• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Functionalized Graphene Sheets via Microwave-Assisted Solid-State Process and Their Electrochemical Capacitive Behaviors

    2013-09-29 02:24:28XUELuPingZHENGMingBoSHENChenFeiLHongLingLINianWuPANLiJiaCAOJieMingNanomaterialsResearchInstituteCollegeofMaterialsScienceandTechnologyNanjingUniversityofAeronauticsandAstronauticsNanjing006NationalLaboratoryofMicrostruc
    關(guān)鍵詞:功能化官能團(tuán)納米材料

    XUE Lu-PingZHENG Ming-BoSHEN Chen-FeiLü Hong-LingLI Nian-WuPAN Li-Jia CAO Jie-Ming*,(Nanomaterials Research Institute,College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 006)(National Laboratory of Microstructures,School of Electronic Science and Engineering,Nanjing University,Nanjing 0093)

    Preparation of Functionalized Graphene Sheets via Microwave-Assisted Solid-State Process and Their Electrochemical Capacitive Behaviors

    XUE Lu-Ping1ZHENG Ming-Bo2SHEN Chen-Fei1Lü Hong-Ling1LI Nian-Wu1PAN Li-Jia2CAO Jie-Ming*,1
    (1Nanomaterials Research Institute,College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016)(2National Laboratory of Microstructures,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093)

    Functionalized graphene sheets were produced by microwave-induced exfoliation of graphene oxide.Exfoliation happens when the oxygen-containing groups decomposed into CO2and H2O by microwave-heat,thus yielding pressures that exceed the Van der Waals attraction between the layers.X-ray diffraction,FTIR,SEM,TEM and nitrogen adsorption-desorption were used to characterize the samples.Scanning electron microscopy images show that the sample possesses nanoporous structures.Fourier-transform infrared spectroscopy characterization proves the existence of a few functional groups on the surface of graphene sheets.The results of nitrogen adsorption-desorption analysis indicate that the sample has high BET surface area (412.9 m2·g-1)and large pore volume (1.91 cm3·g-1).The electrochemical tests show that the sample has good electrochemical capacitive behavior and high specific capacitance values about 207.5 F·g-1in aqueous KOH.

    functionalized graphene sheets;microwave irradiation;supercapacitor;electrochemical measurements

    Graphene,an entirely new class of carbon with two dimensional(2D)structure,was first reported by Andre Geim and Kostya Novoselov in 2004[1].Graphene has attracted great interest because of the unique physical,chemical,and mechanical propertiesarising from its 2D form[2-4].Its special nanostructure holds great promiseforpotentialapplications,such asenergy-storage materials[5-7],composite materials[8-11],mechanical resonators[12-13],and transistors[13-17].However,it is a challenge to produce graphene on large scale.Micromechanicalcleavage ofgraphite to obtain graphene sheets was first reported in 2004[1],but this method is not amenable to large-scale production of graphene.Recently,several promising methods for mass production of graphene sheets have been reported[17-26].Chemically converted graphene sheets were prepared by the chemical reduction of exfoliated graphene oxide(GO)with reducing agents[17-20].Stoller et al.prepared graphene sheets by means of suspending GO in water and chemical reducing with hydrazine[20].This kind of graphene has some great performances,such as good conductivity and good supercapacitive properties(the specific capacitance of the sample was about 135 F·g-1at a discharge current of 10 mA in 5.5 mol·L-1KOH aqueoussolution).Functionalized graphene sheets(FGS)were reported to be preparedvia high temperature expansion of GO or a low-temperature reduction under high vacuum[18-21].Malesevic et al.produced few-layer graphene via microwave plasma-enhanced chemical vapor deposition (MW-PECVD)[25].However,high temperature or long reduction time is required for most of the methods listed above.For instance,the chemical reduction to exfoliated GO with reducingagents provides a meaningful approach to produce large-scale graphene sheets[17-20],but in most chemical reduction methods heating to nearly 100℃for several hours is necessary.As for the MW-PECVD method,heating substrates to 700℃is required[22].Furthermore,the thermalexfoliation ofGO usually requires high temperature(above 1 000℃)[21-22]or extreme exfoliation condition (vacuum)[24].Therefore,rapid exfoliation of GO under a mild condition is needed for the preparation of FGS in large quantity.Cote et al.produced graphene sheets by flash irradiation using GO as precursor[23].Thermal exfoliation of graphite intercalation compounds was reported by Falcao et al.using microwaves as a heat source[27].Microwave irradiation has also been used for the synthesis of graphene sheets in solvents[28-29].Hassan et al.produced graphene sheets supporting metal nanocrystals in aqueous and organic media by microwave irradiation[28].The main advantage of microwave irradiation is heating the samples uniformly and rapidly compared with other conventional heating methods.Here,the thermal reduction of GO is studied using microwave irradiation as heat source.

    More recently, many studies on the supercapactive behavior of graphene materials have been reported[7,20,24,30].Vivekchand et al.prepared the graphene by three different methods[7].The highest specific capacitance value of the sample was about 117 F·g-1in 1 mol·L-1H2SO4aqueous electrolyte.A low-temperature exfoliation approach to produce graphenes under high vacuum was reported by Lü et al[24].The specific capacitance value of the obtained graphene materials was up to 264 F·g-1in 5.5 mol·L-1KOH aqueous solution without any post-treatments without any post-treatments.Wang et al.prepared the graphene materials via a gas-solid reduction process[30].The maximum specific capacitance value of the sample was 205 F·g-1at energy density of 28.5 Wh·kg-1in a 30wt%KOH aqueous solution.

    In this work,we prepared FGS using GO as the precursor via an easy microwave induced solid-state process and investigated its electrochemical capacitive properties.The FGS sample possesses high BET surface area and large specific capacities in aqueous KOH(2 mol·L-1)electrolyte.The microwave-induced exfoliation approach provides a promising approach for mass production of graphenes at low cost.Moreover,the FGS products show great potential applications in electrochemical energy storage.

    1 Experimental section

    1.1 Preparation of FGS

    GO was prepared from natural graphite powders(universal grade,99.985%)according to hummers method[31-32].Simply,natural graphite powders were washed by 5%HCl twice,then filtered with distilled water,and dried at 110℃.10 g of washed graphite powder was added to cold (0℃)concentrated H2SO430 g of KMnO4was added gradually with stirring and cooling,so that the temperature of the mixture wascontrolled at not higher than 20℃.The mixture was stirred at 35℃for 30 min,then 460 mL distilled water was added slowly to the reaction vessel to cause an increase in temperature to 90℃and the mixture was continued to be stirred for 15 min.Finally,1.4 L distilled water and 100 mL 30%H2O2solution were added.After the reaction,the solution was held at room temperature for 24 h.The solid product was separated by vacuum filtration,washed with 5%HCl aqueous solution until sulfate could not be detected with BaCl2,then the reaction product was dried under vacuum at 50 ℃ for 48 h.Small amounts of the dried GO were added into a porcelain dish,then,the porcelain dish wasplaced inside a household microwave oven(G8023CSK-K3 2450 MHz,800 W)and irradiated at full power for different time in range of 30~240 s.The obtained samples were denoted as FGS1(30 s),FGS2(1 min),FGS3(2 min),and FGS4(4 min).

    1.2 Characterization

    X-ray diffraction patterns were performed by a BrukerD8-advance diffractometerequipped with graphite monochromatized Cu Kα,radiation(λ=0.154 05 nm).ThemorphologyofFGS wasobserved by transmission electron microscopy(TEM)(JEOL JEM-2100)and scanning electron microscopy (SEM)(Gemini,LEO 1530).Nitrogen adsorption-desorption was measured with a Micromeritics ASAP2010 instrument.Fourier transform infrared (FTIR)spectroscopy was performed with a Nicolet-670 FTIR spectrometer using the KBr pellet method.

    1.3 Electrochemical tests

    The electrochemical performance of FGS was evaluated by cyclic voltammetry (CV),galvanostatic charge-discharge(GC),and electrochemical impedance spectroscopy (EIS),which were done in a threeelectrode experimental setup using 2 mol·L-1KOH aqueous solution as the electrolyte.The prepared electrode was used as the working electrode.A platinum sheet and a saturated calomel electrode were used as counter and reference electrode,respectively.The working electrode was prepared as follows:80wt%FGS, 15wt% acetylene black, and 5wt%polytetrufluoroethylene were well mixed and pressed onto a nickel grid (1 cm2),and flaked under 10 MPa after being dried at 353 K for 12 h.The electrode contained about 5 mg of FGS.The CV,GC,and EIS measurements were carried out on CHI660C electrochemical workstation at room temperature.The potential rang of CV and GC was determined between-1.0 and-0.2 V(vs.SCE).The GC measurement was carried out in current density range of 1~10 A·g-1.The impedance spectroscopy measurement was performed with a frequency range of 100 kHz~0.01 Hz(amplitude of 5 mV at open circuit potential).

    2 Results and discussion

    2.1 Characterization of FGS

    Since GO is the oxidation production of pristine graphite,there are many functional groups on the surface of its carbon sheets,such as hydroxyl,carboxyl,and epoxyl groups.Fig.1 shows XRD patterns of the parent graphite,GO,FGS1,and FGS3.Compared with the pristine graphite,the native graphite peak disappears,and the feature diffraction peak of GO appears at 10.4°,corresponding to an interlayer spacing(d-spacing)of 0.85 nm,which indicates the complete oxidation of the starting graphite and most oxygen is bonded to the planar surface of graphite after the oxidization[33].After the microwave-heating treatment,the sharp peak around 10°at the XRD patterns disappears,indicating that oxygen intercalated into the interlayer spacing of graphite is largely removed by microwave irradiation.In Fig.1,FGS samples display amorphous structure patterns.

    Fig.1 XRD patterns of graphite,pristine GO,FGS1 and FGS3

    Fig.2 shows the FTIR spectra of GO,FGS1,and FGS3.In addition to a broad band(3427 cm-1)due to-OH groups[34],the characteristic peaks appear at 1 734,1 624,1 400,1 228,and 1 050 cm-1can be assigned to the C=O,aromatic C=C,carboxy C-O,epoxy C-O,and C-O groups on the surface of the GO layers.Compared with the pristine GO,the intensity of the peaks at 1 734 and 1 624 cm-1for FGS samples decrease,and the peaks at 1 400 and 1 050 cm-1disappear,which indicates that microwave irradiation removes most of the functional groups on the surface of the GO layers and still leaves a few residual functional groups on the surface of graphene sheets.

    Fig.2 FTIR spectra of GO,FGS1,and FGS3

    Low-magnification scanning electron microscopy(SEM)image(Fig.3(a))of FGS3 shows that the sample has many nanopores between the sheets,which results from the thermal exfoliation of GO.The nanoporous structure formed after the pressure generated by the decomposition of oxygen-containing groups via microwave-heat was enough to overcome the Van der Waals forces binding the GO sheets together.The high magnification SEM and transmission electron microscopy(TEM)images(Fig.3(b)and Fig.3(c))of FGS3 show a wrinkled paper-like structure of the ultrathin graphene sheets and stacking of sheets.In Fig.3(d),the selected area electron diffraction shows only weak and diffuse rings,which indicates that the graphene sheets lose the long range ordering.

    Fig.3 SEM images of FGS3(a,b),TEM and selected area electron diffraction pattern(SAED)of FGS3(c,d)

    The results ofnitrogen adsorption-desorption analysis(Fig.4(a))also prove that the FGS samples have nanoporous structure.Fig.4(b)indicates that these samples have a broad pore size distribution from 2 to 200 nm.The BET surface areas,pore volumes,and average pore sizes of the samples are shown in Table 1.It can be found that,compared with FGS3 (2 min irradiation),the BET surface areas of FGS samples have no significant change after extending the processing time.Furthermore,the BET surface areas of FGS arelower than the theoretical limit(2 630 m2·g-1)of graphene[23].It indicates that the FGS products contain extensive domains of stacked graphitic layers.

    Fig.4 (a)Nitrogen adsorption-desorption isotherms of FGS1 and FGS3.(b)BJH pore size distributions from adsorption branches for FGS1 and FGS3

    Table 1 BET surface areas,pore volumes,and average pore sizes of the FGS samples

    2.2 Electrochemical testing

    The supercapacitive behavior of FGS3 is analyzed using cyclic voltammetry (CV),galvanostatic chargedischarge (GC),and electrochemicalimpedance spectroscopy(EIS),which are done in a three-electrode system in aqueous KOH(2 mol·L-1)electrolyte.Fig.5(a)shows the CV curves of FGS3 with different scan rates(5~50 mV·s-1).At a relatively low scanning rate,the CV curves of FGS3 exhibit rectangular-like shape,even at a scanning rate as high as 50 mV·s-1,the CV curve still shows a rectangularshapewith smalldistortion,indicating an excellent supercapacitive behavior.

    Fig.5 (a)Cyclic voltammograms of the FGS3 obtained at different scan rates.(b)Galvanostatic discharge curves of FGS3 at different current density range from 1 to 10 A·g-1and mesoporous carbon CMK-3 at a current density of 1 A·g-1.(c)Electrochemical impedance spectra measured from 100 kHz to 0.01 Hz of the FGS3 and GO(amplitude of 5 mV at open circuit potential).Inset shows an enlarged scale.(d)Cycling performance of FGS3(current density:1 A·g-1).

    Discharge curves of the sample are performed at a current density range of 1~10 A·g-1.As seen in Fig.5(b).The specific capacitance is evaluated from the slope of the discharge curves,according to the equation:Cm=IΔt/(mΔv)[35],where I is the current of charge-discharge,Δt is the time of discharge,m is the mass of active materials in the working electrode,and ΔV is 0.8 V.The evaluated results (Table 2)indicate that FGS3 possesses higher capacitance retention (72.3%)at a current density of 10 A·g-1.Specific capacitance per surface unit CSA(μF·cm-2)is calculated using equation:CSA=Cm/SA[36],where SA is the BET surface area(m2·g-1).The BET surface area of mesoporous carbon CMK-3 is around 1196 m2·g-1and the specific capacitance of CMK-3 at the current density of 1 A·g-1is about 124.4 F·g-1.The specific capacitance per surface area of FGS3 calculated is about 50.3 μF·cm-2at the current density of 1 A·g-1,which is much higher than 10.4 μF·cm-2afforded by CMK-3.

    Table 2 Specific capacitances obtained from GC methods and capacitance retention for FGS3

    The impedance spectra consist of a semicircle in high-frequency range and a line inclined at a constant angle to the real axis in low-frequency range.The semicircle portion observed athigh frequencies corresponds to the charge transfer limiting process.As we can see from Fig.5(c),low-down semicircles are observed at high frequency region,from the diameter of semicircle,the internal resistance of FGS3 is lower than GO.It indicates that the conductive performance of FGS3 is enhanced significantly.The inclined line in low-frequency range is attributed to Warburg impedance that is associated with electrolyte diffusion through the anode.Compared with GO,the imaginary part of the impedance spectra at low frequencies of FGS3 is much closer to a 90°line in an ideal capacitor,indicating an ideal supercapacitive behavior of FGS3.Moreover,the electrical conductivity of FGS is an effective indicator to the exfoliation extent of GO[37].The results show the effective exfoliation of GO.

    Long cycle life of supercapacitor is important for its practical applications[38-39].Fig.4(d)shows the variation of specic capacitance for FGS3 at a constant current density of 1 A·g-1.As can be seen,the sample possesses high capacitance retention(92.2%)after 500 cycles of testing.

    For the supercapacitive electrode materials,the efficient adsorption of electrolyte ions is crucial to generate high specific capacitance[40].The morphology characterization of FGS shows that the samples have a nanoporous structure~and low degree of agglomeration.Different from conventional carbon materials used for supercapacitor,the structure ofFGS allowsthe electrolyte ion to penetrate both the outer and inner region of the solids.Therefore,both sides of exfoliated graphene sheets could be exposed to the electrolyte and contribute to the capacitance.Furthermore,the residual functional groups on the surface of FGS may improve the hydrophilicity of electrode and afford the pseudocapacitance[41-42],thus enhancing the overall charge storage capability.

    3 Conclusion

    In summary,an easy,high yield,green,and fast microwave-induced solid state approach to the synthesis of FGS is reported using GO as precursor.The results of electrochemical tests indicate that the FGS sample has good supercapacitive behavior and conductivity.The present method can be used to prepare graphene sheets in large scale.The produced graphenes are expected to be used for further application in electrochemical energy storage and electrocatalysis.

    [1]Novoselov K S,Geim A K,Morozov S V,et al.Science,2004,306:666-669

    [2]Dikin D A,Stankovich S,Zimney E J,et al.Nature,2007,448:457-460

    [3]Wang G X,Yang J,Park J,et al.J.Phys.Chem.C,2008,112:8192-8195

    [4]HUANG Gui-Rong(黃桂榮),CHEN Jian(陳 建).Carbon Techniques(Tansu Jishu),2009,1(28):35-39

    [5]Novoselov K S,Jiang D,Schedin F,et al.Proc.Natl.Acad.Sci.U.S.A.,2005,102:10451-10453

    [6]Takamura T,Endo K,Fu L,et al.T.Eletrochim.Acta,2007,53:1055-1061

    [7]Vivekchand S R C,Rout C S,Subrahmanyam K S,et al.J.Chem.Sci.,2008,120:9-13

    [8]Stankovich S,Dikin D A,Dommett G H B,et al.Nature,2006,442:282-286

    [9]Watcharotone S,Dikin D A,Stankovich S,et al.Nano Lett.,2007,7:1888-1892

    [10]ZHANG Xiao-Yan(張曉艷),LI Hao-Peng(李浩鵬),CUI Xiao-Li(崔曉莉).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(11):1903-1907

    [11]Singh V K,Patra M K,Manoth M,et al.New Carbon Mater.(Xinxing Tan Cailiao),2009,24(2):147-152

    [12]Bunch J S,Van Der Zande A M,Verbridge S S,et al.Science,2007,315:490-493

    [13]Liang Y Y,Wu D Q,Feng X L,et al.Adv.Mater.,2009,21:1679-1683

    [14]Liang G,Neophytou N,Nikonov D E,et al.IEEE Trans.Electron.Dev.,2007,54:677-682

    [15]Li X L,Wang X R,Zhang L,et al.Science,2008,319:1229-1232

    [16]YanQM,HuangB,YuJ,etal.NanoLett.,2007,7:1469-1473

    [17]Stankovich S,Piner R D,Chen X,et al.J.Mater.Chem.,2006,16:155-158

    [18]Gilije S,Han S,Wang M,et al.Nano Lett.,2007,7:3394-3398

    [19]Fan B X,Peng W,Li Y,et al.Adv.Mater.,2008,20:1-4

    [20]Stoller M D,Park S,Zhu Y W,et al.Nano Lett.,2008,8:3498-3502

    [21]Schniepp H C,Li J L,McAllister M J,et al.J.Phys.Chem.B,2006,110:8535-8539

    [22]McAllister M J,Li J L,Adamson D H,et al.Chem.Mater.,2007,19:4396-4404

    [23]Verdejo R,Barroso-Bujans F,Rodriguez-Perez M A,et al.J.Mater.Chem.,2008,18:2221-2226

    [24]Lü W,Tang D M,He Y B,et al.ACS Nano,2009,3:3730-3736

    [25]Malesevic A,Vitchev R,Schouteden K,et al.Nanotechnology,2008,19:305604

    [26]Cote L J,Cruz-Silva R,Huang J X.J.Am.Chem.Soc.,2009,131:11027-11032

    [27]Falcao E H L,Blair R G,Mack J J,et al.Carbon,2007,45:1364-1369

    [28]Hassan H M A,Abdelsayed V,Khder A S,et al.J.Mater.Chem.,2009,19:3832-3837

    [29]Murugan A V,Muraliganth T,Manthiram A.Chem.Mater.,2009,21:5004-5006

    [30]Wang Y,Shi Z Q,Huang Y,et al.J.Phys.Chem.C,2009,113:13103-13107

    [31]Hummers W S,Offeman R E.J.Am.Chem.Soc.,1958,80:1339-1339

    [32]Liu P G,Gong K C,Xiao P,et al.J.Mater.Chem.,2000,10:933-935

    [33]Jeong H K,Lee Y P,Lahaye R J.et al.J.Am.Chem.Soc.,2008,130:1362-1366

    [34]Subrahmanyam K S,Vivekchand S R C,Govindaraj A C,et al.J.Mater.Chem.,2007,18:1517-1523

    [35]Zheng M B,Cao J,Liao S T,et al.J.Phys.Chem.C,2009,113:3887-3894

    [36]Hulicova D,Yamashita J,Soneda Y,et al.Chem.Mater.,2005,17:1241-1247

    [37]Guo H L,Wang X F,Qian Q Y,et al.ACS Nano,2009,3:2653-2659

    [38]Simon P,Gogotsi Y.Nat.Mater.,2008,7:845-854

    [39]SUN Zhe(孫 哲),LIU Kai-Yu(劉開宇),ZHANG Hai-Feng(張海峰),et al.Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao),2009,25(10):1991-1997

    [40]Futaba D N,Hata K,Yamada T,et al.Nat.Mater.,2006,5:987-994

    [41]WANG Xiao-Feng(王曉峰),WANG Da-Zhi(王大志),LIANG Ji(梁 吉).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2003,19(2):137-141

    [42]Du Q L,Zheng M B,Zhang L F,et al.Eletrochim.Acta,2010,55:3897-3903

    微波固相剝離法制備功能化石墨烯及其電化學(xué)電容性能研究

    薛露平1鄭明波2沈辰飛1呂洪嶺1李念武1潘力佳2曹潔明*,1

    (1南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院納米材料研究所,南京 210016)(2南京大學(xué)微結(jié)構(gòu)國家實(shí)驗(yàn)室電子科學(xué)與工程學(xué)院,南京 210093)

    通過微波固相剝離氧化石墨制備了功能化石墨烯材料。石墨烯的剝離,是由于微波加熱過程中氧化石墨烯片上的官能團(tuán)分解為CO2和H2O,產(chǎn)生的壓力超過了片層間的范德華力。形貌表征顯示了石墨烯的有效剝離和納米孔結(jié)構(gòu)的形成。紅外光譜分析結(jié)果表明微波剝離的功能化石墨烯仍然有少量的官能團(tuán)殘留。N2等溫吸附-脫附測試結(jié)果表明樣品具有高比表面積(412.9 m2·g-1)和大孔容(1.91 cm3·g-1)。電化學(xué)測試結(jié)果表明功能化石墨烯具有良好的電化學(xué)電容行為和207.5 F·g-1的比電容。

    功能化石墨烯;微波輻射;超級電容器;電化學(xué)測試

    O613.71

    :A

    :1001-4861(2010)08-1375-07

    2010-04-19。收修改稿日期:2010-05-22。

    薛露平,男,25歲,碩士研究生;研究方向:納米材料。

    國家自然科學(xué)基金(No.6076019),江蘇省自然科學(xué)基金(No.BK2006195),NCET資助項(xiàng)目。

    *通訊聯(lián)系人。 E-mail:jmcao@nuaa.edu.cn

    猜你喜歡
    功能化官能團(tuán)納米材料
    熟記官能團(tuán)妙破有機(jī)題
    武器中的納米材料
    學(xué)與玩(2022年8期)2022-10-31 02:41:56
    二維納米材料在腐蝕防護(hù)中的應(yīng)用研究進(jìn)展
    在對比整合中精準(zhǔn)把握有機(jī)官能團(tuán)的性質(zhì)
    石墨烯及其功能化復(fù)合材料制備研究
    污泥中有機(jī)官能團(tuán)的釋放特性
    MoS2納米材料的制備及其催化性能
    逆向合成分析法之切斷技巧
    抗輻照納米材料的研究進(jìn)展
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    日韩中文字幕视频在线看片| 极品教师在线视频| 亚洲丝袜综合中文字幕| 久久人妻熟女aⅴ| 18禁动态无遮挡网站| 婷婷色综合www| 久久精品久久精品一区二区三区| 丰满人妻一区二区三区视频av| 水蜜桃什么品种好| 自拍偷自拍亚洲精品老妇| 免费黄网站久久成人精品| 亚洲综合精品二区| 国内精品宾馆在线| 曰老女人黄片| 男人和女人高潮做爰伦理| 久久午夜福利片| 偷拍熟女少妇极品色| 国产精品女同一区二区软件| 亚洲,一卡二卡三卡| 少妇裸体淫交视频免费看高清| 亚洲精品久久午夜乱码| 一区二区三区精品91| 一本久久精品| 偷拍熟女少妇极品色| 免费av中文字幕在线| 久久午夜综合久久蜜桃| 亚洲精品国产色婷婷电影| 啦啦啦在线观看免费高清www| 亚洲国产av新网站| 一区在线观看完整版| 在线观看av片永久免费下载| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久久电影| 高清在线视频一区二区三区| 色婷婷av一区二区三区视频| 亚洲精品久久久久久婷婷小说| 99精国产麻豆久久婷婷| 亚洲精品亚洲一区二区| 爱豆传媒免费全集在线观看| 亚洲精品久久午夜乱码| 少妇人妻精品综合一区二区| 国产亚洲av片在线观看秒播厂| 欧美老熟妇乱子伦牲交| 国产黄片美女视频| 亚洲一区二区三区欧美精品| 亚洲av男天堂| 亚洲国产欧美在线一区| 女人精品久久久久毛片| 日本vs欧美在线观看视频 | 亚洲欧美日韩另类电影网站| 国产淫片久久久久久久久| 春色校园在线视频观看| 熟女人妻精品中文字幕| av黄色大香蕉| 久久久欧美国产精品| 精品人妻熟女毛片av久久网站| 亚洲电影在线观看av| 天天操日日干夜夜撸| 美女大奶头黄色视频| 午夜福利网站1000一区二区三区| 精品国产露脸久久av麻豆| 日韩欧美 国产精品| 亚洲熟女精品中文字幕| 亚洲av成人精品一二三区| 九色成人免费人妻av| 国产综合精华液| 99久久综合免费| 国产精品99久久99久久久不卡 | 高清在线视频一区二区三区| 亚洲国产毛片av蜜桃av| 国产成人午夜福利电影在线观看| 国产一区二区三区综合在线观看 | 高清黄色对白视频在线免费看 | 久久国内精品自在自线图片| 免费在线观看成人毛片| av黄色大香蕉| 欧美日韩亚洲高清精品| 久久久久久久精品精品| 久久人人爽av亚洲精品天堂| 精品少妇久久久久久888优播| 亚洲av免费高清在线观看| 亚洲欧美日韩另类电影网站| 免费黄色在线免费观看| 蜜桃久久精品国产亚洲av| 欧美老熟妇乱子伦牲交| 国产精品一区二区性色av| 如日韩欧美国产精品一区二区三区 | 少妇丰满av| 99九九线精品视频在线观看视频| 人妻少妇偷人精品九色| 免费黄网站久久成人精品| 亚洲丝袜综合中文字幕| 欧美日韩一区二区视频在线观看视频在线| 91午夜精品亚洲一区二区三区| 日韩一本色道免费dvd| 亚洲精品aⅴ在线观看| 免费黄频网站在线观看国产| 成人午夜精彩视频在线观看| 日韩欧美一区视频在线观看 | 多毛熟女@视频| 国产精品欧美亚洲77777| 美女主播在线视频| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| 一级爰片在线观看| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲国产日韩| 97超视频在线观看视频| 日韩中文字幕视频在线看片| 欧美精品一区二区大全| 观看av在线不卡| 又粗又硬又长又爽又黄的视频| 国国产精品蜜臀av免费| 亚洲欧美精品自产自拍| 久久国产精品大桥未久av | 欧美性感艳星| 久久久久国产精品人妻一区二区| 久久狼人影院| 边亲边吃奶的免费视频| 十分钟在线观看高清视频www | 久久精品国产鲁丝片午夜精品| 岛国毛片在线播放| 最黄视频免费看| 国产高清国产精品国产三级| 一区二区三区四区激情视频| 老司机亚洲免费影院| 三级国产精品片| 国产视频首页在线观看| 99视频精品全部免费 在线| 欧美日韩在线观看h| 大片电影免费在线观看免费| 九九久久精品国产亚洲av麻豆| 国产精品人妻久久久影院| 一级片'在线观看视频| 99热这里只有是精品50| 国产成人aa在线观看| 亚洲精品成人av观看孕妇| 久久狼人影院| 91久久精品电影网| av又黄又爽大尺度在线免费看| 免费观看无遮挡的男女| 欧美丝袜亚洲另类| av在线app专区| 日韩欧美一区视频在线观看 | 国产av国产精品国产| 天堂俺去俺来也www色官网| 中文字幕人妻熟人妻熟丝袜美| 中文资源天堂在线| 欧美+日韩+精品| 啦啦啦中文免费视频观看日本| 2018国产大陆天天弄谢| 久久久久视频综合| 美女cb高潮喷水在线观看| 丝袜在线中文字幕| 又黄又爽又刺激的免费视频.| 黄色配什么色好看| 亚洲真实伦在线观看| 夫妻午夜视频| 视频中文字幕在线观看| 午夜老司机福利剧场| 超碰97精品在线观看| 丝袜喷水一区| 国产精品国产av在线观看| 精品亚洲乱码少妇综合久久| 九九久久精品国产亚洲av麻豆| 国产成人精品无人区| 国产精品福利在线免费观看| 久久久精品94久久精品| 色婷婷久久久亚洲欧美| 欧美精品高潮呻吟av久久| 国产高清三级在线| 国产精品女同一区二区软件| av在线播放精品| 国产中年淑女户外野战色| 国产一区有黄有色的免费视频| 人体艺术视频欧美日本| 777米奇影视久久| 亚洲精品日本国产第一区| 成年女人在线观看亚洲视频| 国产av精品麻豆| 日韩中字成人| 日韩强制内射视频| 日韩电影二区| 亚洲国产精品国产精品| 国产av精品麻豆| 黑人高潮一二区| 老司机影院成人| 国产一区有黄有色的免费视频| 全区人妻精品视频| 免费播放大片免费观看视频在线观看| 精品午夜福利在线看| 王馨瑶露胸无遮挡在线观看| 亚洲av福利一区| 国产男女超爽视频在线观看| 久久热精品热| 国产一区亚洲一区在线观看| 黄色毛片三级朝国网站 | 国产精品人妻久久久久久| 天堂中文最新版在线下载| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av成人精品| 亚洲综合精品二区| 最近中文字幕高清免费大全6| 一级二级三级毛片免费看| 久久 成人 亚洲| 久久国产乱子免费精品| 成人18禁高潮啪啪吃奶动态图 | 国产精品偷伦视频观看了| 久久99精品国语久久久| 欧美 亚洲 国产 日韩一| 日韩免费高清中文字幕av| 超碰97精品在线观看| 丁香六月天网| 另类精品久久| 国产在线男女| 欧美xxⅹ黑人| 欧美精品国产亚洲| 熟女人妻精品中文字幕| 国产免费又黄又爽又色| 久久6这里有精品| 久久97久久精品| 久久精品国产亚洲网站| 精品99又大又爽又粗少妇毛片| 欧美老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 爱豆传媒免费全集在线观看| 人妻人人澡人人爽人人| 欧美成人午夜免费资源| 亚洲经典国产精华液单| 国产一区二区在线观看av| 精品少妇内射三级| 十八禁高潮呻吟视频 | 五月玫瑰六月丁香| av女优亚洲男人天堂| 日韩在线高清观看一区二区三区| 在线观看免费日韩欧美大片 | 精品一区在线观看国产| 国产免费一区二区三区四区乱码| 免费看av在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 国产一区二区三区综合在线观看 | 亚洲图色成人| 久久久久久久久久久免费av| 美女国产视频在线观看| 最近手机中文字幕大全| 亚洲人成网站在线观看播放| 午夜日本视频在线| 美女xxoo啪啪120秒动态图| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 国产成人免费观看mmmm| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 日本与韩国留学比较| 亚洲国产精品一区三区| 国产精品伦人一区二区| 三级经典国产精品| av免费观看日本| 少妇裸体淫交视频免费看高清| 久久久久久久国产电影| 国产在线男女| 妹子高潮喷水视频| 午夜视频国产福利| 最新的欧美精品一区二区| 搡老乐熟女国产| 99久国产av精品国产电影| 极品教师在线视频| 男人狂女人下面高潮的视频| 欧美日本中文国产一区发布| 亚洲激情五月婷婷啪啪| 国国产精品蜜臀av免费| 一级黄片播放器| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 国产淫片久久久久久久久| 国产精品99久久久久久久久| 国产欧美日韩综合在线一区二区 | 精品一区二区三区视频在线| 国产在线免费精品| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频 | 黑人猛操日本美女一级片| 国产成人aa在线观看| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 日韩一区二区三区影片| 女性生殖器流出的白浆| 久久久精品94久久精品| 午夜精品国产一区二区电影| 人妻夜夜爽99麻豆av| 在线观看国产h片| 欧美成人午夜免费资源| 三级国产精品欧美在线观看| 人人澡人人妻人| 久久久久久人妻| 日韩欧美 国产精品| 啦啦啦视频在线资源免费观看| av在线老鸭窝| av在线观看视频网站免费| 人妻人人澡人人爽人人| 国产精品不卡视频一区二区| 久久99精品国语久久久| av在线播放精品| 内地一区二区视频在线| 久久久久久久久久久免费av| 亚洲av男天堂| 人妻人人澡人人爽人人| 久久国产精品男人的天堂亚洲 | 最后的刺客免费高清国语| 中文字幕久久专区| 天天操日日干夜夜撸| 大码成人一级视频| 97精品久久久久久久久久精品| 午夜免费观看性视频| 国产有黄有色有爽视频| 丰满人妻一区二区三区视频av| 一级毛片电影观看| 国产精品秋霞免费鲁丝片| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻一区二区| 日韩成人伦理影院| 少妇人妻一区二区三区视频| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 男女免费视频国产| 看非洲黑人一级黄片| 亚洲高清免费不卡视频| 丝袜在线中文字幕| 岛国毛片在线播放| 国产午夜精品久久久久久一区二区三区| 搡老乐熟女国产| 麻豆成人午夜福利视频| 国产日韩欧美在线精品| 伊人亚洲综合成人网| 久久久久久伊人网av| 一二三四中文在线观看免费高清| 国产精品久久久久久久久免| av天堂中文字幕网| 亚洲精品色激情综合| 一级av片app| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频 | 国产成人免费无遮挡视频| 国产在线一区二区三区精| 国产熟女欧美一区二区| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区 | 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 在线天堂最新版资源| 欧美国产精品一级二级三级 | 肉色欧美久久久久久久蜜桃| 国产男人的电影天堂91| 欧美xxxx性猛交bbbb| 亚洲无线观看免费| 日本午夜av视频| 一区二区三区免费毛片| 日韩电影二区| 99热国产这里只有精品6| 丝袜脚勾引网站| 看十八女毛片水多多多| 日韩强制内射视频| 久久久久久久大尺度免费视频| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| av有码第一页| 亚洲精品国产成人久久av| 久久精品国产亚洲av天美| 男女边摸边吃奶| 春色校园在线视频观看| 尾随美女入室| 国产成人精品婷婷| 久久精品国产a三级三级三级| 美女大奶头黄色视频| videossex国产| 国产高清三级在线| 成年美女黄网站色视频大全免费 | 久久久久久久国产电影| av福利片在线观看| 大码成人一级视频| 久热久热在线精品观看| 女人久久www免费人成看片| 大片电影免费在线观看免费| 国产91av在线免费观看| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看 | 国产中年淑女户外野战色| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 高清毛片免费看| 男女边摸边吃奶| 卡戴珊不雅视频在线播放| 午夜影院在线不卡| 91aial.com中文字幕在线观看| 热re99久久国产66热| 人妻 亚洲 视频| 亚洲国产精品专区欧美| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 99九九线精品视频在线观看视频| 国模一区二区三区四区视频| 在线观看美女被高潮喷水网站| 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| 99久久综合免费| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 内地一区二区视频在线| 亚洲精品日韩av片在线观看| 大香蕉97超碰在线| kizo精华| 亚洲av.av天堂| 香蕉精品网在线| freevideosex欧美| 久久久久精品性色| h日本视频在线播放| 亚洲精品国产色婷婷电影| 18禁动态无遮挡网站| av线在线观看网站| 人体艺术视频欧美日本| 黄色毛片三级朝国网站 | 少妇人妻 视频| 久久人人爽人人片av| 人妻制服诱惑在线中文字幕| 国产精品一区二区在线不卡| 日本91视频免费播放| 国产极品天堂在线| 欧美+日韩+精品| 免费av中文字幕在线| 久久精品国产亚洲av天美| av免费观看日本| 久久人人爽人人片av| 制服丝袜香蕉在线| 免费大片18禁| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 人妻人人澡人人爽人人| 国产在线免费精品| 色视频在线一区二区三区| 午夜免费男女啪啪视频观看| 国产成人免费观看mmmm| 纯流量卡能插随身wifi吗| 在线观看av片永久免费下载| 国产亚洲最大av| 国产成人免费观看mmmm| 另类精品久久| 91久久精品电影网| 亚洲综合精品二区| 国产在线免费精品| av国产精品久久久久影院| 亚洲性久久影院| 精品久久久久久久久av| 观看免费一级毛片| 亚洲av.av天堂| 国产精品久久久久久精品古装| 久久99精品国语久久久| 免费黄色在线免费观看| 国产永久视频网站| 亚洲欧美中文字幕日韩二区| 国产精品一区二区性色av| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www | 亚洲精品国产av蜜桃| 91午夜精品亚洲一区二区三区| av女优亚洲男人天堂| 永久网站在线| 午夜91福利影院| 黄色日韩在线| 男男h啪啪无遮挡| av有码第一页| 亚洲欧美日韩卡通动漫| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| 日韩一区二区视频免费看| 啦啦啦在线观看免费高清www| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 99热网站在线观看| 日本爱情动作片www.在线观看| 日日摸夜夜添夜夜添av毛片| 欧美精品国产亚洲| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 青春草国产在线视频| 日本午夜av视频| 午夜精品国产一区二区电影| 亚洲欧洲国产日韩| 熟妇人妻不卡中文字幕| 搡女人真爽免费视频火全软件| 久久99热6这里只有精品| freevideosex欧美| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| 国产淫片久久久久久久久| 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 免费观看在线日韩| 国产精品嫩草影院av在线观看| 边亲边吃奶的免费视频| 水蜜桃什么品种好| 婷婷色麻豆天堂久久| 免费在线观看成人毛片| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 国内揄拍国产精品人妻在线| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 亚洲精品国产av蜜桃| www.色视频.com| 国产亚洲av片在线观看秒播厂| 精品午夜福利在线看| 国产淫语在线视频| 国产亚洲最大av| 国产在线视频一区二区| 免费观看性生交大片5| 尾随美女入室| 中文精品一卡2卡3卡4更新| 成人综合一区亚洲| 精品久久国产蜜桃| av天堂久久9| 中文资源天堂在线| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 最后的刺客免费高清国语| 亚洲av日韩在线播放| 最近的中文字幕免费完整| 日韩欧美 国产精品| 一本一本综合久久| 成人毛片60女人毛片免费| 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 99久国产av精品国产电影| 精品熟女少妇av免费看| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 亚洲性久久影院| 色视频在线一区二区三区| 久久久久国产网址| 能在线免费看毛片的网站| 国产精品一区二区性色av| 狂野欧美激情性bbbbbb| 只有这里有精品99| 91精品国产九色| 国产欧美日韩综合在线一区二区 | 女人久久www免费人成看片| 大片免费播放器 马上看| 久久久久久久久久久免费av| 99久久综合免费| 亚洲国产日韩一区二区| 亚洲情色 制服丝袜| 国产成人午夜福利电影在线观看| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说| 久久久久精品性色| 成人亚洲欧美一区二区av| 久久青草综合色| 蜜桃在线观看..| 免费av中文字幕在线| 夜夜爽夜夜爽视频| 久久精品久久久久久噜噜老黄| 熟女人妻精品中文字幕| 人人妻人人澡人人爽人人夜夜| 一级毛片久久久久久久久女| 欧美 亚洲 国产 日韩一| 日本黄色片子视频| 永久免费av网站大全| 国产免费一区二区三区四区乱码| 欧美+日韩+精品| 男女边吃奶边做爰视频| 国产成人精品一,二区| 如日韩欧美国产精品一区二区三区 | tube8黄色片| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 男女免费视频国产| 国产高清有码在线观看视频| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| 国产极品粉嫩免费观看在线 | 国产一区二区三区av在线| 乱系列少妇在线播放| 91久久精品电影网| av女优亚洲男人天堂| freevideosex欧美| 自线自在国产av| 九色成人免费人妻av| 十八禁网站网址无遮挡 | 亚洲中文av在线| 春色校园在线视频观看| 日韩人妻高清精品专区| 晚上一个人看的免费电影| 黑人高潮一二区| 亚洲,欧美,日韩| 婷婷色综合www| 国产精品福利在线免费观看| kizo精华| 观看美女的网站| 欧美最新免费一区二区三区| 亚洲欧美清纯卡通| 亚洲精品日韩在线中文字幕|