• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N3/Al2O3/N749交替組裝結(jié)構(gòu)拓寬準(zhǔn)固態(tài)染料敏化太陽能電池光響應(yīng)范圍和界面修飾效果

    2013-09-21 08:59:16牛廣達(dá)王立鐸馬蓓蓓
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:敏化物理化學(xué)學(xué)報(bào)

    高 瑞 牛廣達(dá) 王立鐸 馬蓓蓓 邱 勇

    (清華大學(xué)化學(xué)系,有機(jī)光電子及分子工程教育部重點(diǎn)實(shí)驗(yàn)室,北京100084)

    1 Introduction

    Dye-sensitized solar cell(DSC)was first reported by Gr?tzel et al.in 1991.1It was considered as an alternative to the traditional silicon soar cell due to its lower productive cost and easy fabrication process.Up to now,much attention had been focused on both the efficiency2-5and stability6-11of DSCs.Conversion efficiency up 12%had been achieved up to now.12

    Photoresponse of sensitizers was a key element in improving performance of DSCs.To enhance the spectrum response over a wider wavelength range,multi-layer sensitized TiO2electrode with different dyes have been used since 1997.13These methods of fabricating multi-layer sensitized TiO2electrodes were always carried out through adsorbing different dyes onto the TiO2films layer by layer through dipping them in different dye solutions successively.14,15However,these methods suffered from competition adsorption or mismatch of energy level of different dye molecules.And excessive adsorption could cause the dye aggregation,which increased the electron quenching and charge recombination in DSCs.As a result,the light-capture efficiency of the cells could be enhanced,but the devices'conversion efficiency was not improved obviously.16-18

    To avoid the problems mentioned above,a secondary metal oxide layer was applied for two-layer or multi-layer sensitization of TiO2electrode to separate different dye layers.In this way,the second layer of dye was adsorbed on the metal oxide interlayer.After being sensitized with the first layer of dye,a secondary Al2O3layer was deposited on the sensitized TiO2film.Then the second layer of dye was adsorbed.19Through this method,a significant enhancement of conversion efficiency was achieved.20Besides the sensitizer,the interface of sensitized TiO2/electrolyte in DSCs is also a vital factor for performance of DSCs.21,22Several important reactions in DSCs occurred at this interface,such as the dye electron injection,charge transfer,charge recombination,and dye regeneration.Accordingly,interface modification was considered as a useful method of improving the performance of DSCs.23-29Many metal oxides,such as Al2O3,30,31MgO,32Nb2O5,33SiO2,34ZnO,35or ZrO2,36have been used to make the interface modification between TiO2film and dye.Furthermore,many other insulating materials were also found to be effective in blocking recombination and increasing the conversion efficiency of DSCs.Al2O3was an excellent modification material for TiO2photoanode as it could retard the charge recombination in DSCs obviously.37,38Durrant et al.39obtained a 30%efficiency enhancement using Al2O3modification of DSCs in 2002.In the previous work,40,41the modification with Al2O3after sensitization could improve the conversion efficiency and stability of DSCs by prohibiting the aggregation of N3 dyes and spacing the TiO2and the electrolyte.Furthermore,Al2O3also could adsorb the second layer of dye to form an alternating assembly structure by the interaction of oxygen in Al2O3and hydrogen in the carboxyl group in the dye molecule.40,41

    The previous studies about the multi-layer sensitizing mainly focused on the extended photoresponse.20However,the effects of Al2O3,which was used as the carrier layer,had not been studied systemically.To investigate the interface effect of Al2O3in the multi-layer sensitizing structure,this paper introduced an alternating structure with different dyes,which was N3/Al2O3/N749 assembled.The effects of Al2O3and the interface electron processes were discussed systemically.Furthermore,the electron process and internal resistance were analyzed and the mechanism of device based on the alternating assembly structure was simulated by establishing an equivalent circuit model.This structure could combine the advantages of broadening spectrum response of sensitizer and interface modification to retard the charge recombination.

    2 Experimental

    2.1 Materials

    Poly(ethylene oxide)(PEO,Mw=2×106,Aldrich),iodine(I2,Guangdong Xilong Chemicals,China,analytically pure),lithium iodide(LiI,Acros Organics,99%),4-tertbutylpyridine(TBP,Sigma,99%),aluminium isopropoxide(Al(OC3H7)3,Alfa Aesar,99%),3-methoxypropionitrile(MePN,Alfa Aesar,99%),cis-dithiocyanate-N,N'-bis(4,4'-dicarboxylate-2,2'-bipyridine)ruthenium(II)(N3,Solaronix,Switzerland).{(C4H9)4N}3·[Ru(Htctpy)(NCS)3](tctpy=4,4',4?-tricarboxy-2,2',6',2?-terpyridine)(N749,Solaronix,Switzerland).

    2.2 Preparation of the photoanode

    The TiO2colloid was prepared with a hydrothermal method,which has been well documented in the previous report.42To prepare porous TiO2film,transparent conductive F-doped SnO2(FTO)glass(12 Ω·□-1)was completely cleaned and then a thin compact TiO2film(about 8 nm in thickness)was deposited on the FTO by dip coating in order to improve ohmic contact and adhesion between the following porous TiO2layer and the conductive FTO glass.The doctor blade technique was then adopted to prepare the porous TiO2layer with the thickness of the porous layer being controlled by an adhesive tape.Afterwards,the film was thermo-treated at 450°C for 30 min.When cooled to 110°C,the TiO2electrode was sensitized by immersion in 0.3 mmol·L-1N3 absolute ethanol solution for 2 h and cleaned with absolute ethanol.

    Coating of Al2O3was performed as follows:the sensitized TiO2film was dipped into a solution of Al(OC3H7)3for 30 s,then hydrolyzed in air for 30 min to make produced isopropanol during the hydrolysis reaction volatilize.Then the TiO2film was sensitized with 0.3 mmol·L-1N749 absolute ethanol solution dye for 2 h,then the TiO2/N3/Al2O3/N749 structure was assembled.

    2.3 Preparation of the electrolyte

    The preparation procedure for the polymer gel electrolytes includes two steps.First,liquid electrolyte was prepared.Second,poly(ethylene oxide)(PEO)was slowly added into the liquid electrolyte and heated under strong stirring until the polymer gel electrolyte became homogeneous.The composition of the liquid electrolyte is as follows:0.1 mol·L-1LiI,0.1 mol·L-1I2,0.6 mol·L-11,2-dimethyl-3-propyl imidazolium iodide(DMPII),and 0.45 mol·L-1N-methyl-benzimidazole(NMBI).The solvent was 3-methoxypropionitrile(MePN);43the mass fraction(versus liquid electrolyte)for the PEO in the electrolyte was 10.0%.

    2.4 Fabrication of the DSCs

    A chemically platinized conductive glass was used as the counter electrode.When assembling the DSCs,the polymer gel electrolyte was sandwiched by a sensitized TiO2electrode and a counter electrode with two clips;the space between the two electrodes was controlled by an adhesive tape with a thickness of 30 μm.Finally,the DSCs were baked at 80 °C to ensure that the polymer could penetrate into the TiO2film.

    2.5 Characterization

    The UV-Vis reflectance absorption spectra were measured with a Hitachi U-3010 spectroscope.Photocurrent-voltage(IV)and dark current measurements were performed using a Keithley Model 4200-SCS semiconductor characterization system with real-time plotting and analysis with an active area of 0.25 cm2.EIS,IMVS,and IMPS were investigated by ZAHNER CIMPS electrochemical workstation,Germany.The incident photon-to-current conversion efficiency(IPCE)was measured by using a lab-made IPCE setup in Professor Meng's laboratory inInstituteof Physics,ChineseAcademyof Sciences.

    3 Results and discussion

    3.1 Photoresponse

    Fig.1 showed the UV-Vis absorption spectra of N3,N749,and N3/Al2O3/N749 adsorbed onto TiO2films.The absorption peak of N3 was at about 530 nm,and that of N749 was at 620 nm.When the structure of N3/Al2O3/N749 was applied,a wide absorption peak from 530 to 620 nm could be observed.The results of UV-Vis absorption showed that the structure of N3/Al2O3/N749 combined the absorption spectra of N3 and N749.

    To further explore whether the broadened absorption of N3/Al2O3/N749 compared to the photoanode sensitized by the single dye injected into the conductive band of TiO2effectively,the IPCEs of devices based on TiO2/N3,TiO2/N749,and N3/Al2O3/N749 were tested.

    IPCE can be expressed by the following formula:44

    Fig.1 UV-Vis absorption spectra of N3,N749,and N3/Al2O3/N749 adsorbed onto TiO2films

    where LHE(λ)is the light-harvesting efficiency for photons of certain wavelength;φinjis the quantum yield for electron injected from the excited sensitizer to the conduction band of TiO2;and ηcis the electron collection efficiency.

    As shown in Fig.2,to compare the photoresponse range of N3,N749,and N3/Al2O3/N749 clearly,IPCEs of the three kinds of photoanodes were tested.The results revealed that compared to N3 individually,the IPCE spectrum of N3/Al2O3/N749 was widened in the range from 600 nm to over 700 nm and stronger in the range from 500 to 600 nm,which was corresponding to the results of absorption spectrum.It suggested that most of the electrons leading to the increased absorption of N3/Al2O3/N749 showed in Fig.1 were injected into the conductive band of TiO2.As a result,the short-circuit current density(Jsc)could be increased when using N3/Al2O3/N749 structure,then the conversion efficiency could be enhanced.

    3.2 Photovoltaic performance

    Fig.2 IPCE spectra of devices based on N3,N749,and N3/Al2O3/N749

    Fig.3 (a)Current density-voltage curves and(b)dark current curves of devices based on N3,N749,and N3/Al2O3/N749

    The photocurrent-voltage characteristics of DSCs based on N3,N749,and N3/Al2O3/N749 were tested under AM1.5,100 mW·cm-2.As shown in Fig.3(a)and Table 1,the Jscvalues of devices based on N3 and N749 were 10.95 and 7.97 mA·cm-2,respectively.The Jscvalue increased to 15.14 mA·cm-2when N3/Al2O3/N749 structure was applied.The increasing of Jsccould be explained that the two dyes in the N3/Al2O3/N749 increased the photoresponse range,and then more electrons were injected into the conductive band of TiO2.The increasing of Jsccorresponded to the results of UV-Vis adsorption and IPCE spectra.The open circuit voltage(Voc)of devices based on N3 and N749 were 0.635 and 0.620 V.The Vocof the device based on N3/Al2O3/N749 also increased to 0.690 V.The enhancement of Voccould be explained that as a carrier layer and modification material,besides absorbing more dyes,Al2O3could retard the charge recombination.The decreased recombination caused the enhancement of Voc.As a result,the device based on N3/Al2O3/N749 obtained a conversion efficiency of 5.75%,which was higher than the efficiency of device based on N3 or N749.As show in Fig.3(b),the dark current of device with N3/Al2O3/N749 was also lower than that of device based on N3 or N749.It showed that the back reaction was retarded,which confirmed the charge recombination decreasing caused by interface modification effects ofAl2O3.40

    3.3 Electron process and impedance analysis

    As shown in Fig.4,the electron transfer processes in DSC based on N3/Al2O3/N749 structure were illustrated.The electron in the lowest unoccupied molecular orbital(LUMO)of the first layer of dye(N3)is injected into the conductive band of TiO2.Besides,electrons in the LUMO of the second layer of dye(N749)also could be injected into the conductive band of TiO2with a quantum tunneling effect.As a result,more electrons could be produced and injected into TiO2than using N3 only,then enhance the photocurrent of the devices.Furthermore,Al2O3retarded the recombination between electrons in the conductive band of TiO2and I-/I-3in electrolyte,showing obvious interface modification effects.Thus the back reactions were reduced and dark current was decreased,which was shown in Fig.3(b).

    DSCs could be considered as a leaking capacitor in dark con-dition.45The resistance of the back reaction from TiO2to the I-3ions in the electrolyte could be analyzed through AC impedance technique under dark condition.The resistance at the interface of the sensitized TiO2/electrolyte was presented by the semicircle in intermediate frequency regime of the Nyquist plots.46The bigger the diameter of middle frequency semicircle was,the slighter the electron recombination at the sensitized TiO2/electrolyte interface was.Fig.5(a)showed the Nyquist plots of devices based on N3,N749 and N3/Al2O3/N749 at-0.8 V bias voltage in dark condition.Compared with N3 or N749 individually,the interface resistance of N3/Al2O3/N749 based DSC was much bigger,which meant that the charge recombination was obviously retarded.The decrease of recombination was mainly caused by the interlayer of Al2O3,which acted as a barrier layer besides a carrier layer of the second dye.

    Table 1 Parameters of DSCs based on N3,N749,and N3/Al2O3/N749

    Under illumination condition,the DSCs could be taken as diodes.47Resistance at the TiO2/dye/electrolyte interface was also presented by the middle frequency semicircle in the Nyquist plots.The smaller the diameter of middle frequency semicircle was,the faster the electron transfer at the sensitized TiO2/electrolyte interface was.As shown in Fig.5(b),the resistance at TiO2/dye/electrolyte interface of N3/Al2O3/N749 based DSC was similar with that based on N3 or N749 individually,showing that the charge transfer did not deteriorate with such a struc-ture.Thus the increased injection electron could enhance the Jsceffectively,which accorded with the results shown in Fig.3(a)and Table 1.

    Fig.4 Diagrammatic sketch of electron process in DSC based on N3/Al2O3/N749

    Fig.5 Nyquist plots under(a)dark and(b)illumination conditions;(c)simplified equivalent circuits of devices based on(i)N3 or N749,(ii)N3/Al2O3/N749(dark),and(iii)N3/Al2O3/N749(illumination)

    To interpret the mechanism of the dye/Al2O3structure theoretically,a series of equivalent circuits were built based on the EIS results.As shown in Fig.5(c),an equivalent circuit model was built to analyze the influence of N3/Al2O3/N749 on the interface resistance in DSCs.As a conventional sample,the model in Fig.5(c)could interpret the equivalent circuit.47The three semicircles in Nyquist plots represented the redox reaction at the platinum counter electrode(R1),the electron transfer at the TiO2/dye/electrolyte interface(R2),and carrier transport by ions within the electrolyte(Rd),Rdis the resistence part of Zwshowing in Fig.5(c).Rhwas the sheet resistance of FTO and the contact resistance between the FTO and TiO2.When it turned to N3/Al2O3/N749,models on the dark and illumination condition,new models were built to interpret the equivalent circuit.As seen in Fig.5(c),in dark condition,the electron process is only the recombination between electrons and I-/I-3in the electrolyte,which was seen as process(iv)in Fig.4.The Al2O3/N749 could be considered as a resistor in series to R2,which was R3shown in Fig.5(c).

    Table 2 showed the calculated values of EIS results of devic-es based on N3,N749,and N3/Al2O3/N749.In dark condition,the interface resistances of TiO2/N3/electrolyte,TiO2/N749/electrolyte,and TiO2/N3/Al2O3/N749/electrolyte were 16.1,12.4,and 23.6 Ω,respectively.The value of latter one was almost the sum of the former two,corresponding to the model of series in Fig.5(c)in dark condition.Furthermore,the interface capacitance value of TiO2/N3/Al2O3/N749 was 607.2 μF,similar to that of TiO2/N3(552.8 μF).It indicated that the second layer of Al2O3/N749 in N3/Al2O3/N749 structure did not influence the interface capacitance.It further confirmed that the equivalent circuit model of dark condition in Fig.5(c)was reasonable.

    Table 2 Calculated values of EIS results of devices based on N3,N749,and N3/Al2O3/N749

    On the illumination condition,there were mainly three processes in DSCs,electron injection from N3 to conductive band of TiO2,electron injection from N749 to conductive band of TiO2,and electron jumping from N749 to N3(an imaginary process,hardly happened as the LUMO energy levels of the two dyes were similar),which were seen in the processes(i),(ii),and(iii)in Fig.4,respectively.The process(i)represented R2and CPE2,and the process(ii)could be considered as a diode in parallel to R2and CPE2,representing R5and CPE4in Fig.5(c).At the same time,the process(iii)could be considered as a diode in series to R2and CPE2,representing R4and CPE3in Fig.5(c).

    As shown in Table 2,in illumination condition,the interface resistances of TiO2/N3/electrolyte,TiO2/N749/electrolyte,and TiO2/N3/Al2O3/N749/electrolyte were 13.8,12.2,and 13.8 Ω,respectively.Based on the model in illumination condition,the apparent resistance value(Rapp)of TiO2/N3/Al2O3/N749/electrolyte could be calculated as follow:

    Because the LUMO energy levels of N3 and N749 were similar,so the resistance(R5)and capacitance(CPE4)values of process(iii)were rather large.As a result,the value of Rappcould be approximately equal to R6based on equation(2),which was 12.2 Ω,similar to the measured value(13.8 Ω).Similarly,the value of the apparent capacitance(CPEapp)could be calculated as follow:

    As a result,the calculated value of CPEappwas 611.2 μF,approximate to the measured value(593.9 μF).

    Based on the discussion above,it was shown that reasonable equivalent circuit models were built to explain the effect of N3/Al2O3/N749 structure in DSCs.The error was considered coming from the defect in such a multi-layer structure.

    Besides influence on the interface resistance,N3/Al2O3/N749 structure also influenced the fill factor of devices.Series resistance(Rs)was well-known as a key factor that affected the FF of a device.Rsis mainly composed of the resistance of the conductive glass,the resistance of the electron transport within TiO2and the bulk resistance of the electrolyte.The following five equations revealed the relationship between FF and the Rs.47,48In equation(4),Rchrepresented the characteristic resistance of the solar cell.In equation(5),rsrepresented the normalized series resistance.In equation(6),νocwas defined as normalized Voc,k is Boltzman constant,and T is the temperature in Kelvin.41In equation(7),F(xiàn)F0was denoted as the idealized fill factor.

    Based on the results of Table 2,set n=1,T=300 K,and it was known that the elementary charge q=1.6×10-19C,the Boltzmann's constant k=1.38×10-23J·K-1,after calculating of the equations above,the results were shown in Table 3.Compared to the measured values,the relative errors of calculated FF of devices based on N3,N749,and N3/Al2O3/N749 were only 3.46%,6.41%,and 2.56%,respectively.From equation(7),it was indicated that the idealized fill factor of device based on N3/Al2O3/N749 structure was larger than that of device based on N3 or N749 because enhancement of Vocfrom the retarding of chargerecombination shown in the EIS results.However,the measured results showed a smaller FF of device based on the N3/Al2O3/N749 structure.It could be explained that with the N3/Al2O3/N749 structure,the light harvesting was obviously increased,then Jscenhanced compared to that with N3 or N749 individually.From equation(4),value of Rchdecreased with the increase of Jsc.Besides,the value of Rsincreased caused by the interlayer of Al2O3.Then from equation(5),the value of rsincreased.Thus from equation(8),the value of FF decreased reasonably.And the calculated and measured value confirmed the explanation.

    Table 3 Calculated values and measured results of fill factors ofdevices based on N3,N749,and N3/Al2O3/N749

    Bode plots of devices based on N3,N749,and N3/Al2O3/N749 were shown in Fig.6.The three peaks in the phase of the spectrum were associated with three transient processes in the DSC.The middle-frequency peak(in the 10-100 Hz range)was determined by the lifetime of the electrons in TiO2,which is shown as following equation:49

    As shown in Fig.6,the minimum frequency of device using N3/Al2O3/N749 alternating structure was smaller than that using only one kind of dye.As a result,from equation(9),the lifetime of electrons in the TiO2was enhanced by using such an alternating structure.It was caused by the retarding of charge recombination from the interface modification ofAl2O3.

    The Vocof DSCs can be expressed by following equation:50

    where R is the molar gas constant,F(xiàn) is the Faraday constant,β is the reaction order for I-3and electrons,A is the electrode area,I is the incident photon flux,n0is the concentration of accessible electronic states in the conduction band,kband krare the kinetic constants of the back reaction and the recombination,respectively.[I-3]and[D+]are concentrations of triodide and oxidized dye,respectively.It could be considered that fminwas the same as the back reaction constant(kb).44The values of Vocincreased with the decreasing of back reaction,which was same as fmin.This result accorded with equation(10),indicating that the enhancement was caused by the increasing of electron lifetime in TiO2due to strengthened retarding effect of charge recombination applying the alternating structure of N3/Al2O3/N749.

    Fig.6 Bode plots of devices based on N3,N749,and N3/Al2O3/N749

    To explore the influence of N3/Al2O3/N749 alternating structure on the electron diffusion and lifetime in photoanode,IMVS and IMPS of devices based on N3,N749,and N3/Al2O3/N749 were tested.IMVS experiment used the same intensity perturbation but measured the periodic modulation of the photovoltage,giving the information of electron lifetime under open-circuit conditions.51As shown in Fig.7(a),compared to devices using only one kind of dye,the electron lifetime in photoanode of device based on N3/Al2O3/N749 alternating structure was longer,which accorded with the results of EIS test.It could be explained that as an interface modification material,the interlayer of Al2O3retarded the charge recombination effectively,then the electrons in the conductive band of TiO2was difficult to react with redox couple in electrolyte.IMPS measured the periodic photocurrent response of device to a small sinusoidal perturbation of the light intensity superimposed on a larger steady background level,providing information about the dynamics of charge transport and back reaction under short circuit conditions.45As shown in Fig.7(b),compared to devices using only one kind of dye,the electron diffusion coefficient(Dn)of device based on N3/Al2O3/N749 alternating structure obviously increased,which indicated that this structure was beneficial to electron transportation in photoanode of DSCs.This result was also accorded with the value of Jsc.It could be due to the increased electron injection and decreased electron quenching and recombination caused by the interface modification effects.The effective diffusion coefficient of electrons,Deff,determined by the equation(11):52

    where nfreeis the density of free conduction band electrons,ntotalis the total density of free and trapped electrons,and D0is the standard electron diffusion coefficient.As shown in the results of IPCE spectra,the electron injected into the conductive band of TiO2increased obviously compared to that using N3 or N749 individually.Using equation(11),it could explain why the electron diffusion coefficient increased using the N3/Al2O3/N749 alternating structure.

    To weigh the electron transport and recombination properties,charge collection efficiency(ηcc)derived from IMPS and IMVS measurements was apparently considered as meaningful parameter.In sensitized solar cells,ηcccan be calculated by the following equation:53

    where τcis the electron collection time and τdis the electron lifetime.Fig.7(c)showed that the dependence of the charge collection efficiency on the different light intensity.Compared to devices using only one kind of dye,the charge collection efficiency of device based on N3/Al2O3/N749 alternating structure obviously increased,which indicated that this structure was beneficial to charge collection in photoanode of DSCs.According to the following equation:54

    where ηlhis the light capture efficiency,ηinjis the electron injection efficiency,ηccis in direct proportion to Jscof the sensitized solar cells,I0is the idea photocurrent.As shown in Fig.7(c),the result of charge collection efficiency also accorded with the results of I-V curve shown in Fig.3(a).

    4 Conclusions

    In summary,N3/Al2O3/N749 alternating structure widening the photoresponse was introduced and the interface electron processes were discussed.The widened photoresponse increased the Jscof DSCs.Besides,the interlayer of Al2O3retarded the charge recombination obviously,which caused the increase of Vocand decrease of dark current.Thus the conversion efficiency was enhanced.The device based on N3/Al2O3/N749 obtained a 5.75%conversion efficiency,which was higher than that based on N3 or N749,which was 4.22%and 3.09%,respectively.The results of EIS showed that the N3/Al2O3/N749 structure increased the interface resistance in dark condition,indicating that the charge recombination was retarded.To analyze the electron process in DSC based on N3/Al2O3/N749 alternating structure,a series of equivalent circuit models were built based on the EIS results.It could explain the process of electron and the change of parameters of DSCs reasonably.The results of IMVS and IMPS test indicated that the N3/Al2O3/N749 alternating structure increased the electron life time and diffusion coefficient,enhancing the electron transportation.Thus the N3/Al2O3/N749 alternating structure enhanced the photoresponse and remained the interface modification effects at the same time,improving the performance of DSCs effectively.

    (1) O'Regan,B.;Gr?tzel,M.Nature 1991,353,737.doi:10.1038/353737a0

    (2) Kuang,D.B;Klein,C.;Ito,S.;Moser,J.;Baker,R.;Zakeeruddin,S.;Gr?tzel,M.Adv.Funct.Mater.2007,17,154.

    (3) Hu,L.H.;Dai,S.Y.;Weng,J.;Xiao,S.F.;Sui,Y.F.;Huang,Y.;Chen,S.H.;Kong,F(xiàn).T.;Pan,X.;Liang,L.Y.;Wang,K.J.J.Phys.Chem.B 2007,111,358.doi:10.1021/jp065541a

    (4) Hara,K.;Sugihara,H.;Tachibana,Y.;Islam,A.;Yanagida,M.;Sayama,K.;Arakawa,H.Langmuir 2001,17,5992.doi:10.1021/la010343q

    (5) Jung,H.S.;Lee,J.K.;Nastasi,M.;Lee,S.W.;Kim,J.Y.;Park,J.S.;Hong,K.S.Langmuir 2005,21,10332.doi:10.1021/la051807d

    (6) Nakade,S.;Kanzaki,T.;Kambe,S.;Wada,Y.;Yanagida,S.Langmuir 2005,21,11414.doi:10.1021/la051483t

    (7) Sommeling,P.M.;Sp?th,M.;Smit,H.J.P.;Bakker,N.J.;Kroon,J.M.J.Photochem.Photobiol.A:Chem.2004,164,137.doi:10.1016/j.jphotochem.2003.12.017

    (8) Gr?tzel,M.C.R.Chimie.2006,9,578.

    (9) Figgemeier,E.;Hagfeldt,A.Int.J.Photoenergy 2004,6,127.doi:10.1155/S1110662X04000169

    (10) Meng,Q.B.;Takahashi,K.;Zhang,X.T.;Sutanto,I.;Rao,T.N.;Sato,O.;Fujishima,A.Langmuir 2003,19,3572.doi:10.1021/la026832n

    (11) Sathiya Priya,A.R.;Subramania,A.;Jung,Y.S.;Kim,K.J.Langmuir 2008,24,9816.doi:10.1021/la801375s

    (12) Gr?tzel,M.Accounts Chem.Res.2009,42,1788.doi:10.1021/ar900141y

    (13)Fang,J.H.;Mao,H.F.;Wu,J.W;Zhang,X.Y;Lu,Z.H.Appl.Surf.Sci.1997,119,237.doi:10.1016/S0169-4332(97)00195-5

    (14)Fang,J.H.;Su,L.Y.;Wu,J.W.;Shen,Y.C.;Lu,Z.H.New J.Chem.1997,21,1303.

    (15) Perera,V.;Pitigala,P.;Jayaweera,P.;Bandaranayake,K.;Tennakone,K.J.Phys.Chem.B 2003,107,13758.doi:10.1021/jp0348979

    (16) Kuang,D.B.;Walter,P.;Nüesch,F(xiàn).;Kim,S.;Ko,J.;Comte,P.;Zakeeruddin,S.M.;Gr?tzel,M.Langmuir 2007,23,10906.doi:10.1021/la702411n

    (17) Cid,J.;Yum,J.;Jang,S.;Nazeeruddin,M.K.;Ferrero,E.M.;Palomares,E.;Ko,J.;Gr?tzel,M.;Torres,T.Angew.Chem.Int.Edit.2007,46,8358.

    (18)Liu,B.Q.;Zhao,X.P.;Luo,W.Dyes and Pigments 2008,76,327.doi:10.1016/j.dyepig.2006.09.004

    (19) Clifford,J.N.;Palomares,E.;Nazeeruddin,M,K.;Thampi,R.;Gr?tzel,M.;Durrant,J.R.J.Am.Chem.Soc.2004,126,5670.doi:10.1021/ja049705h

    (20) Choi,H.;Kim,S.;Kang,S.O.;Ko,J.;Kang,M.S.;Clifford,J.N.;Forneli,A.;Palomares,E.;Nazeeruddin,K.;Gr?tzel,M.Angew.Chem.Int.Edit.2008,120,8383.doi:10.1002/ange.v120:43

    (21)Bandaranayake,K.M.P.;Senevirathna,M.K.I.;Weligamuwa,P.;Tennakone,K.Coord.Chem.Rev.2004,248,1277.doi:10.1016/j.ccr.2004.03.024

    (22)Diamant,Y.;Chen,S.G.;Melamed,O.;Zaban,A.J.Phys.Chem.B 2003,107,1977.doi:10.1021/jp027827v

    (23)Gao,R.;Wang,L.D.;Ma,B.B.;Zhan,C.;Qiu,Y.Langmuir 2010,26,2460.doi:10.1021/la902688a

    (24)Gao,R.;Ma,B.B.;Wang,L.D.;Shi,Y.T.;Dong,H.P.;Qiu,Y.Acta Phys.-Chim.Sin.2011,27,413.[高 瑞,馬蓓蓓,王立鐸,史彥濤,董豪鵬,邱 勇.物理化學(xué)學(xué)報(bào),2011,27,413.]doi:10.3866/PKU.WHXB20110234

    (25) Lao,C.F.;Chu,Z.Z.;Zou,D.C.Acta Phys.-Chim.Sin.2011,27,419.[勞春峰,初增澤,鄒德春.物理化學(xué)學(xué)報(bào),2011,27,419.]doi:10.3866/PKU.WHXB20110209

    (26)Gao,R.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.Phys.Chem.Chem.Phys.2011,13,10635.

    (27)Chen,D.P.;Zhang,X.D.;Wei,C.C.;Liu,C.C.;Zhao,Y.Acta Phys.-Chim.Sin.2011,27,425.[陳東坡,張曉丹,魏長春,劉彩池,趙 穎.物理化學(xué)學(xué)報(bào),2011,27,425.]doi:10.3866/PKU.WHXB20110222

    (28)Gao,R.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.J.Phys.Chem.C 2011,115,17986.doi:10.1021/jp204466h

    (29)Gao,R.;Niu,G.D.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.Phys.Chem.Chem.Phys.2012,14,5973.

    (30)O'Regan,B.C.;Scully,S.;Mayer,A.C.J.Phys.Chem.B 2005,109,4616.doi:10.1021/jp0468049

    (31)Alarcon,H.;Boschloo,G.;Mendoza,P.;Solis,J.L.;Hagfeldt,A.J.Phys.Chem.B 2005,109,18483.doi:10.1021/jp0513521(32)Wu,S.J.;Han,H.W.;Tai,Q.D.;Zhang,J.;Xu,S.;Zhou,C.H.;Yang,Y.;Hu,H.;Chen,B.L.;Sebo,B.;Zhao,X.Z.Nanotechnology 2008,19,215704.doi:10.1088/0957-4484/19/21/215704

    (33)Chen,S.G.;Chappel,S.;Diamant,Y.;Zaban,A.Chem.Mater.2001,13,4629.doi:10.1021/cm010343b

    (34) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.J.Am.Chem.Soc.2003,125,475.doi:10.1021/ja027945w

    (35) Wang,P.;Wang,L.D.;Li,B.;Qiu,Y.Chin.Phys.Lett.2005,22,2708.doi:10.1088/0256-307X/22/10/069

    (36) Menzies,D.B.;Cervini,R.;Cheng,Y.B.;Simon,G.P.;Spiccia,L.J.Sol-Gel Sci.Technol.2004,32,363.doi:10.1007/s10971-004-5818-0

    (37) Liu,Z.Y.;Pan,K.;Liu,M.;Wang,M.J.;Lu,Q.;Li,J.H.;Bai,Y.B.;Li,T.J.Electrochim.Acta 2005,50,2583.doi:10.1016/j.electacta.2004.11.003

    (38) Zhang,X.Y.;Sutanto,I.;Taguchi,T.;Tokuhiro,K.;Meng,Q.B.;Rao,T.N.;Fujishima,A.;Watanabe,H.;Nakamori,T.;Uragami,M.Sol.Energy Mater.Sol.Cells 2003,80,315.doi:10.1016/j.solmat.2003.08.006

    (39) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.Chem.Commun.2002,1464.

    (40)Luo,F(xiàn).;Wang,L.D.;Ma,B.B.;Qiu,Y.J.Photochem.Photobiol.A:Chem.2008,197,375.doi:10.1016/j.jphotochem.2008.02.011

    (41) Ma,B.B.;Gao,R.;Wang,L.D.;Luo,F(xiàn).;Zhan,C.;Li,J.L.;Qiu,Y.J.Photochem.Photobiol.A:Chem.2009,202,33.doi:10.1016/j.jphotochem.2008.11.004

    (42) Burnside,S.D.;Shklover,V.;Barbé,C.;Comte,P.;Arendse,F(xiàn).;Brooks,K.;Gr?tzel,M.Chem.Mater.1998,10,2419.doi:10.1021/cm980702b

    (43) Huo,Z.P.;Dai,S.Y.;Wang,K.J.;Kong,F(xiàn).T.;Zhang,C.N.;Pan,X.;Fang,X.Q.Sol.Energy Mater.Sol.Cells 2007,91,1959.doi:10.1016/j.solmat.2007.08.003

    (44) Gr?tzel,M.Inorg.Chem.2005,44,6841.doi:10.1021/ic0508371

    (45) Bisquert,J.J.Phys.Chem.B 2002,106,325.doi:10.1021/jp011941g

    (46)Wang,Q.;Moser,J.;Gr?tzel,M.J.Phys.Chem.B 2005,109,14945.doi:10.1021/jp052768h

    (47)Qin,D.;Zhang,Y.D.;Huang,S.Q.;Luo,Y.H.;Li,D.M.;Meng,Q.B.Electrochim.Acta 2011,56,8680.doi:10.1016/j.electacta.2011.07.065

    (48) Green,M.A.Solar Cells;Prentice-Hall:Englewood,NJ,1982;Vol.96,pp 85-86.

    (49) Kern,R.;Sastrawan,R.;Ferber,J.;Stangl,R.;Luther,J.Electrochim.Acta 2002,47,4213.doi:10.1016/S0013-4686(02)00444-9

    (50)Lee,K.;Park,S.W.;Ko,M.J.;Kim,K.;Park,N.G.Nature Materials 2009,8,665.doi:10.1038/nmat2475

    (51) Schlichth?rl,G.;Huang,S.Y.;Sprague,J.;Frank,A.J.J.Phys.Chem.B 1997,101,8141.doi:10.1021/jp9714126

    (52) Dloczik,L.;Ileperuma,O.;Lauermann,I.;Peter,L.M.;Ponomarev,E.A.;Redmond,G.;Shaw,N.J.;Uhlendorf,I.J.Phys.Chem.B 1997,101,10281.doi:10.1021/jp972466i

    (53) Hagfeldt,A.;Boschloo,G.;Sun,L.C.;Kloo,L.;Pettersson,H.Chem.Rev.2010,110,6595.doi:10.1021/cr900356p

    (54) Zhu,K.;Neale,N.R.;Miedaner,A.;Frank,A.J.Nano Lett.2007,7,69.doi:10.1021/nl062000o

    猜你喜歡
    敏化物理化學(xué)學(xué)報(bào)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    日本五十路高清| 欧美性感艳星| 能在线免费观看的黄片| 精品人妻一区二区三区麻豆| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 偷拍熟女少妇极品色| 熟女人妻精品中文字幕| 人人妻人人看人人澡| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 淫秽高清视频在线观看| 色综合站精品国产| 国产高清国产精品国产三级 | 蜜臀久久99精品久久宅男| 午夜日本视频在线| 爱豆传媒免费全集在线观看| 嫩草影院精品99| 卡戴珊不雅视频在线播放| 天天躁日日操中文字幕| 久久国内精品自在自线图片| 乱系列少妇在线播放| 麻豆av噜噜一区二区三区| 亚洲精品一区蜜桃| 又黄又爽又刺激的免费视频.| 精品久久久久久久人妻蜜臀av| 黄色欧美视频在线观看| 中文字幕av在线有码专区| 亚洲av中文字字幕乱码综合| 天堂av国产一区二区熟女人妻| 欧美激情国产日韩精品一区| 国产精品.久久久| 亚洲av日韩在线播放| 日本-黄色视频高清免费观看| 欧美日韩一区二区视频在线观看视频在线 | 一本一本综合久久| 免费黄色在线免费观看| 女人被狂操c到高潮| 国产精品久久电影中文字幕| 成人美女网站在线观看视频| 97超碰精品成人国产| 99久久精品国产国产毛片| 视频中文字幕在线观看| 中国国产av一级| 搡老妇女老女人老熟妇| 亚洲婷婷狠狠爱综合网| 1024手机看黄色片| 国产黄色视频一区二区在线观看 | 小说图片视频综合网站| 国产极品精品免费视频能看的| 成人毛片a级毛片在线播放| 国产高潮美女av| 国产三级中文精品| 深夜a级毛片| 亚洲成人中文字幕在线播放| 国内揄拍国产精品人妻在线| 五月玫瑰六月丁香| 爱豆传媒免费全集在线观看| 色综合站精品国产| 我要搜黄色片| 日日摸夜夜添夜夜爱| 日韩精品有码人妻一区| 欧美激情国产日韩精品一区| 黄色一级大片看看| 国产白丝娇喘喷水9色精品| 人体艺术视频欧美日本| 国产高潮美女av| 最新中文字幕久久久久| 久久久久久久久大av| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| 两个人视频免费观看高清| 亚洲婷婷狠狠爱综合网| 99热全是精品| 真实男女啪啪啪动态图| 麻豆成人av视频| 国产老妇女一区| 99视频精品全部免费 在线| 亚洲成人av在线免费| 国产免费男女视频| 日韩,欧美,国产一区二区三区 | 免费av毛片视频| 麻豆国产97在线/欧美| 一边亲一边摸免费视频| 国产亚洲午夜精品一区二区久久 | 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站在线播| 国产色婷婷99| 国产精品国产高清国产av| 国语自产精品视频在线第100页| 麻豆久久精品国产亚洲av| 国产免费一级a男人的天堂| 精品熟女少妇av免费看| 蜜臀久久99精品久久宅男| 亚洲欧美精品专区久久| 亚洲怡红院男人天堂| www.色视频.com| 亚洲av成人精品一二三区| 自拍偷自拍亚洲精品老妇| 国产不卡一卡二| 最近最新中文字幕免费大全7| 高清av免费在线| av视频在线观看入口| 久99久视频精品免费| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 99视频精品全部免费 在线| 国产av在哪里看| 亚洲精品色激情综合| 校园人妻丝袜中文字幕| 久99久视频精品免费| 老师上课跳d突然被开到最大视频| 欧美日韩国产亚洲二区| 亚洲第一区二区三区不卡| 亚洲国产精品sss在线观看| 成人国产麻豆网| 国产精品久久久久久精品电影| 97人妻精品一区二区三区麻豆| 精品人妻视频免费看| 最近最新中文字幕免费大全7| 成年女人永久免费观看视频| 日本爱情动作片www.在线观看| 国产亚洲av嫩草精品影院| 中文字幕精品亚洲无线码一区| 日本三级黄在线观看| 国产欧美日韩精品一区二区| 夫妻性生交免费视频一级片| 国产精品福利在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲五月天丁香| 麻豆精品久久久久久蜜桃| 日本一本二区三区精品| 又黄又爽又刺激的免费视频.| 看黄色毛片网站| 欧美+日韩+精品| 亚洲电影在线观看av| av国产免费在线观看| 丰满乱子伦码专区| 男人和女人高潮做爰伦理| 欧美成人免费av一区二区三区| 日韩欧美国产在线观看| 国产免费男女视频| 国产乱人视频| 国产成年人精品一区二区| 亚洲精品影视一区二区三区av| 少妇熟女欧美另类| a级一级毛片免费在线观看| 男人舔奶头视频| 日本av手机在线免费观看| 国产在线一区二区三区精 | 色综合站精品国产| 高清在线视频一区二区三区 | 亚洲国产最新在线播放| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 国产又色又爽无遮挡免| 亚洲av男天堂| 国产亚洲一区二区精品| 国产老妇女一区| 成年女人永久免费观看视频| 亚洲国产成人一精品久久久| 亚洲精品aⅴ在线观看| av在线天堂中文字幕| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 午夜老司机福利剧场| 国产激情偷乱视频一区二区| 国产精品av视频在线免费观看| 国产亚洲精品久久久com| 日韩成人伦理影院| 亚洲自偷自拍三级| 特大巨黑吊av在线直播| 久久热精品热| 国语对白做爰xxxⅹ性视频网站| 精品久久久久久久人妻蜜臀av| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 少妇的逼好多水| 成人二区视频| 日韩av不卡免费在线播放| 91久久精品国产一区二区成人| 国产免费又黄又爽又色| 男女下面进入的视频免费午夜| 国产精品熟女久久久久浪| 久久亚洲国产成人精品v| 99热网站在线观看| 久久久国产成人精品二区| 高清午夜精品一区二区三区| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 成年免费大片在线观看| 国产在线一区二区三区精 | 中文字幕av成人在线电影| 国产一区亚洲一区在线观看| 一区二区三区免费毛片| 欧美成人午夜免费资源| 黄色一级大片看看| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| 国产精品美女特级片免费视频播放器| 久久这里有精品视频免费| 身体一侧抽搐| 少妇的逼好多水| 国产美女午夜福利| 国产熟女欧美一区二区| 91在线精品国自产拍蜜月| 中文字幕久久专区| 七月丁香在线播放| 晚上一个人看的免费电影| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 一个人免费在线观看电影| av在线老鸭窝| 久久99热这里只有精品18| 秋霞在线观看毛片| 国内精品美女久久久久久| 搡老妇女老女人老熟妇| 18+在线观看网站| 99热网站在线观看| 超碰97精品在线观看| 国产一级毛片七仙女欲春2| 狠狠狠狠99中文字幕| 国产欧美日韩精品一区二区| 亚州av有码| 久热久热在线精品观看| 午夜福利在线在线| 亚洲欧美清纯卡通| 网址你懂的国产日韩在线| 国产亚洲最大av| 精品人妻一区二区三区麻豆| 在线观看一区二区三区| 国产麻豆成人av免费视频| 欧美最新免费一区二区三区| 一级二级三级毛片免费看| 国产 一区 欧美 日韩| 亚洲欧美精品专区久久| 三级毛片av免费| 色网站视频免费| av在线天堂中文字幕| 国产日韩欧美在线精品| 精华霜和精华液先用哪个| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| av在线播放精品| 天堂av国产一区二区熟女人妻| 精品一区二区免费观看| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 18禁裸乳无遮挡免费网站照片| 熟妇人妻久久中文字幕3abv| 青春草亚洲视频在线观看| 十八禁国产超污无遮挡网站| 精品久久久久久电影网 | 日韩大片免费观看网站 | 国产极品天堂在线| 乱系列少妇在线播放| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 免费黄网站久久成人精品| 韩国高清视频一区二区三区| 一级毛片久久久久久久久女| 青春草国产在线视频| 国产探花在线观看一区二区| 成人毛片a级毛片在线播放| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 在线播放无遮挡| 国产精品无大码| 一二三四中文在线观看免费高清| 国产在线一区二区三区精 | 黄片无遮挡物在线观看| 成人漫画全彩无遮挡| 久久久国产成人精品二区| 国产免费又黄又爽又色| 只有这里有精品99| av国产久精品久网站免费入址| 欧美+日韩+精品| 欧美一区二区国产精品久久精品| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区 | 国产毛片a区久久久久| 91久久精品国产一区二区三区| 99热这里只有是精品50| 在线免费观看的www视频| 99热这里只有精品一区| 午夜a级毛片| 又爽又黄无遮挡网站| 国产三级中文精品| 热99re8久久精品国产| 亚洲欧美精品自产自拍| 亚洲综合精品二区| 国产av码专区亚洲av| av视频在线观看入口| 91狼人影院| 亚洲精品国产成人久久av| 亚洲欧美日韩高清专用| 欧美人与善性xxx| 淫秽高清视频在线观看| 国产成人午夜福利电影在线观看| 成人特级av手机在线观看| 欧美一级a爱片免费观看看| 亚洲国产精品专区欧美| 级片在线观看| 色吧在线观看| 老女人水多毛片| 午夜a级毛片| 国产精品久久久久久久久免| 美女大奶头视频| 国产精品一二三区在线看| 亚洲精品aⅴ在线观看| 午夜福利视频1000在线观看| 日本免费在线观看一区| 一本久久精品| 精品熟女少妇av免费看| 国产精品美女特级片免费视频播放器| 午夜福利在线观看免费完整高清在| 欧美成人一区二区免费高清观看| 夫妻性生交免费视频一级片| 午夜福利在线观看吧| 色综合色国产| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 国产精品.久久久| 免费观看性生交大片5| 国产成人一区二区在线| 我要搜黄色片| 久久鲁丝午夜福利片| 国产精品女同一区二区软件| 国产成人一区二区在线| 久久久精品94久久精品| 久久久久久久国产电影| 日本熟妇午夜| 赤兔流量卡办理| 亚洲av中文av极速乱| 国产亚洲午夜精品一区二区久久 | 久久久午夜欧美精品| 亚洲国产最新在线播放| 18+在线观看网站| 精品一区二区免费观看| 久久人人爽人人片av| 国语自产精品视频在线第100页| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 日本免费一区二区三区高清不卡| 一夜夜www| 国产欧美日韩精品一区二区| 日本wwww免费看| 亚洲久久久久久中文字幕| 欧美日韩精品成人综合77777| 午夜激情福利司机影院| 大香蕉久久网| 99久久中文字幕三级久久日本| 小说图片视频综合网站| 国产精品一及| 久久久久网色| 国产午夜精品论理片| 久久亚洲精品不卡| 国产精华一区二区三区| 尾随美女入室| 日韩三级伦理在线观看| 男人狂女人下面高潮的视频| 精品一区二区三区人妻视频| 国产免费视频播放在线视频 | 免费看av在线观看网站| 精品熟女少妇av免费看| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 国产精品美女特级片免费视频播放器| 国产精品国产高清国产av| 久久久久久久午夜电影| 级片在线观看| 日韩av在线免费看完整版不卡| 69人妻影院| 国产色婷婷99| 少妇被粗大猛烈的视频| 简卡轻食公司| 久久鲁丝午夜福利片| 国产亚洲午夜精品一区二区久久 | 欧美性猛交╳xxx乱大交人| av在线老鸭窝| 日韩中字成人| 国产黄色视频一区二区在线观看 | 一本久久精品| 欧美人与善性xxx| 国产精品三级大全| av黄色大香蕉| 国产 一区精品| 国产精品久久久久久精品电影小说 | .国产精品久久| 综合色丁香网| 久久精品熟女亚洲av麻豆精品 | 成人高潮视频无遮挡免费网站| АⅤ资源中文在线天堂| av线在线观看网站| 久久精品国产自在天天线| 免费看日本二区| 国产av在哪里看| 亚洲精品国产av成人精品| 国产亚洲精品av在线| 爱豆传媒免费全集在线观看| 如何舔出高潮| 日韩人妻高清精品专区| 一级毛片我不卡| 黄色配什么色好看| 最近视频中文字幕2019在线8| 国产 一区 欧美 日韩| 久久精品国产自在天天线| 国产精品国产三级国产专区5o | 欧美xxxx黑人xx丫x性爽| 欧美+日韩+精品| 国国产精品蜜臀av免费| 老师上课跳d突然被开到最大视频| 美女大奶头视频| 一级黄片播放器| 午夜福利网站1000一区二区三区| videossex国产| 日日干狠狠操夜夜爽| 国产午夜精品论理片| 一区二区三区四区激情视频| 一级黄色大片毛片| 国产真实乱freesex| 神马国产精品三级电影在线观看| 晚上一个人看的免费电影| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 成人特级av手机在线观看| 亚洲,欧美,日韩| 欧美成人a在线观看| 日本黄色视频三级网站网址| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 亚洲美女搞黄在线观看| 亚洲av成人av| 亚洲成av人片在线播放无| 最近中文字幕高清免费大全6| 亚洲av二区三区四区| 国产亚洲精品久久久com| 22中文网久久字幕| 国产精品一二三区在线看| 少妇丰满av| 丝袜喷水一区| 噜噜噜噜噜久久久久久91| 国产精品乱码一区二三区的特点| av国产久精品久网站免费入址| 成年免费大片在线观看| 中文天堂在线官网| 嘟嘟电影网在线观看| 亚洲国产精品专区欧美| 免费一级毛片在线播放高清视频| 一夜夜www| 欧美日韩综合久久久久久| 亚洲av免费高清在线观看| 神马国产精品三级电影在线观看| 亚洲人成网站在线播| 久久久久久久久久黄片| 亚洲精华国产精华液的使用体验| 色播亚洲综合网| 国产成人精品久久久久久| 韩国av在线不卡| 婷婷色综合大香蕉| 一级爰片在线观看| 99九九线精品视频在线观看视频| .国产精品久久| 亚洲欧美中文字幕日韩二区| 亚洲国产精品sss在线观看| av黄色大香蕉| 国产亚洲最大av| 欧美激情久久久久久爽电影| 在现免费观看毛片| 日韩欧美精品v在线| 亚洲不卡免费看| 中文精品一卡2卡3卡4更新| 中文资源天堂在线| 丰满少妇做爰视频| 亚洲av中文av极速乱| 欧美极品一区二区三区四区| 国产一区亚洲一区在线观看| 久久久精品大字幕| 国产高清视频在线观看网站| 日韩亚洲欧美综合| 高清毛片免费看| 久久精品久久久久久噜噜老黄 | 精品酒店卫生间| 搡老妇女老女人老熟妇| 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 亚洲成av人片在线播放无| 激情 狠狠 欧美| 人人妻人人看人人澡| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 欧美日韩在线观看h| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 干丝袜人妻中文字幕| 国产精品无大码| 久热久热在线精品观看| 色噜噜av男人的天堂激情| 高清毛片免费看| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂 | 一边亲一边摸免费视频| 国内精品一区二区在线观看| 国产淫片久久久久久久久| 亚洲精品成人久久久久久| 国产免费又黄又爽又色| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 欧美3d第一页| 国产精品人妻久久久影院| 高清视频免费观看一区二区 | 日韩视频在线欧美| 国产高清有码在线观看视频| 亚洲精品aⅴ在线观看| 亚洲欧美精品综合久久99| 中文精品一卡2卡3卡4更新| 日韩国内少妇激情av| 午夜福利视频1000在线观看| 亚洲欧美日韩无卡精品| 国产免费又黄又爽又色| av视频在线观看入口| 成人毛片60女人毛片免费| 国产精品久久久久久久久免| 99在线人妻在线中文字幕| 欧美激情久久久久久爽电影| 精品人妻熟女av久视频| 亚洲美女视频黄频| 中文字幕av在线有码专区| videossex国产| 日本五十路高清| 国产又黄又爽又无遮挡在线| 我要搜黄色片| 国产精品一区二区性色av| 18禁动态无遮挡网站| 亚洲av福利一区| 欧美激情久久久久久爽电影| 国产精品美女特级片免费视频播放器| 久久这里只有精品中国| 免费av观看视频| 亚洲va在线va天堂va国产| 中文欧美无线码| 夜夜爽夜夜爽视频| 亚洲国产精品成人综合色| 男女啪啪激烈高潮av片| 国产精品永久免费网站| 舔av片在线| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产自在天天线| 日韩一区二区视频免费看| 国产精品久久久久久av不卡| 国产极品天堂在线| 久久久久久久亚洲中文字幕| 一夜夜www| 中文天堂在线官网| 亚洲精品一区蜜桃| 免费大片18禁| 成人毛片60女人毛片免费| 九九爱精品视频在线观看| 亚洲最大成人av| 欧美三级亚洲精品| 晚上一个人看的免费电影| 亚洲国产欧美人成| 九九在线视频观看精品| 男人狂女人下面高潮的视频| 精品久久久久久久久av| 国产高清不卡午夜福利| 久久久国产成人精品二区| 99在线人妻在线中文字幕| 黄色日韩在线| 啦啦啦啦在线视频资源| 一边亲一边摸免费视频| .国产精品久久| 国产69精品久久久久777片| 国产成人精品婷婷| 国产精品一区二区在线观看99 | 国产大屁股一区二区在线视频| 少妇裸体淫交视频免费看高清| 日韩欧美 国产精品| 久久久久久久久久久丰满| 我要搜黄色片| 国内少妇人妻偷人精品xxx网站| 国产乱人偷精品视频| 青青草视频在线视频观看| 中文天堂在线官网| videos熟女内射| 久久99热这里只频精品6学生 | 美女cb高潮喷水在线观看| 看非洲黑人一级黄片| 美女被艹到高潮喷水动态| 性色avwww在线观看| 婷婷色综合大香蕉| 免费av观看视频| 在现免费观看毛片| 九九久久精品国产亚洲av麻豆| 高清视频免费观看一区二区 | 欧美高清成人免费视频www| 国产亚洲精品久久久com| 久久亚洲精品不卡| 高清视频免费观看一区二区 | 欧美高清成人免费视频www| 亚洲av免费高清在线观看| 婷婷六月久久综合丁香| 欧美+日韩+精品| 国产麻豆成人av免费视频| 国产成年人精品一区二区| 亚洲成色77777| 91精品国产九色|