• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N3/Al2O3/N749交替組裝結(jié)構(gòu)拓寬準(zhǔn)固態(tài)染料敏化太陽能電池光響應(yīng)范圍和界面修飾效果

    2013-09-21 08:59:16牛廣達(dá)王立鐸馬蓓蓓
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:敏化物理化學(xué)學(xué)報(bào)

    高 瑞 牛廣達(dá) 王立鐸 馬蓓蓓 邱 勇

    (清華大學(xué)化學(xué)系,有機(jī)光電子及分子工程教育部重點(diǎn)實(shí)驗(yàn)室,北京100084)

    1 Introduction

    Dye-sensitized solar cell(DSC)was first reported by Gr?tzel et al.in 1991.1It was considered as an alternative to the traditional silicon soar cell due to its lower productive cost and easy fabrication process.Up to now,much attention had been focused on both the efficiency2-5and stability6-11of DSCs.Conversion efficiency up 12%had been achieved up to now.12

    Photoresponse of sensitizers was a key element in improving performance of DSCs.To enhance the spectrum response over a wider wavelength range,multi-layer sensitized TiO2electrode with different dyes have been used since 1997.13These methods of fabricating multi-layer sensitized TiO2electrodes were always carried out through adsorbing different dyes onto the TiO2films layer by layer through dipping them in different dye solutions successively.14,15However,these methods suffered from competition adsorption or mismatch of energy level of different dye molecules.And excessive adsorption could cause the dye aggregation,which increased the electron quenching and charge recombination in DSCs.As a result,the light-capture efficiency of the cells could be enhanced,but the devices'conversion efficiency was not improved obviously.16-18

    To avoid the problems mentioned above,a secondary metal oxide layer was applied for two-layer or multi-layer sensitization of TiO2electrode to separate different dye layers.In this way,the second layer of dye was adsorbed on the metal oxide interlayer.After being sensitized with the first layer of dye,a secondary Al2O3layer was deposited on the sensitized TiO2film.Then the second layer of dye was adsorbed.19Through this method,a significant enhancement of conversion efficiency was achieved.20Besides the sensitizer,the interface of sensitized TiO2/electrolyte in DSCs is also a vital factor for performance of DSCs.21,22Several important reactions in DSCs occurred at this interface,such as the dye electron injection,charge transfer,charge recombination,and dye regeneration.Accordingly,interface modification was considered as a useful method of improving the performance of DSCs.23-29Many metal oxides,such as Al2O3,30,31MgO,32Nb2O5,33SiO2,34ZnO,35or ZrO2,36have been used to make the interface modification between TiO2film and dye.Furthermore,many other insulating materials were also found to be effective in blocking recombination and increasing the conversion efficiency of DSCs.Al2O3was an excellent modification material for TiO2photoanode as it could retard the charge recombination in DSCs obviously.37,38Durrant et al.39obtained a 30%efficiency enhancement using Al2O3modification of DSCs in 2002.In the previous work,40,41the modification with Al2O3after sensitization could improve the conversion efficiency and stability of DSCs by prohibiting the aggregation of N3 dyes and spacing the TiO2and the electrolyte.Furthermore,Al2O3also could adsorb the second layer of dye to form an alternating assembly structure by the interaction of oxygen in Al2O3and hydrogen in the carboxyl group in the dye molecule.40,41

    The previous studies about the multi-layer sensitizing mainly focused on the extended photoresponse.20However,the effects of Al2O3,which was used as the carrier layer,had not been studied systemically.To investigate the interface effect of Al2O3in the multi-layer sensitizing structure,this paper introduced an alternating structure with different dyes,which was N3/Al2O3/N749 assembled.The effects of Al2O3and the interface electron processes were discussed systemically.Furthermore,the electron process and internal resistance were analyzed and the mechanism of device based on the alternating assembly structure was simulated by establishing an equivalent circuit model.This structure could combine the advantages of broadening spectrum response of sensitizer and interface modification to retard the charge recombination.

    2 Experimental

    2.1 Materials

    Poly(ethylene oxide)(PEO,Mw=2×106,Aldrich),iodine(I2,Guangdong Xilong Chemicals,China,analytically pure),lithium iodide(LiI,Acros Organics,99%),4-tertbutylpyridine(TBP,Sigma,99%),aluminium isopropoxide(Al(OC3H7)3,Alfa Aesar,99%),3-methoxypropionitrile(MePN,Alfa Aesar,99%),cis-dithiocyanate-N,N'-bis(4,4'-dicarboxylate-2,2'-bipyridine)ruthenium(II)(N3,Solaronix,Switzerland).{(C4H9)4N}3·[Ru(Htctpy)(NCS)3](tctpy=4,4',4?-tricarboxy-2,2',6',2?-terpyridine)(N749,Solaronix,Switzerland).

    2.2 Preparation of the photoanode

    The TiO2colloid was prepared with a hydrothermal method,which has been well documented in the previous report.42To prepare porous TiO2film,transparent conductive F-doped SnO2(FTO)glass(12 Ω·□-1)was completely cleaned and then a thin compact TiO2film(about 8 nm in thickness)was deposited on the FTO by dip coating in order to improve ohmic contact and adhesion between the following porous TiO2layer and the conductive FTO glass.The doctor blade technique was then adopted to prepare the porous TiO2layer with the thickness of the porous layer being controlled by an adhesive tape.Afterwards,the film was thermo-treated at 450°C for 30 min.When cooled to 110°C,the TiO2electrode was sensitized by immersion in 0.3 mmol·L-1N3 absolute ethanol solution for 2 h and cleaned with absolute ethanol.

    Coating of Al2O3was performed as follows:the sensitized TiO2film was dipped into a solution of Al(OC3H7)3for 30 s,then hydrolyzed in air for 30 min to make produced isopropanol during the hydrolysis reaction volatilize.Then the TiO2film was sensitized with 0.3 mmol·L-1N749 absolute ethanol solution dye for 2 h,then the TiO2/N3/Al2O3/N749 structure was assembled.

    2.3 Preparation of the electrolyte

    The preparation procedure for the polymer gel electrolytes includes two steps.First,liquid electrolyte was prepared.Second,poly(ethylene oxide)(PEO)was slowly added into the liquid electrolyte and heated under strong stirring until the polymer gel electrolyte became homogeneous.The composition of the liquid electrolyte is as follows:0.1 mol·L-1LiI,0.1 mol·L-1I2,0.6 mol·L-11,2-dimethyl-3-propyl imidazolium iodide(DMPII),and 0.45 mol·L-1N-methyl-benzimidazole(NMBI).The solvent was 3-methoxypropionitrile(MePN);43the mass fraction(versus liquid electrolyte)for the PEO in the electrolyte was 10.0%.

    2.4 Fabrication of the DSCs

    A chemically platinized conductive glass was used as the counter electrode.When assembling the DSCs,the polymer gel electrolyte was sandwiched by a sensitized TiO2electrode and a counter electrode with two clips;the space between the two electrodes was controlled by an adhesive tape with a thickness of 30 μm.Finally,the DSCs were baked at 80 °C to ensure that the polymer could penetrate into the TiO2film.

    2.5 Characterization

    The UV-Vis reflectance absorption spectra were measured with a Hitachi U-3010 spectroscope.Photocurrent-voltage(IV)and dark current measurements were performed using a Keithley Model 4200-SCS semiconductor characterization system with real-time plotting and analysis with an active area of 0.25 cm2.EIS,IMVS,and IMPS were investigated by ZAHNER CIMPS electrochemical workstation,Germany.The incident photon-to-current conversion efficiency(IPCE)was measured by using a lab-made IPCE setup in Professor Meng's laboratory inInstituteof Physics,ChineseAcademyof Sciences.

    3 Results and discussion

    3.1 Photoresponse

    Fig.1 showed the UV-Vis absorption spectra of N3,N749,and N3/Al2O3/N749 adsorbed onto TiO2films.The absorption peak of N3 was at about 530 nm,and that of N749 was at 620 nm.When the structure of N3/Al2O3/N749 was applied,a wide absorption peak from 530 to 620 nm could be observed.The results of UV-Vis absorption showed that the structure of N3/Al2O3/N749 combined the absorption spectra of N3 and N749.

    To further explore whether the broadened absorption of N3/Al2O3/N749 compared to the photoanode sensitized by the single dye injected into the conductive band of TiO2effectively,the IPCEs of devices based on TiO2/N3,TiO2/N749,and N3/Al2O3/N749 were tested.

    IPCE can be expressed by the following formula:44

    Fig.1 UV-Vis absorption spectra of N3,N749,and N3/Al2O3/N749 adsorbed onto TiO2films

    where LHE(λ)is the light-harvesting efficiency for photons of certain wavelength;φinjis the quantum yield for electron injected from the excited sensitizer to the conduction band of TiO2;and ηcis the electron collection efficiency.

    As shown in Fig.2,to compare the photoresponse range of N3,N749,and N3/Al2O3/N749 clearly,IPCEs of the three kinds of photoanodes were tested.The results revealed that compared to N3 individually,the IPCE spectrum of N3/Al2O3/N749 was widened in the range from 600 nm to over 700 nm and stronger in the range from 500 to 600 nm,which was corresponding to the results of absorption spectrum.It suggested that most of the electrons leading to the increased absorption of N3/Al2O3/N749 showed in Fig.1 were injected into the conductive band of TiO2.As a result,the short-circuit current density(Jsc)could be increased when using N3/Al2O3/N749 structure,then the conversion efficiency could be enhanced.

    3.2 Photovoltaic performance

    Fig.2 IPCE spectra of devices based on N3,N749,and N3/Al2O3/N749

    Fig.3 (a)Current density-voltage curves and(b)dark current curves of devices based on N3,N749,and N3/Al2O3/N749

    The photocurrent-voltage characteristics of DSCs based on N3,N749,and N3/Al2O3/N749 were tested under AM1.5,100 mW·cm-2.As shown in Fig.3(a)and Table 1,the Jscvalues of devices based on N3 and N749 were 10.95 and 7.97 mA·cm-2,respectively.The Jscvalue increased to 15.14 mA·cm-2when N3/Al2O3/N749 structure was applied.The increasing of Jsccould be explained that the two dyes in the N3/Al2O3/N749 increased the photoresponse range,and then more electrons were injected into the conductive band of TiO2.The increasing of Jsccorresponded to the results of UV-Vis adsorption and IPCE spectra.The open circuit voltage(Voc)of devices based on N3 and N749 were 0.635 and 0.620 V.The Vocof the device based on N3/Al2O3/N749 also increased to 0.690 V.The enhancement of Voccould be explained that as a carrier layer and modification material,besides absorbing more dyes,Al2O3could retard the charge recombination.The decreased recombination caused the enhancement of Voc.As a result,the device based on N3/Al2O3/N749 obtained a conversion efficiency of 5.75%,which was higher than the efficiency of device based on N3 or N749.As show in Fig.3(b),the dark current of device with N3/Al2O3/N749 was also lower than that of device based on N3 or N749.It showed that the back reaction was retarded,which confirmed the charge recombination decreasing caused by interface modification effects ofAl2O3.40

    3.3 Electron process and impedance analysis

    As shown in Fig.4,the electron transfer processes in DSC based on N3/Al2O3/N749 structure were illustrated.The electron in the lowest unoccupied molecular orbital(LUMO)of the first layer of dye(N3)is injected into the conductive band of TiO2.Besides,electrons in the LUMO of the second layer of dye(N749)also could be injected into the conductive band of TiO2with a quantum tunneling effect.As a result,more electrons could be produced and injected into TiO2than using N3 only,then enhance the photocurrent of the devices.Furthermore,Al2O3retarded the recombination between electrons in the conductive band of TiO2and I-/I-3in electrolyte,showing obvious interface modification effects.Thus the back reactions were reduced and dark current was decreased,which was shown in Fig.3(b).

    DSCs could be considered as a leaking capacitor in dark con-dition.45The resistance of the back reaction from TiO2to the I-3ions in the electrolyte could be analyzed through AC impedance technique under dark condition.The resistance at the interface of the sensitized TiO2/electrolyte was presented by the semicircle in intermediate frequency regime of the Nyquist plots.46The bigger the diameter of middle frequency semicircle was,the slighter the electron recombination at the sensitized TiO2/electrolyte interface was.Fig.5(a)showed the Nyquist plots of devices based on N3,N749 and N3/Al2O3/N749 at-0.8 V bias voltage in dark condition.Compared with N3 or N749 individually,the interface resistance of N3/Al2O3/N749 based DSC was much bigger,which meant that the charge recombination was obviously retarded.The decrease of recombination was mainly caused by the interlayer of Al2O3,which acted as a barrier layer besides a carrier layer of the second dye.

    Table 1 Parameters of DSCs based on N3,N749,and N3/Al2O3/N749

    Under illumination condition,the DSCs could be taken as diodes.47Resistance at the TiO2/dye/electrolyte interface was also presented by the middle frequency semicircle in the Nyquist plots.The smaller the diameter of middle frequency semicircle was,the faster the electron transfer at the sensitized TiO2/electrolyte interface was.As shown in Fig.5(b),the resistance at TiO2/dye/electrolyte interface of N3/Al2O3/N749 based DSC was similar with that based on N3 or N749 individually,showing that the charge transfer did not deteriorate with such a struc-ture.Thus the increased injection electron could enhance the Jsceffectively,which accorded with the results shown in Fig.3(a)and Table 1.

    Fig.4 Diagrammatic sketch of electron process in DSC based on N3/Al2O3/N749

    Fig.5 Nyquist plots under(a)dark and(b)illumination conditions;(c)simplified equivalent circuits of devices based on(i)N3 or N749,(ii)N3/Al2O3/N749(dark),and(iii)N3/Al2O3/N749(illumination)

    To interpret the mechanism of the dye/Al2O3structure theoretically,a series of equivalent circuits were built based on the EIS results.As shown in Fig.5(c),an equivalent circuit model was built to analyze the influence of N3/Al2O3/N749 on the interface resistance in DSCs.As a conventional sample,the model in Fig.5(c)could interpret the equivalent circuit.47The three semicircles in Nyquist plots represented the redox reaction at the platinum counter electrode(R1),the electron transfer at the TiO2/dye/electrolyte interface(R2),and carrier transport by ions within the electrolyte(Rd),Rdis the resistence part of Zwshowing in Fig.5(c).Rhwas the sheet resistance of FTO and the contact resistance between the FTO and TiO2.When it turned to N3/Al2O3/N749,models on the dark and illumination condition,new models were built to interpret the equivalent circuit.As seen in Fig.5(c),in dark condition,the electron process is only the recombination between electrons and I-/I-3in the electrolyte,which was seen as process(iv)in Fig.4.The Al2O3/N749 could be considered as a resistor in series to R2,which was R3shown in Fig.5(c).

    Table 2 showed the calculated values of EIS results of devic-es based on N3,N749,and N3/Al2O3/N749.In dark condition,the interface resistances of TiO2/N3/electrolyte,TiO2/N749/electrolyte,and TiO2/N3/Al2O3/N749/electrolyte were 16.1,12.4,and 23.6 Ω,respectively.The value of latter one was almost the sum of the former two,corresponding to the model of series in Fig.5(c)in dark condition.Furthermore,the interface capacitance value of TiO2/N3/Al2O3/N749 was 607.2 μF,similar to that of TiO2/N3(552.8 μF).It indicated that the second layer of Al2O3/N749 in N3/Al2O3/N749 structure did not influence the interface capacitance.It further confirmed that the equivalent circuit model of dark condition in Fig.5(c)was reasonable.

    Table 2 Calculated values of EIS results of devices based on N3,N749,and N3/Al2O3/N749

    On the illumination condition,there were mainly three processes in DSCs,electron injection from N3 to conductive band of TiO2,electron injection from N749 to conductive band of TiO2,and electron jumping from N749 to N3(an imaginary process,hardly happened as the LUMO energy levels of the two dyes were similar),which were seen in the processes(i),(ii),and(iii)in Fig.4,respectively.The process(i)represented R2and CPE2,and the process(ii)could be considered as a diode in parallel to R2and CPE2,representing R5and CPE4in Fig.5(c).At the same time,the process(iii)could be considered as a diode in series to R2and CPE2,representing R4and CPE3in Fig.5(c).

    As shown in Table 2,in illumination condition,the interface resistances of TiO2/N3/electrolyte,TiO2/N749/electrolyte,and TiO2/N3/Al2O3/N749/electrolyte were 13.8,12.2,and 13.8 Ω,respectively.Based on the model in illumination condition,the apparent resistance value(Rapp)of TiO2/N3/Al2O3/N749/electrolyte could be calculated as follow:

    Because the LUMO energy levels of N3 and N749 were similar,so the resistance(R5)and capacitance(CPE4)values of process(iii)were rather large.As a result,the value of Rappcould be approximately equal to R6based on equation(2),which was 12.2 Ω,similar to the measured value(13.8 Ω).Similarly,the value of the apparent capacitance(CPEapp)could be calculated as follow:

    As a result,the calculated value of CPEappwas 611.2 μF,approximate to the measured value(593.9 μF).

    Based on the discussion above,it was shown that reasonable equivalent circuit models were built to explain the effect of N3/Al2O3/N749 structure in DSCs.The error was considered coming from the defect in such a multi-layer structure.

    Besides influence on the interface resistance,N3/Al2O3/N749 structure also influenced the fill factor of devices.Series resistance(Rs)was well-known as a key factor that affected the FF of a device.Rsis mainly composed of the resistance of the conductive glass,the resistance of the electron transport within TiO2and the bulk resistance of the electrolyte.The following five equations revealed the relationship between FF and the Rs.47,48In equation(4),Rchrepresented the characteristic resistance of the solar cell.In equation(5),rsrepresented the normalized series resistance.In equation(6),νocwas defined as normalized Voc,k is Boltzman constant,and T is the temperature in Kelvin.41In equation(7),F(xiàn)F0was denoted as the idealized fill factor.

    Based on the results of Table 2,set n=1,T=300 K,and it was known that the elementary charge q=1.6×10-19C,the Boltzmann's constant k=1.38×10-23J·K-1,after calculating of the equations above,the results were shown in Table 3.Compared to the measured values,the relative errors of calculated FF of devices based on N3,N749,and N3/Al2O3/N749 were only 3.46%,6.41%,and 2.56%,respectively.From equation(7),it was indicated that the idealized fill factor of device based on N3/Al2O3/N749 structure was larger than that of device based on N3 or N749 because enhancement of Vocfrom the retarding of chargerecombination shown in the EIS results.However,the measured results showed a smaller FF of device based on the N3/Al2O3/N749 structure.It could be explained that with the N3/Al2O3/N749 structure,the light harvesting was obviously increased,then Jscenhanced compared to that with N3 or N749 individually.From equation(4),value of Rchdecreased with the increase of Jsc.Besides,the value of Rsincreased caused by the interlayer of Al2O3.Then from equation(5),the value of rsincreased.Thus from equation(8),the value of FF decreased reasonably.And the calculated and measured value confirmed the explanation.

    Table 3 Calculated values and measured results of fill factors ofdevices based on N3,N749,and N3/Al2O3/N749

    Bode plots of devices based on N3,N749,and N3/Al2O3/N749 were shown in Fig.6.The three peaks in the phase of the spectrum were associated with three transient processes in the DSC.The middle-frequency peak(in the 10-100 Hz range)was determined by the lifetime of the electrons in TiO2,which is shown as following equation:49

    As shown in Fig.6,the minimum frequency of device using N3/Al2O3/N749 alternating structure was smaller than that using only one kind of dye.As a result,from equation(9),the lifetime of electrons in the TiO2was enhanced by using such an alternating structure.It was caused by the retarding of charge recombination from the interface modification ofAl2O3.

    The Vocof DSCs can be expressed by following equation:50

    where R is the molar gas constant,F(xiàn) is the Faraday constant,β is the reaction order for I-3and electrons,A is the electrode area,I is the incident photon flux,n0is the concentration of accessible electronic states in the conduction band,kband krare the kinetic constants of the back reaction and the recombination,respectively.[I-3]and[D+]are concentrations of triodide and oxidized dye,respectively.It could be considered that fminwas the same as the back reaction constant(kb).44The values of Vocincreased with the decreasing of back reaction,which was same as fmin.This result accorded with equation(10),indicating that the enhancement was caused by the increasing of electron lifetime in TiO2due to strengthened retarding effect of charge recombination applying the alternating structure of N3/Al2O3/N749.

    Fig.6 Bode plots of devices based on N3,N749,and N3/Al2O3/N749

    To explore the influence of N3/Al2O3/N749 alternating structure on the electron diffusion and lifetime in photoanode,IMVS and IMPS of devices based on N3,N749,and N3/Al2O3/N749 were tested.IMVS experiment used the same intensity perturbation but measured the periodic modulation of the photovoltage,giving the information of electron lifetime under open-circuit conditions.51As shown in Fig.7(a),compared to devices using only one kind of dye,the electron lifetime in photoanode of device based on N3/Al2O3/N749 alternating structure was longer,which accorded with the results of EIS test.It could be explained that as an interface modification material,the interlayer of Al2O3retarded the charge recombination effectively,then the electrons in the conductive band of TiO2was difficult to react with redox couple in electrolyte.IMPS measured the periodic photocurrent response of device to a small sinusoidal perturbation of the light intensity superimposed on a larger steady background level,providing information about the dynamics of charge transport and back reaction under short circuit conditions.45As shown in Fig.7(b),compared to devices using only one kind of dye,the electron diffusion coefficient(Dn)of device based on N3/Al2O3/N749 alternating structure obviously increased,which indicated that this structure was beneficial to electron transportation in photoanode of DSCs.This result was also accorded with the value of Jsc.It could be due to the increased electron injection and decreased electron quenching and recombination caused by the interface modification effects.The effective diffusion coefficient of electrons,Deff,determined by the equation(11):52

    where nfreeis the density of free conduction band electrons,ntotalis the total density of free and trapped electrons,and D0is the standard electron diffusion coefficient.As shown in the results of IPCE spectra,the electron injected into the conductive band of TiO2increased obviously compared to that using N3 or N749 individually.Using equation(11),it could explain why the electron diffusion coefficient increased using the N3/Al2O3/N749 alternating structure.

    To weigh the electron transport and recombination properties,charge collection efficiency(ηcc)derived from IMPS and IMVS measurements was apparently considered as meaningful parameter.In sensitized solar cells,ηcccan be calculated by the following equation:53

    where τcis the electron collection time and τdis the electron lifetime.Fig.7(c)showed that the dependence of the charge collection efficiency on the different light intensity.Compared to devices using only one kind of dye,the charge collection efficiency of device based on N3/Al2O3/N749 alternating structure obviously increased,which indicated that this structure was beneficial to charge collection in photoanode of DSCs.According to the following equation:54

    where ηlhis the light capture efficiency,ηinjis the electron injection efficiency,ηccis in direct proportion to Jscof the sensitized solar cells,I0is the idea photocurrent.As shown in Fig.7(c),the result of charge collection efficiency also accorded with the results of I-V curve shown in Fig.3(a).

    4 Conclusions

    In summary,N3/Al2O3/N749 alternating structure widening the photoresponse was introduced and the interface electron processes were discussed.The widened photoresponse increased the Jscof DSCs.Besides,the interlayer of Al2O3retarded the charge recombination obviously,which caused the increase of Vocand decrease of dark current.Thus the conversion efficiency was enhanced.The device based on N3/Al2O3/N749 obtained a 5.75%conversion efficiency,which was higher than that based on N3 or N749,which was 4.22%and 3.09%,respectively.The results of EIS showed that the N3/Al2O3/N749 structure increased the interface resistance in dark condition,indicating that the charge recombination was retarded.To analyze the electron process in DSC based on N3/Al2O3/N749 alternating structure,a series of equivalent circuit models were built based on the EIS results.It could explain the process of electron and the change of parameters of DSCs reasonably.The results of IMVS and IMPS test indicated that the N3/Al2O3/N749 alternating structure increased the electron life time and diffusion coefficient,enhancing the electron transportation.Thus the N3/Al2O3/N749 alternating structure enhanced the photoresponse and remained the interface modification effects at the same time,improving the performance of DSCs effectively.

    (1) O'Regan,B.;Gr?tzel,M.Nature 1991,353,737.doi:10.1038/353737a0

    (2) Kuang,D.B;Klein,C.;Ito,S.;Moser,J.;Baker,R.;Zakeeruddin,S.;Gr?tzel,M.Adv.Funct.Mater.2007,17,154.

    (3) Hu,L.H.;Dai,S.Y.;Weng,J.;Xiao,S.F.;Sui,Y.F.;Huang,Y.;Chen,S.H.;Kong,F(xiàn).T.;Pan,X.;Liang,L.Y.;Wang,K.J.J.Phys.Chem.B 2007,111,358.doi:10.1021/jp065541a

    (4) Hara,K.;Sugihara,H.;Tachibana,Y.;Islam,A.;Yanagida,M.;Sayama,K.;Arakawa,H.Langmuir 2001,17,5992.doi:10.1021/la010343q

    (5) Jung,H.S.;Lee,J.K.;Nastasi,M.;Lee,S.W.;Kim,J.Y.;Park,J.S.;Hong,K.S.Langmuir 2005,21,10332.doi:10.1021/la051807d

    (6) Nakade,S.;Kanzaki,T.;Kambe,S.;Wada,Y.;Yanagida,S.Langmuir 2005,21,11414.doi:10.1021/la051483t

    (7) Sommeling,P.M.;Sp?th,M.;Smit,H.J.P.;Bakker,N.J.;Kroon,J.M.J.Photochem.Photobiol.A:Chem.2004,164,137.doi:10.1016/j.jphotochem.2003.12.017

    (8) Gr?tzel,M.C.R.Chimie.2006,9,578.

    (9) Figgemeier,E.;Hagfeldt,A.Int.J.Photoenergy 2004,6,127.doi:10.1155/S1110662X04000169

    (10) Meng,Q.B.;Takahashi,K.;Zhang,X.T.;Sutanto,I.;Rao,T.N.;Sato,O.;Fujishima,A.Langmuir 2003,19,3572.doi:10.1021/la026832n

    (11) Sathiya Priya,A.R.;Subramania,A.;Jung,Y.S.;Kim,K.J.Langmuir 2008,24,9816.doi:10.1021/la801375s

    (12) Gr?tzel,M.Accounts Chem.Res.2009,42,1788.doi:10.1021/ar900141y

    (13)Fang,J.H.;Mao,H.F.;Wu,J.W;Zhang,X.Y;Lu,Z.H.Appl.Surf.Sci.1997,119,237.doi:10.1016/S0169-4332(97)00195-5

    (14)Fang,J.H.;Su,L.Y.;Wu,J.W.;Shen,Y.C.;Lu,Z.H.New J.Chem.1997,21,1303.

    (15) Perera,V.;Pitigala,P.;Jayaweera,P.;Bandaranayake,K.;Tennakone,K.J.Phys.Chem.B 2003,107,13758.doi:10.1021/jp0348979

    (16) Kuang,D.B.;Walter,P.;Nüesch,F(xiàn).;Kim,S.;Ko,J.;Comte,P.;Zakeeruddin,S.M.;Gr?tzel,M.Langmuir 2007,23,10906.doi:10.1021/la702411n

    (17) Cid,J.;Yum,J.;Jang,S.;Nazeeruddin,M.K.;Ferrero,E.M.;Palomares,E.;Ko,J.;Gr?tzel,M.;Torres,T.Angew.Chem.Int.Edit.2007,46,8358.

    (18)Liu,B.Q.;Zhao,X.P.;Luo,W.Dyes and Pigments 2008,76,327.doi:10.1016/j.dyepig.2006.09.004

    (19) Clifford,J.N.;Palomares,E.;Nazeeruddin,M,K.;Thampi,R.;Gr?tzel,M.;Durrant,J.R.J.Am.Chem.Soc.2004,126,5670.doi:10.1021/ja049705h

    (20) Choi,H.;Kim,S.;Kang,S.O.;Ko,J.;Kang,M.S.;Clifford,J.N.;Forneli,A.;Palomares,E.;Nazeeruddin,K.;Gr?tzel,M.Angew.Chem.Int.Edit.2008,120,8383.doi:10.1002/ange.v120:43

    (21)Bandaranayake,K.M.P.;Senevirathna,M.K.I.;Weligamuwa,P.;Tennakone,K.Coord.Chem.Rev.2004,248,1277.doi:10.1016/j.ccr.2004.03.024

    (22)Diamant,Y.;Chen,S.G.;Melamed,O.;Zaban,A.J.Phys.Chem.B 2003,107,1977.doi:10.1021/jp027827v

    (23)Gao,R.;Wang,L.D.;Ma,B.B.;Zhan,C.;Qiu,Y.Langmuir 2010,26,2460.doi:10.1021/la902688a

    (24)Gao,R.;Ma,B.B.;Wang,L.D.;Shi,Y.T.;Dong,H.P.;Qiu,Y.Acta Phys.-Chim.Sin.2011,27,413.[高 瑞,馬蓓蓓,王立鐸,史彥濤,董豪鵬,邱 勇.物理化學(xué)學(xué)報(bào),2011,27,413.]doi:10.3866/PKU.WHXB20110234

    (25) Lao,C.F.;Chu,Z.Z.;Zou,D.C.Acta Phys.-Chim.Sin.2011,27,419.[勞春峰,初增澤,鄒德春.物理化學(xué)學(xué)報(bào),2011,27,419.]doi:10.3866/PKU.WHXB20110209

    (26)Gao,R.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.Phys.Chem.Chem.Phys.2011,13,10635.

    (27)Chen,D.P.;Zhang,X.D.;Wei,C.C.;Liu,C.C.;Zhao,Y.Acta Phys.-Chim.Sin.2011,27,425.[陳東坡,張曉丹,魏長春,劉彩池,趙 穎.物理化學(xué)學(xué)報(bào),2011,27,425.]doi:10.3866/PKU.WHXB20110222

    (28)Gao,R.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.J.Phys.Chem.C 2011,115,17986.doi:10.1021/jp204466h

    (29)Gao,R.;Niu,G.D.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.Phys.Chem.Chem.Phys.2012,14,5973.

    (30)O'Regan,B.C.;Scully,S.;Mayer,A.C.J.Phys.Chem.B 2005,109,4616.doi:10.1021/jp0468049

    (31)Alarcon,H.;Boschloo,G.;Mendoza,P.;Solis,J.L.;Hagfeldt,A.J.Phys.Chem.B 2005,109,18483.doi:10.1021/jp0513521(32)Wu,S.J.;Han,H.W.;Tai,Q.D.;Zhang,J.;Xu,S.;Zhou,C.H.;Yang,Y.;Hu,H.;Chen,B.L.;Sebo,B.;Zhao,X.Z.Nanotechnology 2008,19,215704.doi:10.1088/0957-4484/19/21/215704

    (33)Chen,S.G.;Chappel,S.;Diamant,Y.;Zaban,A.Chem.Mater.2001,13,4629.doi:10.1021/cm010343b

    (34) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.J.Am.Chem.Soc.2003,125,475.doi:10.1021/ja027945w

    (35) Wang,P.;Wang,L.D.;Li,B.;Qiu,Y.Chin.Phys.Lett.2005,22,2708.doi:10.1088/0256-307X/22/10/069

    (36) Menzies,D.B.;Cervini,R.;Cheng,Y.B.;Simon,G.P.;Spiccia,L.J.Sol-Gel Sci.Technol.2004,32,363.doi:10.1007/s10971-004-5818-0

    (37) Liu,Z.Y.;Pan,K.;Liu,M.;Wang,M.J.;Lu,Q.;Li,J.H.;Bai,Y.B.;Li,T.J.Electrochim.Acta 2005,50,2583.doi:10.1016/j.electacta.2004.11.003

    (38) Zhang,X.Y.;Sutanto,I.;Taguchi,T.;Tokuhiro,K.;Meng,Q.B.;Rao,T.N.;Fujishima,A.;Watanabe,H.;Nakamori,T.;Uragami,M.Sol.Energy Mater.Sol.Cells 2003,80,315.doi:10.1016/j.solmat.2003.08.006

    (39) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.Chem.Commun.2002,1464.

    (40)Luo,F(xiàn).;Wang,L.D.;Ma,B.B.;Qiu,Y.J.Photochem.Photobiol.A:Chem.2008,197,375.doi:10.1016/j.jphotochem.2008.02.011

    (41) Ma,B.B.;Gao,R.;Wang,L.D.;Luo,F(xiàn).;Zhan,C.;Li,J.L.;Qiu,Y.J.Photochem.Photobiol.A:Chem.2009,202,33.doi:10.1016/j.jphotochem.2008.11.004

    (42) Burnside,S.D.;Shklover,V.;Barbé,C.;Comte,P.;Arendse,F(xiàn).;Brooks,K.;Gr?tzel,M.Chem.Mater.1998,10,2419.doi:10.1021/cm980702b

    (43) Huo,Z.P.;Dai,S.Y.;Wang,K.J.;Kong,F(xiàn).T.;Zhang,C.N.;Pan,X.;Fang,X.Q.Sol.Energy Mater.Sol.Cells 2007,91,1959.doi:10.1016/j.solmat.2007.08.003

    (44) Gr?tzel,M.Inorg.Chem.2005,44,6841.doi:10.1021/ic0508371

    (45) Bisquert,J.J.Phys.Chem.B 2002,106,325.doi:10.1021/jp011941g

    (46)Wang,Q.;Moser,J.;Gr?tzel,M.J.Phys.Chem.B 2005,109,14945.doi:10.1021/jp052768h

    (47)Qin,D.;Zhang,Y.D.;Huang,S.Q.;Luo,Y.H.;Li,D.M.;Meng,Q.B.Electrochim.Acta 2011,56,8680.doi:10.1016/j.electacta.2011.07.065

    (48) Green,M.A.Solar Cells;Prentice-Hall:Englewood,NJ,1982;Vol.96,pp 85-86.

    (49) Kern,R.;Sastrawan,R.;Ferber,J.;Stangl,R.;Luther,J.Electrochim.Acta 2002,47,4213.doi:10.1016/S0013-4686(02)00444-9

    (50)Lee,K.;Park,S.W.;Ko,M.J.;Kim,K.;Park,N.G.Nature Materials 2009,8,665.doi:10.1038/nmat2475

    (51) Schlichth?rl,G.;Huang,S.Y.;Sprague,J.;Frank,A.J.J.Phys.Chem.B 1997,101,8141.doi:10.1021/jp9714126

    (52) Dloczik,L.;Ileperuma,O.;Lauermann,I.;Peter,L.M.;Ponomarev,E.A.;Redmond,G.;Shaw,N.J.;Uhlendorf,I.J.Phys.Chem.B 1997,101,10281.doi:10.1021/jp972466i

    (53) Hagfeldt,A.;Boschloo,G.;Sun,L.C.;Kloo,L.;Pettersson,H.Chem.Rev.2010,110,6595.doi:10.1021/cr900356p

    (54) Zhu,K.;Neale,N.R.;Miedaner,A.;Frank,A.J.Nano Lett.2007,7,69.doi:10.1021/nl062000o

    猜你喜歡
    敏化物理化學(xué)學(xué)報(bào)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    啦啦啦 在线观看视频| 午夜福利在线观看吧| 国产精品秋霞免费鲁丝片| 国产精品永久免费网站| 亚洲精品一卡2卡三卡4卡5卡| 精品亚洲成a人片在线观看| 99精品欧美一区二区三区四区| 一级片免费观看大全| 女人精品久久久久毛片| 一本大道久久a久久精品| av线在线观看网站| 国产一区二区激情短视频| 黄片大片在线免费观看| 午夜免费鲁丝| 久久国产精品影院| 妹子高潮喷水视频| 999精品在线视频| 少妇被粗大的猛进出69影院| 18在线观看网站| 夫妻午夜视频| 9热在线视频观看99| 色在线成人网| а√天堂www在线а√下载 | 热re99久久精品国产66热6| 少妇粗大呻吟视频| 在线av久久热| 欧美丝袜亚洲另类 | 久久精品成人免费网站| 69精品国产乱码久久久| 国产麻豆69| 中文字幕色久视频| 午夜免费鲁丝| 咕卡用的链子| 国产视频一区二区在线看| 女人高潮潮喷娇喘18禁视频| 一级a爱片免费观看的视频| 美女高潮喷水抽搐中文字幕| av有码第一页| 免费看十八禁软件| 亚洲一区高清亚洲精品| 黑人欧美特级aaaaaa片| 久久精品亚洲熟妇少妇任你| 国产亚洲一区二区精品| 婷婷成人精品国产| 精品亚洲成国产av| 欧美午夜高清在线| 狠狠婷婷综合久久久久久88av| 国产精华一区二区三区| 久久久久视频综合| 国产精品电影一区二区三区 | 极品教师在线免费播放| 久久天躁狠狠躁夜夜2o2o| 日韩有码中文字幕| aaaaa片日本免费| 国产成人欧美在线观看 | 丰满饥渴人妻一区二区三| 不卡一级毛片| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| 国产一区在线观看成人免费| 精品人妻在线不人妻| 欧美老熟妇乱子伦牲交| 国产蜜桃级精品一区二区三区 | 久久热在线av| 久久精品国产综合久久久| 成人亚洲精品一区在线观看| 极品教师在线免费播放| 欧美中文综合在线视频| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 91国产中文字幕| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区蜜桃| 99国产综合亚洲精品| 久久久国产成人精品二区 | 国产亚洲精品第一综合不卡| 天天操日日干夜夜撸| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 亚洲精品美女久久久久99蜜臀| tocl精华| 在线国产一区二区在线| 国产又色又爽无遮挡免费看| 青草久久国产| 欧美日韩国产mv在线观看视频| av中文乱码字幕在线| 露出奶头的视频| 美女 人体艺术 gogo| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 欧美激情极品国产一区二区三区| 成年人免费黄色播放视频| 咕卡用的链子| 欧美日韩黄片免| 欧美av亚洲av综合av国产av| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 久久青草综合色| 18禁观看日本| 亚洲欧美一区二区三区黑人| 国产aⅴ精品一区二区三区波| 建设人人有责人人尽责人人享有的| 高清视频免费观看一区二区| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区| 宅男免费午夜| x7x7x7水蜜桃| 欧美日韩av久久| 在线永久观看黄色视频| cao死你这个sao货| 国产精品美女特级片免费视频播放器 | 一级,二级,三级黄色视频| 久久久精品国产亚洲av高清涩受| 亚洲avbb在线观看| 一级毛片精品| 好看av亚洲va欧美ⅴa在| 国产精品免费视频内射| 男人舔女人的私密视频| avwww免费| 久久久国产精品麻豆| 俄罗斯特黄特色一大片| 欧美精品一区二区免费开放| 操出白浆在线播放| 首页视频小说图片口味搜索| 久久国产精品人妻蜜桃| 国产亚洲精品一区二区www | 日本wwww免费看| 精品国内亚洲2022精品成人 | 啪啪无遮挡十八禁网站| 国产精品电影一区二区三区 | www.熟女人妻精品国产| 三上悠亚av全集在线观看| 精品久久久久久久毛片微露脸| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 亚洲精品国产精品久久久不卡| 亚洲免费av在线视频| 下体分泌物呈黄色| 久久久水蜜桃国产精品网| 很黄的视频免费| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 老司机午夜十八禁免费视频| 亚洲欧美精品综合一区二区三区| 成人免费观看视频高清| www.精华液| 亚洲中文字幕日韩| 亚洲九九香蕉| 精品第一国产精品| 亚洲欧美色中文字幕在线| 在线观看午夜福利视频| 亚洲午夜理论影院| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 国产1区2区3区精品| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 日韩熟女老妇一区二区性免费视频| 欧美丝袜亚洲另类 | 在线十欧美十亚洲十日本专区| 欧美午夜高清在线| 国产成人欧美在线观看 | 很黄的视频免费| 色老头精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 老司机午夜十八禁免费视频| 精品一区二区三区视频在线观看免费 | 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| www日本在线高清视频| 一区二区日韩欧美中文字幕| 99久久国产精品久久久| 国产成+人综合+亚洲专区| 婷婷精品国产亚洲av在线 | 黄网站色视频无遮挡免费观看| 日韩熟女老妇一区二区性免费视频| 色综合欧美亚洲国产小说| 不卡一级毛片| 国产成人精品久久二区二区91| 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网| 超色免费av| 亚洲午夜理论影院| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 黄色 视频免费看| 18禁美女被吸乳视频| 国产高清国产精品国产三级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 变态另类成人亚洲欧美熟女 | www.999成人在线观看| 亚洲免费av在线视频| 久久香蕉精品热| 五月开心婷婷网| 熟女少妇亚洲综合色aaa.| 亚洲精品国产区一区二| 国产精品 国内视频| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 首页视频小说图片口味搜索| 一区二区三区激情视频| 男女之事视频高清在线观看| 国产1区2区3区精品| 久久亚洲精品不卡| 国产亚洲欧美98| 国产亚洲一区二区精品| 男女免费视频国产| 色综合婷婷激情| 国产不卡av网站在线观看| e午夜精品久久久久久久| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 我的亚洲天堂| 免费少妇av软件| 如日韩欧美国产精品一区二区三区| 无限看片的www在线观看| 亚洲男人天堂网一区| 最新在线观看一区二区三区| 18禁观看日本| 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| www.熟女人妻精品国产| 涩涩av久久男人的天堂| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 久久久久久久午夜电影 | 午夜两性在线视频| 男女之事视频高清在线观看| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 美女扒开内裤让男人捅视频| 亚洲全国av大片| 色精品久久人妻99蜜桃| 国产成人精品久久二区二区免费| 日本黄色日本黄色录像| 国产aⅴ精品一区二区三区波| 波多野结衣av一区二区av| 久久午夜亚洲精品久久| 激情在线观看视频在线高清 | 亚洲色图av天堂| 国产一区二区激情短视频| www.熟女人妻精品国产| 成年动漫av网址| 美女 人体艺术 gogo| 亚洲成人免费电影在线观看| 一级,二级,三级黄色视频| 美国免费a级毛片| 亚洲男人天堂网一区| 首页视频小说图片口味搜索| www日本在线高清视频| 少妇被粗大的猛进出69影院| 国产精品秋霞免费鲁丝片| 日韩中文字幕欧美一区二区| av超薄肉色丝袜交足视频| 韩国av一区二区三区四区| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 久久天堂一区二区三区四区| 久久久国产一区二区| 日韩制服丝袜自拍偷拍| 大香蕉久久成人网| 欧美日韩精品网址| 男女免费视频国产| 在线国产一区二区在线| 日韩熟女老妇一区二区性免费视频| 最新美女视频免费是黄的| 在线观看一区二区三区激情| 国产国语露脸激情在线看| 午夜两性在线视频| 在线观看午夜福利视频| 成年版毛片免费区| 狠狠狠狠99中文字幕| 在线观看免费高清a一片| 亚洲第一青青草原| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 99久久精品国产亚洲精品| 老司机靠b影院| 免费看十八禁软件| 在线观看66精品国产| 51午夜福利影视在线观看| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 欧美中文综合在线视频| 亚洲国产精品sss在线观看 | 黑人猛操日本美女一级片| 婷婷精品国产亚洲av在线 | 午夜影院日韩av| 免费观看a级毛片全部| 黄色成人免费大全| 久久久久久久久久久久大奶| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 9191精品国产免费久久| 久久香蕉国产精品| 久久人人爽av亚洲精品天堂| 国产精品国产av在线观看| 人妻久久中文字幕网| 男女午夜视频在线观看| av片东京热男人的天堂| 日韩欧美国产一区二区入口| 一进一出抽搐动态| ponron亚洲| 中文欧美无线码| 九色亚洲精品在线播放| 俄罗斯特黄特色一大片| av电影中文网址| 日韩三级视频一区二区三区| 国产99久久九九免费精品| 久久精品国产清高在天天线| 正在播放国产对白刺激| 国产91精品成人一区二区三区| 人妻久久中文字幕网| tube8黄色片| 亚洲成a人片在线一区二区| 久久久久久人人人人人| 99香蕉大伊视频| 精品一区二区三区视频在线观看免费 | 露出奶头的视频| 免费观看精品视频网站| 欧美激情极品国产一区二区三区| 淫妇啪啪啪对白视频| 热99久久久久精品小说推荐| 欧美国产精品一级二级三级| 在线永久观看黄色视频| 久久影院123| 人妻 亚洲 视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费看a级黄色片| 国产成人一区二区三区免费视频网站| 亚洲 国产 在线| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 后天国语完整版免费观看| 一边摸一边做爽爽视频免费| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 人人妻人人澡人人看| 999精品在线视频| 欧美乱妇无乱码| 亚洲五月色婷婷综合| 国产精品久久久久久人妻精品电影| 国产精品久久久久成人av| 人人妻人人澡人人爽人人夜夜| 日日夜夜操网爽| 91精品三级在线观看| 国产精品一区二区免费欧美| 天堂动漫精品| 日日夜夜操网爽| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 亚洲久久久国产精品| 国产精品一区二区免费欧美| 久久久久精品人妻al黑| 脱女人内裤的视频| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 一个人免费在线观看的高清视频| 亚洲午夜理论影院| 男女之事视频高清在线观看| 久久久久国产精品人妻aⅴ院 | 天堂俺去俺来也www色官网| 免费看十八禁软件| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频| 国产无遮挡羞羞视频在线观看| 成人手机av| 国产精品亚洲一级av第二区| 香蕉国产在线看| 又紧又爽又黄一区二区| 五月开心婷婷网| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 香蕉丝袜av| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 国产激情欧美一区二区| 久久久久久久午夜电影 | 日本五十路高清| 很黄的视频免费| av线在线观看网站| 久久久久视频综合| 国产高清激情床上av| 国产精品免费大片| 久久精品国产清高在天天线| 亚洲在线自拍视频| 亚洲av日韩精品久久久久久密| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 中文字幕av电影在线播放| 大香蕉久久网| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女 | 欧美av亚洲av综合av国产av| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 国产高清videossex| 国产精品久久久人人做人人爽| 黄色丝袜av网址大全| 1024香蕉在线观看| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 日日摸夜夜添夜夜添小说| videosex国产| 国产亚洲精品一区二区www | 午夜视频精品福利| 老司机午夜十八禁免费视频| 日韩成人在线观看一区二区三区| 亚洲精品国产一区二区精华液| 少妇被粗大的猛进出69影院| 精品国产乱子伦一区二区三区| 亚洲精品美女久久久久99蜜臀| 久久国产亚洲av麻豆专区| 成人亚洲精品一区在线观看| av电影中文网址| 一夜夜www| 777久久人妻少妇嫩草av网站| 亚洲五月天丁香| 在线观看www视频免费| 国产熟女午夜一区二区三区| 国产高清视频在线播放一区| 国产区一区二久久| 精品国产一区二区三区四区第35| 久久影院123| 成年人免费黄色播放视频| 成人精品一区二区免费| 日本a在线网址| 美女国产高潮福利片在线看| 大香蕉久久成人网| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 久久国产精品男人的天堂亚洲| 青草久久国产| 亚洲精品国产区一区二| x7x7x7水蜜桃| 99re在线观看精品视频| xxx96com| 成人亚洲精品一区在线观看| 757午夜福利合集在线观看| 视频在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 香蕉国产在线看| 欧美+亚洲+日韩+国产| 精品久久久久久电影网| 亚洲片人在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美激情极品国产一区二区三区| 国产免费男女视频| 最近最新中文字幕大全免费视频| 日本黄色视频三级网站网址 | 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久| 日本精品一区二区三区蜜桃| 91在线观看av| 中亚洲国语对白在线视频| 亚洲精品在线美女| 日本vs欧美在线观看视频| 久久国产精品男人的天堂亚洲| www.精华液| 亚洲第一av免费看| 国产97色在线日韩免费| www.自偷自拍.com| 免费在线观看黄色视频的| 精品一区二区三区视频在线观看免费 | 久久香蕉精品热| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点 | 亚洲中文字幕日韩| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻aⅴ院 | av不卡在线播放| 久久中文字幕一级| 在线观看免费高清a一片| 亚洲精品美女久久久久99蜜臀| 欧美久久黑人一区二区| 亚洲片人在线观看| 多毛熟女@视频| 国产高清激情床上av| 成熟少妇高潮喷水视频| 国产不卡一卡二| 国产精品 欧美亚洲| 深夜精品福利| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 国产一区二区三区视频了| 国产成人免费观看mmmm| 国产精品久久久人人做人人爽| 啦啦啦在线免费观看视频4| 免费观看人在逋| 久久香蕉精品热| 精品一区二区三区四区五区乱码| 精品视频人人做人人爽| 怎么达到女性高潮| 国产亚洲精品久久久久5区| 亚洲五月色婷婷综合| 三级毛片av免费| 精品国产一区二区三区四区第35| 免费观看精品视频网站| 亚洲国产精品一区二区三区在线| 激情视频va一区二区三区| 亚洲成a人片在线一区二区| 一区二区日韩欧美中文字幕| 国产成人免费无遮挡视频| 99国产精品一区二区蜜桃av | 亚洲免费av在线视频| 黄色女人牲交| 男男h啪啪无遮挡| 电影成人av| 成人av一区二区三区在线看| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 无限看片的www在线观看| 国产精品偷伦视频观看了| 99国产极品粉嫩在线观看| 黄色丝袜av网址大全| 亚洲av日韩精品久久久久久密| 午夜激情av网站| 女警被强在线播放| 精品无人区乱码1区二区| 欧美黑人精品巨大| 国产成人精品久久二区二区免费| 色精品久久人妻99蜜桃| 亚洲伊人色综图| 久久久久精品国产欧美久久久| 90打野战视频偷拍视频| 亚洲欧美日韩另类电影网站| 精品久久久久久电影网| 宅男免费午夜| 一本大道久久a久久精品| 嫁个100分男人电影在线观看| videos熟女内射| 欧美久久黑人一区二区| 亚洲中文av在线| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 欧美黑人精品巨大| 精品卡一卡二卡四卡免费| 又大又爽又粗| 精品人妻1区二区| 久久久久精品国产欧美久久久| 黑丝袜美女国产一区| 亚洲精品成人av观看孕妇| 两人在一起打扑克的视频| 久久精品国产清高在天天线| 日韩免费高清中文字幕av| 成年人黄色毛片网站| 精品久久久久久,| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| 三上悠亚av全集在线观看| 国产精品欧美亚洲77777| 国产精品.久久久| 777久久人妻少妇嫩草av网站| 国产麻豆69| 亚洲视频免费观看视频| 无限看片的www在线观看| 青草久久国产| 国产又色又爽无遮挡免费看| 亚洲精品av麻豆狂野| 中亚洲国语对白在线视频| av线在线观看网站| 欧美久久黑人一区二区| 一夜夜www| 日韩免费av在线播放| 免费av中文字幕在线| 黄色视频,在线免费观看| 成人特级黄色片久久久久久久| 精品久久蜜臀av无| 亚洲熟妇中文字幕五十中出 | 久久久精品免费免费高清| 热re99久久国产66热| 国产黄色免费在线视频| tube8黄色片| 一级毛片女人18水好多| 欧美在线一区亚洲| 欧美+亚洲+日韩+国产| 成人18禁高潮啪啪吃奶动态图| 91av网站免费观看| 国产欧美日韩一区二区三区在线| 夫妻午夜视频| 日韩欧美免费精品| 老司机靠b影院| 可以免费在线观看a视频的电影网站| 午夜福利乱码中文字幕| 9色porny在线观看| 一二三四社区在线视频社区8| 国产1区2区3区精品| 亚洲人成77777在线视频| 色老头精品视频在线观看| 久久亚洲真实| 不卡一级毛片| 免费不卡黄色视频| 99re在线观看精品视频| 午夜久久久在线观看| 丰满的人妻完整版| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 欧美日韩瑟瑟在线播放| 免费看十八禁软件| 婷婷成人精品国产| 亚洲欧美激情综合另类| av在线播放免费不卡| 国产aⅴ精品一区二区三区波| 亚洲男人天堂网一区|