• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of Tungsten Oxide Nanostructures

    2013-09-29 02:23:52QINYuXiangBAOZhiYingHUMingSUNPengSchoolofElectronicsandInformationEngineeringTianjinUniversityTianjin300072
    關(guān)鍵詞:熱法氣敏納米線

    QIN Yu-Xiang BAO Zhi-Ying HU Ming SUN Peng(School of Electronics and Information Engineering,Tianjin University,Tianjin 300072)

    Synthesis and Characterization of Tungsten Oxide Nanostructures

    QIN Yu-Xiang*BAO Zhi-Ying HU Ming SUN Peng
    (School of Electronics and Information Engineering,Tianjin University,Tianjin 300072)

    One-and two-dimensional tungsten oxide nanostructures were synthesized by solvothermal method using tungsten hexachloride (WCl6)as the precursor.The effects of the solvent and the concentration of WCl6on the phase and the morphology of the as-synthesized tungsten oxide nanostructures were investigated and the NO2-sensing properties were evaluated.X-ray diffraction,field emission scanning electron microscope,transmission electron microscope,X-ray photoelectron spectroscopy were employed to characterize the as-synthesized products and the results indicate that the W18O49nanorod,W18O49nanowire and WO3nanosheet with monoclinic structure can be formed by adjusting the solvent and WCl6concentration.The NO2-sensing properties measurements show that the synthesized tungsten oxides have reversible response to NO2at different concentrations.In comparison with WO3nanosheet or W18O49nanorod,the W18O49nanowire exhibits much higher response to NO2gas.

    tungsten oxide;nanostructure;solvothermal method;gas sensitive properties

    Tungsten oxide is a versatile wide band gap semiconductor material,and it has wide applications in gas sensors[1-2],electrochromic devices[3]and photocatalysts[4].Especially,tungsten oxide has been found to be a promising material for detection of toxic gases such as NOx,H2S,Cl2,NH3[5-6].The gas sensing mechanism of oxide semiconductors lies in the fact that the electrical resistance of the materials will be changed when they are exposed to the gases.Consequently,the sensing response of oxides is highly dependent on their surface structure and morphology.A lot of sensing tests for tungsten oxide polycrystalline thin films indicate that the sensing response steeply increases when the grain size decreases.Recently,tungstennanostructuressuch asnanowires,nanobeltsand nanorods have been evaluated as ideal candidates for gas sensing applications due to their larger specific surface area and smaller dimensions compared to the Debye length[7-8].Typically,tungsten oxide nanostructures can be fabricated by various growth techniques[9-11].One interesting technique is solvothermal method featuring in simple operation and low cost.In this work,differenttungsten oxide nanostructures including nanorod,nanowire and nanosheet were synthesized by solvothermal method.The phase and morphology of the as-synthesized tungsten oxide nanostructures were characterized and the sensing properties of the material to NO2gas were also evaluated.

    1 Experimental

    1.1 Synthesis and characterization of tungsten oxide nanostructures

    Tungsten oxide nanostructureswith different morphologies were synthesized by solvothermal method with tungsten hexachloride(WCl6)as the precursor and cyclohexanol or 1-propanol as the solvent.First,a pre-determined amount of WCl6was dissolved in 2~4 mL ethanol to form a solution.Then,cyclohexanol or 1-propanol was added to the solution which was subsequently transferred to and sealed in a 100 mL Teflon-lined stainless steel autoclave.The concentration of WCl6in the solvent of cyclohexanol or 1-propanol varied from 0.003 mol·L-1to 0.02 mol·L-1.The solvothermal reaction was conducted at 200℃for 6~9 h in an electric oven.After that,the autoclave was cooled naturally to room temperature.The final products were centrifuged and washed sequentially by deionized water and ethanol several times,and the obtained powder was dried at 70 ℃ for 6 h in air.

    The crystalline phases of the tungsten oxides were analyzed using a RIGAKU D/MAX 2500V/PC X-ray diffractometer(XRD)fitted with a curved graphite diffracted-beam monochromator and 0.15 mm receiving slit and scintillation counter as the detector.The 2θ investigation region was in the range of 10°~80°with a step of 0.02°and a scanning speed of 4°·min-1.Cu Kα1(λ=0.154 06 nm)radiation was obtained after Kα1stripping from a Cu X-ray target operated at 40 kV and 200 mA.The morphology and crystalline structure were observed by a FEI Nanosem 430 field emission scanning electron microscope(FESEM)at an accelerating voltage of 10 or 15 kV and a TECNAI G2F-20 field emission transmission electron microscope (FETEM)operated at 300 kV of accelerated voltage.The chemical state of the tungsten oxide nanostructures was studied by X-ray photoelectron spectroscopy (XPS)using PERKIN ELEMER PHI-1600 ESCA with Mg Kα source and a charge neutralizer.X-ray irradiation was generated under 250 W.All the binding energies were corrected for charging effect by calibration on the graphite C1s peak at 284.6 eV.

    1.2 NO2-sensing properties test

    Gas sensors were fabricated by pouring a few drops of tungsten oxide powder-suspended ethanol onto the cleaned alumina substrates attached with a pair of interdigitated Pt electrodes with a thickness of 100 nm.The electrodes were deposited by using RF magnetron sputtering method,and the dropping suspension was prepared by ultrasonically dispersing tungsten oxide powders in ethanol for 30 min.The coated film was dried in air for 10 min.The above drop-coating process was repeated for 3 times to achieve the desired film thickness.Finally,the resulted films were heated in air using an infra-red dryer for 1 h,to evaporate the solvents residues in the coating layers.

    The NO2gas sensing measurements were carried out in a computer-controlled gas sensing characterization system.The sensors were placed on the heating plate fixed in test chamber,and the operating temperature of the sensors was achieved by adjusting the temperature controller of the heat plate.The pure NO2gas was injected into the chamber directly to get the desired concentration.A professional digital multimeter with the function of measuring range automatic adjustment was used for continuously monitoring the resistance change of the sensors during the whole measurement process and the sampling interval was set to 1s.The gas response was defined as(Rg-R0)/R0,where Rgand R0are the resistance of a sensitive filmin a measuring gas and that in clean air,respectively.

    2 Results and discussion

    2.1 Effect of WCl6concentration on morphologies of tungsten oxide

    The morphologies of tungsten oxide nanostructures synthesized at different WCl6concentrations in 1-propanol are shown in Fig.1(a)~(d).The solvothermal reaction temperature and reaction time were maintained constant at 200 ℃ and 9 h,respectively.It can be seen from Fig.1(a),the product synthesized at a concentration of 0.003 mol·L-1exhibits ultrathin nanowire structure with diameters of several ten nanometers and lengths up to several micrometers.Further TEM investigation can identify the bundled feature,giving evidence that several nanowires with diameters of 5~10 nm assembled along their main growth direction and formed a bundled structure,as shown in the inset in Fig.1(a).This bundle structure is often formed in 1-D nanostructured materials to minimize the surface energy of the system and the lateral capillary force may act as the driving force for the nanorod assembly along the axis direction[12-13].Increasing WCl6concentration to 0.01 mol·L-1,it is obvious from Fig.2 (b)that the nanowire bundles become thicker,indicating that a possible agglomeration between the adjacent nanowires or nanowire bundles has occurred.The estimated bundle diameter is 40~60 nm.The inset TEM image in Fig.1(a)shows that each nanowire in the bundles is with a diameter of about 10 nm.

    Fig.1 SEM images of tungsten oxide nanostructures synthesize in 1-propanol at different WCl6concentration

    When the concentration increases to 0.015 mol·L-1,apparent evolution in the morphology can be observed.As shown in Fig.1(c),the product synthesized at 0.015 mol·L-1is a mixture structure of nanowires and nanosheets.Up to a much higher WCl6concentration of 0.02 mol·L-1,a pure nanosheets structure with thicknesses of 10~30 nm is obtained (Fig.1(d)).From these results,it can be speculated that the WCl6concentration has a great effect on the specific morphologies of tungsten oxide nanostructures synthesized by solvothermal method.This is in agreement with the previous report[14].Low solution concentration contributestothelowersupersaturation oftungsten source,promoting the growth oftungsten oxide nanowires[15].At higher concentration,the highly saturated WCl6could prohibit the growth of tungsten oxide nanowires along the main growth direction.

    2.2 Effect of solvent on morphologies of tungsten oxide

    Fig.2(a)and(c)respectively show the morphologies of tungsten oxide nanostructures synthesized in the solvents of 1-propanol and cyclohexanol with a constant WCl6concentration of 0.005 mol·L-1.The solvothermal reaction in cyclohexanol and 1-propanol were conducted at 200℃for 6 h and 9 h,respectively,because there was no any precipitates obtained in 1-propanol when reacting for 6 h.The SEM image shown in Fig.2(a)exhibits that the product obtained in cyclohexanol is mainly composed of short nanorods with diameter of 30~40 nm and length of 300~400 nm.Several thinner nanorods assemble together along the axis direction and form nanorod bundles.Fig.2(b)shows the TEM image of one nanorod bundle.The stacked bundles shown in Fig.2(b)can be as-cribed to physical agglomeration,which can be easily dispersed by ultrasonic vibration.When substituting 1-propanol with cyclohexanol,the nanowire bundles exhibiting thin and long features are obtained,as shown in Fig.2(c).

    Fig.2 (a)SEM and(b)TEM images of the tungsten oxide synthesized in cyclohexanol;(c)SEM image of the tungsten oxide synthesized in 1-propanol

    2.3 Structure characterization of tungsten oxide nanostructures

    XRD results are show in Fig.3.As shown in Fig.3(a)and(b),the XRD patterns for the bundled tungsten oxide nanorods and nanowires synthesized by solvothermal method are very similar as evidence of the comparability of diffraction peaks in 2θ position and intensity.The main two diffraction peaks of both products can be well indexed to the monoclinic phase of W18O49with lattice parameters of a=1.832 nm,b=0.379 nm,c=1.404 nm and β =115.04°(PDF No.65-1291).It is also observed that there are no other impurity phase peaks.The strongest peak intensity of(010)plane indicates that the growth is preferentially along the b-axis,i.e.the [010]direction.In the present experiments,the monoclinic W18O49structures obtained in the solvent of cyclohexanol and 1-propanol are identical,which can be seen from the same diffraction peaks of monoclinic W18O49in Fig.3.The formation oftheseone-dimensionalnanostructures arises from the anisotropic properties of monoclinic W18O49crystals[16].The XRD pattern of the tungsten oxide nanosheet shown in Fig.3(c)corresponds to the monoclinic structure of WO3with lattice of a=0.729 7 nm,b=0.753 9 nm,c=0.768 8 nm and β=90.91°(PDF No.43-1035).From thisXRD pattern,thetwo strongest diffraction peaks appear at 2θ=23.58°and 2θ=24.34°corresponding to(020)and(200)facets and the peak intensity of the (002)reflection is much weaker,which implies that the nanosheets grow along the[010]and[100]crystallographic direction and are enclosed by ±(001)facets.

    Fig.3 XRD patterns of the as-synthesized tungsten oxide nanostructures

    Fig.4(a)~(c)show the high resolution(HR)TEM images of the nanorod,nanowire and nanosheet.Here,the lattice spacings for nanorod and nanowire are 0.378 nm and 0.380 nm,respectively,corresponding to (010)plane of monoclinic W18O49according to PDF No.65-1291.This result indicates that the as-synthesized one-dimensional nanostructures all consist of monoclinic W18O49and the dominant growth direction is along the b-axis direction.The HRTEM of tungsten oxide nanosheet indicates that the crystal plane distances are about 0.363 nm and 0.378 nm,almost equal to the crystal plane distance of monoclinic WO3(200)and (020)planes,respectively.The results shown in Fig.4 are in agreement with the ones from XRD characterization(Fig.3).

    XPS spectra are shown in Fig.5,which highlights the survey and the high-resolution spectra of W4fpeaks.Tungsten is identified in the survey spectrum(Fig.5(a))by the presence of the W4f,W4d,and W4p transitions.Also labeled are the OKLL and O1s features and the C1s line probably coming from the surface contamination during the annealing treatment.Fig.5(b)shows the high-resolution spectra of the W4f region,which contains the W4f7/2and W4f5/2peaks with binding energies of 35.2/35.2/35.7 eV and 37.2/37.2/37.8 eV for nanorod/nanowire/nanosheet,respectively.It is well established that the fully oxidized tungsten oxide (WO3)has the doublet due to W4f7/2at 35.8 eV and W4f5/2at 38 eV,which represents the W6+[17].In Fig.5(b),the position shift of the peaks corresponding to W4f7/2and W4f5/2indicates that there are some oxygen vacancies existing in three tungsten oxide nanostructures.The larger peaks shift of tungsten oxide nanorod and nanowire implies much more oxygen vacancies.Because the electron density in semiconductors depends on the density of oxygen vacancies,the vacancies play a significant role in the gas detection mechanism for the oxide semiconductors[18],and the existence of oxygen vacancies is much beneficial to the gas-sensing application of this kind of materials.From Fig.5(b),it also can be seen that,for the nanorods and nanowires,the binding energies for the peaks of W4f7/2and W4f5/2are the same,which suggests the same W valence state.This result is consistent with the one of XRD measurements that the nanorod and nanowire has the same crystalline structure of monoclinic W18O49.

    Fig.4 HR-TEM images of as-synthesized(a)nanowire,(b)nanorod and(c)nanosheet

    Fig.5 XPS spectra of tungsten oxide nanorod,nanowire and nanosheet

    2.4 Gas sensing properties

    The gas-sensing properties of the as-synthesized tungsten oxide nanostructures were evaluated upon exposure to NO2gas.Fig.6 shows the dynamic responses of tungsten oxide nanorod,nanowire and nanosheet to NO2gas at an operating temperature of 200℃.As shown in the figure,the measured resistances increase upon exposure to NO2gas.This result is expected because the oxidizing analyte NO2withdraws electrons from the n-type tungsten oxide surface and induces the formation of electron-depleted space-charge layers[19].Notably,the resistances could almost recover to its initial value after NO2removal,indicating a good reversibility of these nanostructure materials.Fig.7 shows the effect of NO2concentration in the range of 1~20 μL·L-1on the responses of tungsten oxide nanostructures at 200℃.From the figure,the W18O49nanowire shows the highest response at different NO2concentrations,while the lowest response is obtained from the W18O49nanorod.The response values of the W18O49nanowires upon exposure to 1,5,10 and 20 μL·L-1NO2are 13.4,123.6,203.4 and 332.3,while those of the WO3nanorod are 6.9,49.7,89.1 and 152.8,respectively.

    Fig.6 Dynamic response of tungsten oxide nanostructure to varying NO2concentration at an operating temperature of 200℃

    Fig.7 NO2gas response of tungsten oxide nanostructures as a function of NO2concentration at an operating temperature of 200℃

    Tungsten oxide is a typical n-type semiconductor,and its gas-sensing mechanism belongs to the surfacecontrolled type,i.e.the change in resistance of tungsten oxide is primarily caused by the adsorption and desorption of the gas molecules on the surface of the sensing film[20-21].Atmospheric oxygen absorbed on the oxide surface captures electrons from the conduction band of tungsten oxide and forms chemisorbed O-,O2-and O2-,creating a thin electron-depleted space-charge layer at the surface of the oxide.When the tungsten oxide is exposed to the oxidizing NO2,the gas molecules can be directly adsorbed onto the surface by extracting electrons from the conduction band(Eq.(1)and(2))or they can interact with the chemisorbed oxygen on the surface(Eq.(3)and(4))[22-23]:

    These reactions consume further electrons in the conduction band of tungsten oxide,leading to an increase of the electron-depleted layer and the height of the Schottky barrier,which then leads to the increase in the resistance.Therefore,large specific surface area is beneficial to achieving a high gas response.In our experiments,Brunauer-Emmett-Teller(BET)gas-sorption measurements were employed to evaluate the specific surface area of the as-synthesized tungsten oxide nanostructures by using Quantachrome NOVA automated gas sorption system.The measurements results show that the W18O49nanowires have much larger specific surface area (90 m2·g-1)than the WO3nanosheets(47 m2·g-1)or W18O49nanorods(69 m2·g-1).The larger surface area can provide more adsorptiondesorption sites and a larger amount of surface adsorbed oxygen species interacting with detected gas molecules.Thus,W18O49nanowires with higher specific surface area can show much larger change in resistance upon exposure to NO2than the WO3nanosheets or W18O49nanorod with lower specific surface area.Another important factor for high response of W18O49nanowire is its non-stoichiometric crystal structure[24].There exist much more oxygen vacancies in the crystal structure of non-stoichiometric W18O49than fully oxidized WO3[17],as indicated from the XPS results in Fig.5.The large amounts of oxygen vacanciescan serve as adsorption sites of gas molecular and effect on the electron density in oxide,which is beneficial to achieving much higher gas response[18,25].Above analysis can explain why the W18O49nanowires exhibit higher response than the WO3nanosheets or W18O49nanorod.However,as shown in Fig.7,the non-stoichiometric W18O49nanorod with higher specific surface area shows lower NO2response than the stoichiometric WO3nanosheet with lower specific surface area.This result can be explained from their different microstructure.Comparing the SEM images of WO3nanosheet and W18O49nanorod(Fig.1(d)and Fig.2(a)),it is clear that,differing from the compact structure of nanorod,the nanosheets support each other and form a loose and porous structure which is convenient for the diffusion of NO2gas in the bulk of nanosheets film.It is possible that the loose and porous structure dominate the high response of WO3nanosheet.

    3 Conclusion

    Tungsten oxide nanostructures including nanowire,nanorod and nanosheet were synthesized by solvothermal method with tungsten hexachloride (WCl6)as the precursor.One-dimensional W18O49nanowire bundles are obtained in 1-propanol at WCl6concentration below 0.01 mol·L-1,while the structure of pure two-dimensional WO3nanosheet was formed at concentration of 0.02 mol·L-1.In the solvent of cyclohexanol,W18O49nanorod is formed at WCl6concentration of 0.005 mol·L-1.The as-synthesized tungsten oxide nanostructure exhibits reversible response to NO2at different concentrations.In comparison with WO3nanosheet or W18O49nanorod,the W18O49nanowire exhibits much higher response to NO2gas due to its much larger specific surface area and non-stoichiometric crystal structure.

    [1]Li X L,Lou T J,Sun X M,et al.Inorg.Chem.,2004,43:5442-5449

    [2]Ponzoni A,Comini E,Sberveglieri G,et al.Appl.Phys.Lett.,2006,88:203101

    [3]Santato C,Odziemkowski M,Ulmann M.J.Am.Chem.Soc.,2001,123:10639-10649

    [4]DU Jun-Ping(杜俊平),CHEN Qi-Yuan(陳啟元),ZHAO Juan(趙 娟),etal.ChineseJ.Inorg.Chem.(WujiHuaxueXuebao),2007,23:1005-1010

    [5]LI Ling(李 玲),PAN Qing-Yi(潘慶誼),CHENG Zhi-Xuan(程知萱),et al.J.Inorg.Mater.,2006,21:151-156

    [6]Choi Y G,Sakai G,Shimanoe K,et al.Sens.Actuators B,2004,101:107-111

    [7]Pan Z W,Dai Z R,Wang Z L.Science,2001,291:1947-1949

    [8]Cui Y,Lieber C M.Science,2001,291:851-853

    [9]SunSB,ZouZD,MinGH.Mater.Charact.,2009,60:437-440

    [10]Ha J H,Muralidharan P,Kim D K.J.Alloy.Compd.,2009,475:446-451

    [11]Huang K,Pan Q T,Yang F,et al.Appl.Surf.Sci.,2007,253:8923-8927

    [12]Pfeifer J,Badaljan E,Tekulabuxbaum P,et al.J.Cryst.Growth,1996,169:727-733

    [13]Kwan S,Kim F,Akana J,et al.Chem.Commun.,2001,5:447-448

    [14]Moon J,Carasso M L,Krarup H G,et al.J.Mater.Res.,1999,14:866-875

    [15]Choi H G,Jung Y H,Kim D K.J.Am.Ceram.Soc.,2005,88:1684-1686

    [16]Xia Y N,Yang P D,Sun Y G,et al.Adv.Mater.,2003,15:353-389

    [17]Liao C C,Chen F R,Kai J J.Sol.Energy Mater.Sol.Cells,2007,91:1258-1266

    [18]Gopel W,Schierbaum K D.Sens.Actuators B,1995,26-27:1-12

    [19]Park C O,Akbar S A.J.Mater.Sci.,2003,38:4611-4637

    [20]Mizsei J.Sens.Actuators B,1993,23:173-176

    [21]Rothschild A,Komem Y.J.Appl.Phys.,2004,9:6374-6380

    [22]Safonova O V,Delabouglise G,Chenevier B,et al.Mater.Sci.Eng.C,2002,21:105-111

    [23]Sayago I,Gutirrez J,Ars L,et al.Sens.Actuators B,1995,25:512-515

    [24]Zhao Y M,Zhu Y Q.Sens.Actuators B,2009,137:27-31

    [25]Jiménez I,Centeno M A,Scotti R,et al.J.Electrochem.Soc.,2003,150:72-80

    鎢氧化物納米結(jié)構(gòu)的合成與表征

    秦玉香*包智穎 胡 明 孫 鵬

    (天津大學(xué)電子信息工程學(xué)院,天津 300072)

    采用溶劑熱法以WCl6作為前體合成出了一維和二維的鎢氧化物納米結(jié)構(gòu),研究了反應(yīng)溶劑和前體濃度對(duì)鎢氧化物物相和形貌的影響并評(píng)價(jià)了各種鎢氧化物納米結(jié)構(gòu)對(duì)NO2氣體的敏感性能。XRD、SEM、TEM和XPS的表征結(jié)果表明,通過(guò)改變?nèi)軇┖驼{(diào)整WCl6濃度,可分別獲得單斜的W18O49納米棒、W18O49納米線和WO3納米片結(jié)構(gòu)。氣敏性能測(cè)試結(jié)果表明,鎢氧化物納米結(jié)構(gòu)對(duì)NO2氣體表現(xiàn)出良好的可逆性,與W18O49納米棒和WO3納米片相比,W18O49納米線對(duì)NO2具有更高的靈敏度。

    氧化鎢;納米結(jié)構(gòu);溶劑熱法;氣敏性能

    O649

    :A

    :1001-4861(2010)12-2259-07

    2010-05-31。收修改稿日期:2010-08-24。

    秦玉香,女,35歲,博士,副教授;研究方向:敏感材料與微傳感器。

    國(guó)家自然科學(xué)基金(No.60801018),天津市自然科學(xué)基金(No.09JCYBJC01100),教育部博士點(diǎn)新教師基金(No.200800561109)資助項(xiàng)目。

    *通訊聯(lián)系人。 E-mail:qinyuxiang@tju.edu.cn

    猜你喜歡
    熱法氣敏納米線
    鈷摻雜二氧化鈦納米片的制備及其氣敏特性研究
    云南化工(2021年8期)2021-12-21 06:37:16
    李東垣“甘溫除熱法”的現(xiàn)代臨床應(yīng)用
    3d過(guò)渡金屬摻雜對(duì)Cd12O12納米線電子和磁性能的影響
    水熱法合成WO3納米片及其甲苯氣敏性能研究
    氣敏傳感器的研究進(jìn)展
    建材與裝飾(2018年5期)2018-02-13 23:12:02
    溫度對(duì)NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    溶劑熱法可控合成納米氯化亞銅
    不同形貌納米CoWO4的水熱法制備及氣敏性能
    低溫溶劑熱法制備5V級(jí)性能優(yōu)異的LiCr0.2Ni0.4Mn1.4O4正極材料
    久久影院123| 成年美女黄网站色视频大全免费| 两个人免费观看高清视频| 国产精品二区激情视频| av.在线天堂| 日韩av在线免费看完整版不卡| 国产精品国产三级专区第一集| 麻豆av在线久日| 欧美精品一区二区大全| 中文欧美无线码| 久久久精品国产亚洲av高清涩受| 亚洲国产中文字幕在线视频| 啦啦啦视频在线资源免费观看| 欧美少妇被猛烈插入视频| 日韩成人av中文字幕在线观看| 久久国产亚洲av麻豆专区| 久久韩国三级中文字幕| 精品久久久精品久久久| 麻豆乱淫一区二区| 亚洲精品国产区一区二| 999久久久国产精品视频| 丝瓜视频免费看黄片| 国产成人系列免费观看| 欧美日韩亚洲高清精品| 精品亚洲成国产av| 久久国产精品男人的天堂亚洲| avwww免费| 国产成人精品福利久久| 大话2 男鬼变身卡| 日韩一本色道免费dvd| 久久天躁狠狠躁夜夜2o2o | 久久国产精品男人的天堂亚洲| 亚洲在久久综合| 亚洲中文av在线| 国产精品 国内视频| 亚洲国产av影院在线观看| 亚洲av成人精品一二三区| 亚洲一级一片aⅴ在线观看| 男女国产视频网站| 国产av国产精品国产| 亚洲国产av新网站| 黄频高清免费视频| 免费黄频网站在线观看国产| 久久狼人影院| 精品一品国产午夜福利视频| 国产在线视频一区二区| 国产精品一区二区在线观看99| 午夜福利网站1000一区二区三区| 最黄视频免费看| e午夜精品久久久久久久| 各种免费的搞黄视频| av片东京热男人的天堂| 伦理电影免费视频| 午夜老司机福利片| 色婷婷av一区二区三区视频| 又大又爽又粗| 免费观看性生交大片5| 国产成人免费无遮挡视频| 国产成人欧美| 一区二区av电影网| 日日撸夜夜添| 亚洲天堂av无毛| 亚洲色图 男人天堂 中文字幕| 国产精品国产av在线观看| 黑人巨大精品欧美一区二区蜜桃| 精品少妇内射三级| 亚洲精品久久午夜乱码| 国产精品 欧美亚洲| 制服人妻中文乱码| 91老司机精品| 王馨瑶露胸无遮挡在线观看| 好男人视频免费观看在线| 一级毛片我不卡| 国产精品久久久久成人av| www日本在线高清视频| 一二三四在线观看免费中文在| 青春草国产在线视频| 亚洲精品一区蜜桃| 国产亚洲精品第一综合不卡| 妹子高潮喷水视频| 校园人妻丝袜中文字幕| 一区二区三区激情视频| 亚洲色图综合在线观看| 亚洲精品视频女| 亚洲久久久国产精品| 日日啪夜夜爽| 99久久人妻综合| e午夜精品久久久久久久| 国产国语露脸激情在线看| 久久久精品国产亚洲av高清涩受| 成人黄色视频免费在线看| 99精品久久久久人妻精品| 制服诱惑二区| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 制服诱惑二区| 90打野战视频偷拍视频| 不卡视频在线观看欧美| 在线精品无人区一区二区三| 午夜福利免费观看在线| 51午夜福利影视在线观看| 麻豆av在线久日| 国产精品成人在线| 少妇人妻 视频| 香蕉国产在线看| 亚洲一码二码三码区别大吗| 女人精品久久久久毛片| 国产女主播在线喷水免费视频网站| 国产一区有黄有色的免费视频| 热re99久久精品国产66热6| 婷婷色综合大香蕉| 91aial.com中文字幕在线观看| 精品一区二区三卡| 国产爽快片一区二区三区| av国产精品久久久久影院| 久久久久国产一级毛片高清牌| 免费高清在线观看视频在线观看| 久久精品亚洲av国产电影网| 少妇被粗大的猛进出69影院| kizo精华| 欧美黑人精品巨大| www日本在线高清视频| 亚洲精品中文字幕在线视频| 一二三四中文在线观看免费高清| 女人精品久久久久毛片| 亚洲美女黄色视频免费看| 国产免费福利视频在线观看| 日韩大码丰满熟妇| 国产又色又爽无遮挡免| 亚洲综合精品二区| 亚洲欧美色中文字幕在线| 一边摸一边抽搐一进一出视频| 在线免费观看不下载黄p国产| 老司机在亚洲福利影院| 欧美 日韩 精品 国产| 日日啪夜夜爽| 亚洲av日韩精品久久久久久密 | 最近中文字幕高清免费大全6| 老鸭窝网址在线观看| 伊人久久国产一区二区| 午夜福利乱码中文字幕| 熟妇人妻不卡中文字幕| 日韩视频在线欧美| 欧美最新免费一区二区三区| 99久久精品国产亚洲精品| 校园人妻丝袜中文字幕| 在线免费观看不下载黄p国产| 悠悠久久av| 国产又爽黄色视频| 亚洲成av片中文字幕在线观看| 老鸭窝网址在线观看| 1024视频免费在线观看| 七月丁香在线播放| www.精华液| 精品久久蜜臀av无| 成人毛片60女人毛片免费| 国产成人免费观看mmmm| 老汉色av国产亚洲站长工具| av.在线天堂| 亚洲国产av新网站| av一本久久久久| av不卡在线播放| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| av.在线天堂| 亚洲国产av新网站| 啦啦啦在线免费观看视频4| 亚洲欧美日韩另类电影网站| 国产成人系列免费观看| 亚洲av日韩精品久久久久久密 | 高清视频免费观看一区二区| 最新的欧美精品一区二区| 亚洲综合色网址| 男男h啪啪无遮挡| 国产亚洲av高清不卡| 热99久久久久精品小说推荐| 欧美精品人与动牲交sv欧美| 欧美中文综合在线视频| 亚洲综合精品二区| 亚洲少妇的诱惑av| 成人亚洲欧美一区二区av| 香蕉国产在线看| 爱豆传媒免费全集在线观看| 在现免费观看毛片| 男人舔女人的私密视频| 日韩一区二区视频免费看| 国产99久久九九免费精品| 成年动漫av网址| 精品人妻在线不人妻| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 中国国产av一级| 久久久久国产精品人妻一区二区| 波多野结衣av一区二区av| 在线看a的网站| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡 | 日韩大码丰满熟妇| 久久ye,这里只有精品| 亚洲国产精品成人久久小说| 午夜影院在线不卡| 夫妻性生交免费视频一级片| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 国产亚洲欧美精品永久| 亚洲精品国产av成人精品| 无遮挡黄片免费观看| 18禁国产床啪视频网站| 这个男人来自地球电影免费观看 | 成人亚洲精品一区在线观看| 高清av免费在线| 久久久久久人人人人人| 电影成人av| 国产99久久九九免费精品| 少妇被粗大猛烈的视频| avwww免费| 老司机深夜福利视频在线观看 | 亚洲欧美激情在线| videosex国产| 久久久国产一区二区| 国产精品蜜桃在线观看| 亚洲七黄色美女视频| 两个人看的免费小视频| av线在线观看网站| 欧美精品人与动牲交sv欧美| 精品少妇内射三级| 宅男免费午夜| 色吧在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕人妻丝袜一区二区 | 午夜福利乱码中文字幕| 少妇人妻 视频| 一级黄片播放器| 美女脱内裤让男人舔精品视频| 丰满迷人的少妇在线观看| 成年av动漫网址| 国产av码专区亚洲av| 久久影院123| 97在线人人人人妻| 两性夫妻黄色片| 中文字幕最新亚洲高清| 亚洲精品在线美女| 女人久久www免费人成看片| 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 午夜激情久久久久久久| 国产视频首页在线观看| 丝袜美足系列| 久久久久精品性色| 建设人人有责人人尽责人人享有的| www.熟女人妻精品国产| 91精品国产国语对白视频| 国产精品一区二区精品视频观看| 亚洲欧美色中文字幕在线| 最近最新中文字幕大全免费视频 | 久久精品久久久久久噜噜老黄| 热re99久久国产66热| 97在线人人人人妻| 大话2 男鬼变身卡| 国产精品三级大全| 久久久久国产精品人妻一区二区| 在线精品无人区一区二区三| 91aial.com中文字幕在线观看| 午夜福利视频精品| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 欧美日韩福利视频一区二区| 丰满少妇做爰视频| 久久狼人影院| 在线观看免费日韩欧美大片| 女性被躁到高潮视频| 国产成人精品在线电影| 精品少妇久久久久久888优播| 久久狼人影院| 精品一区二区免费观看| 婷婷成人精品国产| 久久国产精品大桥未久av| 成人国语在线视频| 咕卡用的链子| 嫩草影视91久久| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 国产精品无大码| 亚洲成人手机| 亚洲第一av免费看| 老鸭窝网址在线观看| 色视频在线一区二区三区| 飞空精品影院首页| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 成年人免费黄色播放视频| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 亚洲视频免费观看视频| 日本一区二区免费在线视频| 男男h啪啪无遮挡| 日本欧美视频一区| av在线观看视频网站免费| 久久热在线av| 日本av手机在线免费观看| 狂野欧美激情性bbbbbb| 免费看不卡的av| 亚洲精品国产一区二区精华液| www.精华液| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕在线视频| 亚洲在久久综合| 精品一区二区三区四区五区乱码 | 亚洲欧洲国产日韩| 日本欧美国产在线视频| 国产精品二区激情视频| 在线观看三级黄色| 男人爽女人下面视频在线观看| 欧美黑人欧美精品刺激| 日本wwww免费看| 又黄又粗又硬又大视频| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 久久影院123| 欧美日韩亚洲高清精品| 欧美激情高清一区二区三区 | 久久婷婷青草| 别揉我奶头~嗯~啊~动态视频 | 香蕉丝袜av| 亚洲av男天堂| 韩国av在线不卡| 日日摸夜夜添夜夜爱| 亚洲精品久久午夜乱码| 国产精品蜜桃在线观看| 午夜福利网站1000一区二区三区| √禁漫天堂资源中文www| 久久人人爽人人片av| 亚洲av欧美aⅴ国产| 一本久久精品| 欧美日韩亚洲综合一区二区三区_| 天美传媒精品一区二区| 一本一本久久a久久精品综合妖精| 国产精品免费大片| 亚洲精品一区蜜桃| 日韩一卡2卡3卡4卡2021年| 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到| 激情视频va一区二区三区| 久久免费观看电影| 国产黄色视频一区二区在线观看| 交换朋友夫妻互换小说| 欧美日韩av久久| 午夜福利网站1000一区二区三区| 亚洲一区中文字幕在线| 免费高清在线观看日韩| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 日韩免费高清中文字幕av| 久久天躁狠狠躁夜夜2o2o | 亚洲天堂av无毛| 国产老妇伦熟女老妇高清| 99re6热这里在线精品视频| 日日撸夜夜添| a 毛片基地| 欧美日韩综合久久久久久| 超色免费av| 成人国语在线视频| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看 | 午夜福利,免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 女人被躁到高潮嗷嗷叫费观| 99精国产麻豆久久婷婷| 99精品久久久久人妻精品| 亚洲av电影在线观看一区二区三区| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 超碰成人久久| 高清视频免费观看一区二区| 国产视频首页在线观看| 久久狼人影院| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 久久人妻熟女aⅴ| 好男人视频免费观看在线| 两个人免费观看高清视频| 国产极品粉嫩免费观看在线| 免费黄色在线免费观看| 亚洲精品美女久久av网站| 各种免费的搞黄视频| 另类精品久久| 欧美精品一区二区大全| 亚洲精品av麻豆狂野| 一个人免费看片子| 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 亚洲av男天堂| 日韩 欧美 亚洲 中文字幕| www.精华液| 一区二区日韩欧美中文字幕| 精品一区在线观看国产| a级片在线免费高清观看视频| 制服人妻中文乱码| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 成人亚洲欧美一区二区av| 中文字幕精品免费在线观看视频| 亚洲国产精品一区二区三区在线| 一二三四在线观看免费中文在| 一级片免费观看大全| 曰老女人黄片| 亚洲国产欧美一区二区综合| 九色亚洲精品在线播放| 欧美在线一区亚洲| 高清欧美精品videossex| 日韩欧美一区视频在线观看| 国产精品亚洲av一区麻豆 | 久久精品国产亚洲av高清一级| 丝袜美足系列| videosex国产| 夜夜骑夜夜射夜夜干| 人体艺术视频欧美日本| 国产1区2区3区精品| 精品酒店卫生间| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线不卡| 80岁老熟妇乱子伦牲交| 在线观看国产h片| 两个人免费观看高清视频| 欧美精品av麻豆av| 日韩精品免费视频一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av片在线观看秒播厂| 国产国语露脸激情在线看| 国产精品久久久久久精品古装| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 国产成人精品久久二区二区91 | 国产一卡二卡三卡精品 | 九色亚洲精品在线播放| 日本黄色日本黄色录像| 欧美日韩亚洲国产一区二区在线观看 | a级毛片黄视频| 伊人亚洲综合成人网| 久久久久精品性色| 又大又爽又粗| 丝袜在线中文字幕| 色婷婷av一区二区三区视频| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 久久久久久久精品精品| 国产亚洲精品第一综合不卡| 国产成人免费观看mmmm| 纯流量卡能插随身wifi吗| 日韩一本色道免费dvd| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 男女免费视频国产| 国产片内射在线| 69精品国产乱码久久久| 少妇 在线观看| 国产免费福利视频在线观看| 咕卡用的链子| 天天躁夜夜躁狠狠久久av| 久热爱精品视频在线9| 18在线观看网站| 久久久久久免费高清国产稀缺| 午夜av观看不卡| 日韩 亚洲 欧美在线| 一区在线观看完整版| av在线app专区| 亚洲成国产人片在线观看| 午夜免费男女啪啪视频观看| 最近中文字幕高清免费大全6| av有码第一页| a级毛片黄视频| 午夜av观看不卡| 国产亚洲精品第一综合不卡| 久久久精品94久久精品| 在线天堂中文资源库| 又黄又粗又硬又大视频| 大香蕉久久成人网| 美女视频免费永久观看网站| 国产成人欧美在线观看 | 男女免费视频国产| 免费看av在线观看网站| 18禁裸乳无遮挡动漫免费视频| 久久毛片免费看一区二区三区| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 最近中文字幕高清免费大全6| 欧美激情高清一区二区三区 | 欧美日韩一级在线毛片| 日本欧美视频一区| 午夜免费鲁丝| 国产成人精品久久久久久| 少妇 在线观看| 亚洲欧美成人综合另类久久久| 亚洲国产看品久久| 久久午夜综合久久蜜桃| 久久久久精品人妻al黑| 国产精品熟女久久久久浪| 欧美激情高清一区二区三区 | 性少妇av在线| kizo精华| 人妻人人澡人人爽人人| 久久99一区二区三区| 婷婷成人精品国产| 精品久久蜜臀av无| 久久精品国产亚洲av涩爱| 老司机深夜福利视频在线观看 | 国产精品 国内视频| 国产欧美日韩一区二区三区在线| 亚洲国产欧美在线一区| 男女床上黄色一级片免费看| 美国免费a级毛片| 久久99精品国语久久久| 一个人免费看片子| 欧美日韩视频高清一区二区三区二| 一级毛片黄色毛片免费观看视频| 老司机在亚洲福利影院| 最黄视频免费看| 91成人精品电影| 久久影院123| 国产有黄有色有爽视频| 国产精品99久久99久久久不卡 | avwww免费| 看免费av毛片| 天堂中文最新版在线下载| 亚洲精品国产区一区二| 亚洲综合色网址| 亚洲成av片中文字幕在线观看| 精品国产国语对白av| 欧美精品人与动牲交sv欧美| 伊人久久大香线蕉亚洲五| 国产精品 欧美亚洲| 久久鲁丝午夜福利片| 久久久久精品性色| 视频区图区小说| 考比视频在线观看| av国产久精品久网站免费入址| 最新的欧美精品一区二区| 国产日韩欧美亚洲二区| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 婷婷成人精品国产| 熟女少妇亚洲综合色aaa.| 伦理电影大哥的女人| 久久久久国产精品人妻一区二区| 日本vs欧美在线观看视频| 欧美激情 高清一区二区三区| 又黄又粗又硬又大视频| av免费观看日本| 少妇精品久久久久久久| 国产成人av激情在线播放| 国产有黄有色有爽视频| 欧美亚洲日本最大视频资源| 日韩av免费高清视频| 久久精品人人爽人人爽视色| 最近2019中文字幕mv第一页| 99热网站在线观看| 欧美激情 高清一区二区三区| 国产精品久久久久成人av| 婷婷色综合大香蕉| 美女中出高潮动态图| av卡一久久| 母亲3免费完整高清在线观看| 男人舔女人的私密视频| 久久久久人妻精品一区果冻| 天天添夜夜摸| 亚洲精品国产区一区二| 日本猛色少妇xxxxx猛交久久| 波野结衣二区三区在线| 国产亚洲一区二区精品| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久免费av| 免费黄色在线免费观看| 国产成人欧美在线观看 | 少妇人妻久久综合中文| 18禁国产床啪视频网站| 一本大道久久a久久精品| 别揉我奶头~嗯~啊~动态视频 | 精品国产一区二区三区四区第35| 卡戴珊不雅视频在线播放| 国产极品天堂在线| 国产日韩欧美在线精品| 美女福利国产在线| 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂| 免费观看性生交大片5| 一级,二级,三级黄色视频| 日本91视频免费播放| 日日爽夜夜爽网站| 一级,二级,三级黄色视频| 波多野结衣av一区二区av| 黑人猛操日本美女一级片| 日韩,欧美,国产一区二区三区| 老司机深夜福利视频在线观看 | 精品一品国产午夜福利视频| 黄色怎么调成土黄色| 免费观看人在逋| 夜夜骑夜夜射夜夜干| 18在线观看网站| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 亚洲成人国产一区在线观看 | 国产 精品1| 青草久久国产|