O49nanowire is its non-stoichiometric crystal structure[24].There exist much more oxygen vacancies in the crystal structure of non-stoichiometric W18O49than fully oxidized WO3[17],as indicated from the XPS results in Fig.5.The large amounts of oxygen vacanciescan serve as adsorption sites of gas molecular and effect on the electron density in oxide,which is beneficial to achieving much higher gas response[18,25].Above analysis can explain why the W18O49nanowires exhibit higher response than the WO3nanosheets or W18O49nanorod.However,as shown in Fig.7,the non-stoichiometric W18O49nanorod with higher specific surface area shows lower NO2response than the stoichiometric WO3nanosheet with lower specific surface area.This result can be explained from their different microstructure.Comparing the SEM images of WO3nanosheet and W18O49nanorod(Fig.1(d)and Fig.2(a)),it is clear that,differing from the compact structure of nanorod,the nanosheets support each other and form a loose and porous structure which is convenient for the diffusion of NO2gas in the bulk of nanosheets film.It is possible that the loose and porous structure dominate the high response of WO3nanosheet.

    3 Conclusion

    Tungsten oxide nanostructures including nanowire,nanorod and nanosheet were synthesized by solvothermal method with tungsten hexachloride (WCl6)as the precursor.One-dimensional W18O49nanowire bundles are obtained in 1-propanol at WCl6concentration below 0.01 mol·L-1,while the structure of pure two-dimensional WO3nanosheet was formed at concentration of 0.02 mol·L-1.In the solvent of cyclohexanol,W18O49nanorod is formed at WCl6concentration of 0.005 mol·L-1.The as-synthesized tungsten oxide nanostructure exhibits reversible response to NO2at different concentrations.In comparison with WO3nanosheet or W18O49nanorod,the W18O49nanowire exhibits much higher response to NO2gas due to its much larger specific surface area and non-stoichiometric crystal structure.

    [1]Li X L,Lou T J,Sun X M,et al.Inorg.Chem.,2004,43:5442-5449

    [2]Ponzoni A,Comini E,Sberveglieri G,et al.Appl.Phys.Lett.,2006,88:203101

    [3]Santato C,Odziemkowski M,Ulmann M.J.Am.Chem.Soc.,2001,123:10639-10649

    [4]DU Jun-Ping(杜俊平),CHEN Qi-Yuan(陳啟元),ZHAO Juan(趙 娟),etal.ChineseJ.Inorg.Chem.(WujiHuaxueXuebao),2007,23:1005-1010

    [5]LI Ling(李 玲),PAN Qing-Yi(潘慶誼),CHENG Zhi-Xuan(程知萱),et al.J.Inorg.Mater.,2006,21:151-156

    [6]Choi Y G,Sakai G,Shimanoe K,et al.Sens.Actuators B,2004,101:107-111

    [7]Pan Z W,Dai Z R,Wang Z L.Science,2001,291:1947-1949

    [8]Cui Y,Lieber C M.Science,2001,291:851-853

    [9]SunSB,ZouZD,MinGH.Mater.Charact.,2009,60:437-440

    [10]Ha J H,Muralidharan P,Kim D K.J.Alloy.Compd.,2009,475:446-451

    [11]Huang K,Pan Q T,Yang F,et al.Appl.Surf.Sci.,2007,253:8923-8927

    [12]Pfeifer J,Badaljan E,Tekulabuxbaum P,et al.J.Cryst.Growth,1996,169:727-733

    [13]Kwan S,Kim F,Akana J,et al.Chem.Commun.,2001,5:447-448

    [14]Moon J,Carasso M L,Krarup H G,et al.J.Mater.Res.,1999,14:866-875

    [15]Choi H G,Jung Y H,Kim D K.J.Am.Ceram.Soc.,2005,88:1684-1686

    [16]Xia Y N,Yang P D,Sun Y G,et al.Adv.Mater.,2003,15:353-389

    [17]Liao C C,Chen F R,Kai J J.Sol.Energy Mater.Sol.Cells,2007,91:1258-1266

    [18]Gopel W,Schierbaum K D.Sens.Actuators B,1995,26-27:1-12

    [19]Park C O,Akbar S A.J.Mater.Sci.,2003,38:4611-4637

    [20]Mizsei J.Sens.Actuators B,1993,23:173-176

    [21]Rothschild A,Komem Y.J.Appl.Phys.,2004,9:6374-6380

    [22]Safonova O V,Delabouglise G,Chenevier B,et al.Mater.Sci.Eng.C,2002,21:105-111

    [23]Sayago I,Gutirrez J,Ars L,et al.Sens.Actuators B,1995,25:512-515

    [24]Zhao Y M,Zhu Y Q.Sens.Actuators B,2009,137:27-31

    [25]Jiménez I,Centeno M A,Scotti R,et al.J.Electrochem.Soc.,2003,150:72-80

    鎢氧化物納米結(jié)構(gòu)的合成與表征

    秦玉香*包智穎 胡 明 孫 鵬

    (天津大學(xué)電子信息工程學(xué)院,天津 300072)

    采用溶劑熱法以WCl6作為前體合成出了一維和二維的鎢氧化物納米結(jié)構(gòu),研究了反應(yīng)溶劑和前體濃度對(duì)鎢氧化物物相和形貌的影響并評(píng)價(jià)了各種鎢氧化物納米結(jié)構(gòu)對(duì)NO2氣體的敏感性能。XRD、SEM、TEM和XPS的表征結(jié)果表明,通過(guò)改變?nèi)軇┖驼{(diào)整WCl6濃度,可分別獲得單斜的W18O49納米棒、W18O49納米線和WO3納米片結(jié)構(gòu)。氣敏性能測(cè)試結(jié)果表明,鎢氧化物納米結(jié)構(gòu)對(duì)NO2氣體表現(xiàn)出良好的可逆性,與W18O49納米棒和WO3納米片相比,W18O49納米線對(duì)NO2具有更高的靈敏度。

    氧化鎢;納米結(jié)構(gòu);溶劑熱法;氣敏性能

    O649

    :A

    :1001-4861(2010)12-2259-07

    2010-05-31。收修改稿日期:2010-08-24。

    秦玉香,女,35歲,博士,副教授;研究方向:敏感材料與微傳感器。

    國(guó)家自然科學(xué)基金(No.60801018),天津市自然科學(xué)基金(No.09JCYBJC01100),教育部博士點(diǎn)新教師基金(No.200800561109)資助項(xiàng)目。

    *通訊聯(lián)系人。 E-mail:qinyuxiang@tju.edu.cn

    猜你喜歡
    熱法氣敏納米線
    鈷摻雜二氧化鈦納米片的制備及其氣敏特性研究
    云南化工(2021年8期)2021-12-21 06:37:16
    李東垣“甘溫除熱法”的現(xiàn)代臨床應(yīng)用
    3d過(guò)渡金屬摻雜對(duì)Cd12O12納米線電子和磁性能的影響
    水熱法合成WO3納米片及其甲苯氣敏性能研究
    氣敏傳感器的研究進(jìn)展
    建材與裝飾(2018年5期)2018-02-13 23:12:02
    溫度對(duì)NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    溶劑熱法可控合成納米氯化亞銅
    不同形貌納米CoWO4的水熱法制備及氣敏性能
    低溫溶劑熱法制備5V級(jí)性能優(yōu)異的LiCr0.2Ni0.4Mn1.4O4正極材料
    bbb黄色大片| 一二三四社区在线视频社区8| 在线视频色国产色| 亚洲国产精品sss在线观看 | 亚洲精华国产精华精| 日本vs欧美在线观看视频| 国产99久久九九免费精品| 在线观看66精品国产| 亚洲欧美日韩无卡精品| 99精国产麻豆久久婷婷| 黄色片一级片一级黄色片| 午夜免费鲁丝| 夜夜看夜夜爽夜夜摸 | 日韩有码中文字幕| 精品一区二区三区av网在线观看| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 制服诱惑二区| 丁香六月欧美| 99国产极品粉嫩在线观看| 亚洲精品美女久久av网站| 国产精品偷伦视频观看了| 久久久久精品国产欧美久久久| 成人永久免费在线观看视频| 搡老岳熟女国产| 中文字幕人妻丝袜制服| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看舔阴道视频| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 19禁男女啪啪无遮挡网站| 在线观看免费日韩欧美大片| 两个人看的免费小视频| 一进一出抽搐gif免费好疼 | 日韩精品中文字幕看吧| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 亚洲中文字幕日韩| 久久精品影院6| 国产av又大| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 成在线人永久免费视频| 精品久久蜜臀av无| 丝袜美足系列| 亚洲欧美日韩无卡精品| 日韩人妻精品一区2区三区| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 一a级毛片在线观看| 久久精品国产亚洲av高清一级| 亚洲第一欧美日韩一区二区三区| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 久久精品成人免费网站| xxxhd国产人妻xxx| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 欧美不卡视频在线免费观看 | 精品久久久久久久久久免费视频 | 精品福利永久在线观看| 夫妻午夜视频| 999精品在线视频| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 淫妇啪啪啪对白视频| 亚洲精品在线美女| 五月开心婷婷网| 美女 人体艺术 gogo| 精品高清国产在线一区| 亚洲第一av免费看| 日日干狠狠操夜夜爽| 99久久综合精品五月天人人| 一级黄色大片毛片| 五月开心婷婷网| 精品一区二区三区四区五区乱码| 欧美日韩瑟瑟在线播放| 国产一卡二卡三卡精品| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 嫩草影院精品99| 国产亚洲欧美98| 无限看片的www在线观看| 国产精品久久久av美女十八| 最近最新中文字幕大全免费视频| av天堂久久9| 动漫黄色视频在线观看| 午夜福利在线免费观看网站| 亚洲成a人片在线一区二区| 久久精品亚洲精品国产色婷小说| 欧美在线黄色| 国产色视频综合| 我的亚洲天堂| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 18禁国产床啪视频网站| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 国产av一区二区精品久久| 超色免费av| 亚洲欧美日韩高清在线视频| 在线视频色国产色| 国产精华一区二区三区| 久久精品国产综合久久久| 久久国产乱子伦精品免费另类| 日日干狠狠操夜夜爽| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 亚洲avbb在线观看| 麻豆久久精品国产亚洲av | 女性被躁到高潮视频| av欧美777| 十八禁人妻一区二区| 淫妇啪啪啪对白视频| 大型黄色视频在线免费观看| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 国产三级在线视频| 大香蕉久久成人网| 好看av亚洲va欧美ⅴa在| 一级a爱片免费观看的视频| 一级,二级,三级黄色视频| 久久人妻av系列| 12—13女人毛片做爰片一| 淫秽高清视频在线观看| 日本三级黄在线观看| 精品国产超薄肉色丝袜足j| 亚洲熟妇熟女久久| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 中文字幕色久视频| 黑人巨大精品欧美一区二区mp4| 十八禁网站免费在线| 国产成人一区二区三区免费视频网站| 日韩精品中文字幕看吧| 女性生殖器流出的白浆| 欧洲精品卡2卡3卡4卡5卡区| 天天躁夜夜躁狠狠躁躁| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 日韩免费高清中文字幕av| 国产高清激情床上av| 欧美乱妇无乱码| 一区二区三区国产精品乱码| 他把我摸到了高潮在线观看| 色婷婷av一区二区三区视频| 亚洲欧美激情在线| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| ponron亚洲| 少妇裸体淫交视频免费看高清 | 在线视频色国产色| 亚洲一卡2卡3卡4卡5卡精品中文| 97人妻天天添夜夜摸| 国产精品国产av在线观看| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 精品乱码久久久久久99久播| 亚洲成国产人片在线观看| 国产视频一区二区在线看| 久久久久久久午夜电影 | 88av欧美| 亚洲成国产人片在线观看| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 亚洲国产欧美网| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 久久影院123| 日韩欧美国产一区二区入口| 午夜免费激情av| 色综合婷婷激情| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 一夜夜www| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 国产精品成人在线| 色老头精品视频在线观看| 国产精品二区激情视频| www.精华液| 欧美一区二区精品小视频在线| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 成人三级黄色视频| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 亚洲,欧美精品.| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区mp4| 国产精品爽爽va在线观看网站 | 十八禁人妻一区二区| 精品国产一区二区久久| 国产一区二区三区视频了| 中文字幕人妻丝袜制服| 一级毛片高清免费大全| 午夜福利,免费看| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区mp4| 免费高清在线观看日韩| 亚洲在线自拍视频| 国产高清激情床上av| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 久久人妻熟女aⅴ| 一级毛片女人18水好多| 午夜免费观看网址| 亚洲avbb在线观看| 亚洲自拍偷在线| 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 成熟少妇高潮喷水视频| 男人舔女人的私密视频| 电影成人av| 国产1区2区3区精品| 午夜a级毛片| 国产精品美女特级片免费视频播放器 | 夜夜看夜夜爽夜夜摸 | 丝袜美足系列| 久久久水蜜桃国产精品网| 精品久久久久久成人av| 成人三级黄色视频| 两人在一起打扑克的视频| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 欧美日本中文国产一区发布| 久久人妻av系列| 美女大奶头视频| 99在线视频只有这里精品首页| 老熟妇乱子伦视频在线观看| 日韩欧美免费精品| 国产亚洲精品综合一区在线观看 | 男男h啪啪无遮挡| 一进一出好大好爽视频| 欧洲精品卡2卡3卡4卡5卡区| 国产又爽黄色视频| 女人精品久久久久毛片| 99久久人妻综合| 国产成人影院久久av| 成人永久免费在线观看视频| 亚洲狠狠婷婷综合久久图片| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 日韩欧美在线二视频| av天堂在线播放| 国产色视频综合| 欧美日韩av久久| 久久久精品欧美日韩精品| 黑人欧美特级aaaaaa片| 国产精品香港三级国产av潘金莲| 精品欧美一区二区三区在线| 国产野战对白在线观看| 国产麻豆69| 成人特级黄色片久久久久久久| 日本免费a在线| 欧美最黄视频在线播放免费 | 国产单亲对白刺激| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av | 大型黄色视频在线免费观看| 一级作爱视频免费观看| 身体一侧抽搐| 高清毛片免费观看视频网站 | 国产精品爽爽va在线观看网站 | 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 日韩人妻精品一区2区三区| 高清欧美精品videossex| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 黄片小视频在线播放| 人妻久久中文字幕网| 国产男靠女视频免费网站| 一区二区三区精品91| 9热在线视频观看99| 极品教师在线免费播放| 亚洲午夜理论影院| videosex国产| 国产精品野战在线观看 | 美国免费a级毛片| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 日韩三级视频一区二区三区| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 亚洲成人免费av在线播放| 99热国产这里只有精品6| 夜夜看夜夜爽夜夜摸 | 国产免费男女视频| 精品国产乱码久久久久久男人| 在线观看免费高清a一片| 日本精品一区二区三区蜜桃| 91老司机精品| 岛国视频午夜一区免费看| 欧洲精品卡2卡3卡4卡5卡区| 日本 av在线| 成年女人毛片免费观看观看9| 99国产极品粉嫩在线观看| 日韩有码中文字幕| 精品电影一区二区在线| 国产av又大| 一区二区三区激情视频| 国产色视频综合| 国产视频一区二区在线看| 国产精品 国内视频| www日本在线高清视频| 99精国产麻豆久久婷婷| 国产成+人综合+亚洲专区| 午夜福利免费观看在线| 91在线观看av| 亚洲九九香蕉| 欧美人与性动交α欧美软件| 黄频高清免费视频| 又黄又爽又免费观看的视频| 久久99一区二区三区| 中文字幕精品免费在线观看视频| 精品免费久久久久久久清纯| 两性午夜刺激爽爽歪歪视频在线观看 | xxx96com| 欧美黑人欧美精品刺激| 夜夜躁狠狠躁天天躁| 午夜福利,免费看| 久久影院123| 亚洲激情在线av| 丰满人妻熟妇乱又伦精品不卡| 一a级毛片在线观看| 婷婷丁香在线五月| av欧美777| 亚洲精品国产一区二区精华液| 精品一区二区三卡| 国产激情久久老熟女| 日本欧美视频一区| 精品午夜福利视频在线观看一区| avwww免费| 精品日产1卡2卡| 成人三级黄色视频| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 校园春色视频在线观看| 久久精品国产亚洲av香蕉五月| 成人亚洲精品av一区二区 | 我的亚洲天堂| 国产三级黄色录像| 中文字幕高清在线视频| 俄罗斯特黄特色一大片| 免费在线观看视频国产中文字幕亚洲| 日本a在线网址| 国产免费男女视频| cao死你这个sao货| 亚洲专区国产一区二区| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 少妇裸体淫交视频免费看高清 | 亚洲av成人不卡在线观看播放网| 中文字幕人妻丝袜制服| 久久人人爽av亚洲精品天堂| 国产在线观看jvid| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 国产亚洲精品久久久久5区| 久久人人爽av亚洲精品天堂| 日韩成人在线观看一区二区三区| 久久久国产成人免费| 在线十欧美十亚洲十日本专区| 久久精品影院6| 久久伊人香网站| 亚洲专区中文字幕在线| 一个人观看的视频www高清免费观看 | 老汉色∧v一级毛片| 日韩av在线大香蕉| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看| 久久久国产成人精品二区 | 如日韩欧美国产精品一区二区三区| 欧美国产精品va在线观看不卡| 99在线人妻在线中文字幕| √禁漫天堂资源中文www| 久久人人精品亚洲av| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 女警被强在线播放| 中文亚洲av片在线观看爽| 亚洲av电影在线进入| 人人澡人人妻人| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡免费网站照片 | 久久国产精品男人的天堂亚洲| 制服诱惑二区| 美女国产高潮福利片在线看| 久久久水蜜桃国产精品网| 日本三级黄在线观看| 国产av在哪里看| 日韩有码中文字幕| 亚洲精品在线美女| 亚洲精品中文字幕一二三四区| 国产精品野战在线观看 | 国产精品秋霞免费鲁丝片| 变态另类成人亚洲欧美熟女 | 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 欧美黑人精品巨大| 老司机午夜福利在线观看视频| 18禁观看日本| 中文欧美无线码| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻熟女aⅴ| 色播在线永久视频| 岛国视频午夜一区免费看| 夫妻午夜视频| 免费少妇av软件| 国产亚洲欧美98| 伊人久久大香线蕉亚洲五| 桃红色精品国产亚洲av| 曰老女人黄片| 午夜亚洲福利在线播放| 欧美黑人精品巨大| 亚洲精品国产色婷婷电影| 亚洲av成人av| 女人爽到高潮嗷嗷叫在线视频| 久久人妻熟女aⅴ| 黄色成人免费大全| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 女人被狂操c到高潮| 久久亚洲精品不卡| 脱女人内裤的视频| 少妇裸体淫交视频免费看高清 | 日韩欧美免费精品| 变态另类成人亚洲欧美熟女 | 亚洲精品av麻豆狂野| videosex国产| a级毛片黄视频| 亚洲五月婷婷丁香| 国产深夜福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 91麻豆精品激情在线观看国产 | 在线看a的网站| 国产亚洲av高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人精品中文字幕电影 | 国产成人系列免费观看| 在线播放国产精品三级| 女生性感内裤真人,穿戴方法视频| 好看av亚洲va欧美ⅴa在| 母亲3免费完整高清在线观看| 久久久久久免费高清国产稀缺| 在线观看免费午夜福利视频| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图| 黄色视频不卡| 亚洲自偷自拍图片 自拍| 1024视频免费在线观看| 大型黄色视频在线免费观看| av网站在线播放免费| 亚洲成人国产一区在线观看| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 亚洲一区二区三区色噜噜 | 亚洲成人久久性| 女人精品久久久久毛片| 欧美午夜高清在线| 免费一级毛片在线播放高清视频 | 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 搡老熟女国产l中国老女人| 交换朋友夫妻互换小说| 欧美日韩黄片免| 亚洲免费av在线视频| 男女做爰动态图高潮gif福利片 | 岛国在线观看网站| 真人一进一出gif抽搐免费| 最好的美女福利视频网| 国产人伦9x9x在线观看| 国产精品爽爽va在线观看网站 | 国产av一区在线观看免费| 亚洲av美国av| 搡老熟女国产l中国老女人| 一级,二级,三级黄色视频| 日本免费一区二区三区高清不卡 | 成年版毛片免费区| 99精品久久久久人妻精品| 一级a爱片免费观看的视频| xxx96com| 91av网站免费观看| 激情视频va一区二区三区| av片东京热男人的天堂| 少妇被粗大的猛进出69影院| 色综合婷婷激情| 交换朋友夫妻互换小说| 日韩免费av在线播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品美女久久av网站| 热99国产精品久久久久久7| 91国产中文字幕| 久久人人精品亚洲av| 制服人妻中文乱码| 嫩草影院精品99| 侵犯人妻中文字幕一二三四区| 国产成人一区二区三区免费视频网站| 欧美黑人精品巨大| 亚洲中文日韩欧美视频| 日韩人妻精品一区2区三区| 好男人电影高清在线观看| 午夜久久久在线观看| 99在线人妻在线中文字幕| 757午夜福利合集在线观看| 欧美色视频一区免费| 天天影视国产精品| av国产精品久久久久影院| 男女之事视频高清在线观看| 身体一侧抽搐| 老司机福利观看| 日韩三级视频一区二区三区| 手机成人av网站| 国产精品美女特级片免费视频播放器 | 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 色精品久久人妻99蜜桃| 神马国产精品三级电影在线观看 | 成人国语在线视频| 黄片小视频在线播放| 一本大道久久a久久精品| 久久午夜亚洲精品久久| 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| 人成视频在线观看免费观看| 成人国产一区最新在线观看| 伦理电影免费视频| 国内毛片毛片毛片毛片毛片| 国产99白浆流出| 婷婷丁香在线五月| 国产一区二区激情短视频| 国产精品99久久99久久久不卡| 精品国产一区二区久久| 18禁国产床啪视频网站| 老司机深夜福利视频在线观看| 国产精品久久视频播放| 男女午夜视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲七黄色美女视频| 久久婷婷成人综合色麻豆| av网站在线播放免费| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产综合久久久| 男人的好看免费观看在线视频 | 熟女少妇亚洲综合色aaa.| 国产三级黄色录像| 精品少妇一区二区三区视频日本电影| 色婷婷av一区二区三区视频| 国产成年人精品一区二区 | 成人黄色视频免费在线看| 久久狼人影院| 丝袜美足系列| 91国产中文字幕| 99re在线观看精品视频| 亚洲精品av麻豆狂野| 亚洲一区二区三区欧美精品| 国产三级在线视频| 亚洲精品久久午夜乱码| 日韩人妻精品一区2区三区| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频 | 精品久久久精品久久久| 亚洲色图 男人天堂 中文字幕| avwww免费| 91在线观看av| tocl精华| 久热这里只有精品99| 香蕉久久夜色| 欧美人与性动交α欧美精品济南到| 国产主播在线观看一区二区| 91九色精品人成在线观看| 波多野结衣一区麻豆| 久久精品国产亚洲av香蕉五月| 美国免费a级毛片| 别揉我奶头~嗯~啊~动态视频| 80岁老熟妇乱子伦牲交| 欧美乱色亚洲激情| 操出白浆在线播放| 久久中文看片网| 99国产精品一区二区三区| 99久久国产精品久久久| 午夜福利,免费看| 亚洲av五月六月丁香网| 精品一区二区三区四区五区乱码| 国产成年人精品一区二区 | 在线观看日韩欧美| 午夜免费观看网址| 欧美精品啪啪一区二区三区|