• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of 12 polymorphic microsatellite markers in the Chinese tree shrew (Tupaia belangeri chinensis)

    2013-09-20 03:39:34XiaoHongLIUYongGangYAO
    Zoological Research 2013年2期

    Xiao-Hong LIU , Yong-Gang YAO

    1. Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Kunming, Yunnan 650223, China;

    2. Kunming Primate Research Center, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China;

    3. Tree Shrew Inbreeding Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;

    4. University of the Chinese Academy of Sciences, Beijing 100049, China

    The Chinese tree shrew (Tupaia belangeri chinensis)is a squirrel-like animal. It belongs to the Family Tupaiidae of Scandentia. Tree shrews have the highest brain-to-body mass ratio of known mammals (Peng et al,1991). Because tree shrews share some characteristics with primates and insectivores, the exact phylogenetic position of the tree shrew has been debated (Arnason et al, 2002; Janecka et al, 2007; Peng et al, 1991; Xu et al,2012; Xu et al, 2013a). Analyses of the mitochondrial DNA (mtDNA) genome have shown that the tree shrew has a closer affinity with Lagomorpha (Arnason et al,2002; Xu et al, 2012), while nuclear gene sequences provide evidence for a close affinity to primates (Janecka et al, 2007; Killian et al, 2001; Lindblad-Toh et al, 2011).

    The tree shrew has long been proposed to be an alternative experimental animal to primates in biomedical research due to its characteristics such as small body size, short reproductive cycle and life span,and low-cost maintenance (Peng et al, 1991). This animal has been used to create animal models for infection with the hepatitis B and C viruses, the development of hepatocellular carcinoma, myopia, psychosocial stress(Cao et al, 2003; McBrien & Norton, 1992; van Kampen et al, 2002; Yan et al, 1996a; Yan et al, 1996b) and learning and memory (Wang et al, 2011), although there are many problems awaiting further studies (Xu et al,2013b) . Despite an increasing interest in using the tree shrew to establish animal models for medical and biological research, most of the animals used were captured from the wild and/or domesticated for a few months. There is no pure inbreeding strain with a clear genetic background similar to that of a mouse or rat at the present time, which would largely influence the stability and repeatability of experiments.1

    Tupaiidae contains four genera: Tupaia, Anathana,Urogale, and Dendrogale (Helgen, 2005). Currently, a total of 15 species is recognized in Tupaia, which is broadly distributed across South and Southeast Asia,including southern China, India, Philippines, Java,Borneo, Sumatra and Bali (Olson et al, 2005; Peng et al,1991). Chinese tree shrews (Tupaia belangeri) are distributed across southwest China and are divided into six subspecies according to geographical distribution and morphological characteristics (Wang, 1987).Understanding the genetic diversity of the wild tree shrew population has critical importance for conservation and for a breeding program to establish inbred lines. Recently, we evaluated the mtDNA genetic diversity of the tree shrew inhabiting urban Kunming and observed a relatively high diversity (Chen et al, 2011).Genetic markers from the nuclear genome are essential for us to further validate this conclusion and to analyze other behaviors of this animal, e.g., female-biased dispersal and gene flow between different populations.

    Microsatellites are short tandem repeats (STR) in the genome and have been broadly used for evaluating genetic diversity, population affinity, gene flow and population microdifferentiation (Goldstein et al, 1999;Schl?etterer & Pemberton, 1994; Waits et al, 2000), as well as individual identification and parentage tests (Behl et al, 2002; Butler, 2005). So far, there have been only sporadic reports for characterizing microstatellites in the tree shrew (Munshi-South, 2008; Munshi-South &Wilkinson, 2006; Srikwan et al, 2002). Amplification of the Chinese tree shrew genomic DNA using microsatellites developed from other species of Scandentia revealed some problems, such as lack of polymorphism (He et al, 2009) and had non-specific amplification in our samples (data not shown). Therefore,it is necessary to develop a set of species-specific microsatellite markers based on the available genome of the tree shrew. In this study, we successfully retrieved 12 polymorphic microsatellite markers from Chinese tree shrews and characterized them in a population of 117 individuals. Our results showed that this set of microsatellite loci had sufficient data to measure population heterozygosity and individual discrimination.

    MATERIALS AND METHODS

    Experimental animals

    A total of 117 Chinese tree shrews inhabiting the suburb of Kunming, Yunnan Province, China, were collected and raised at the Experimental Animal Core Facility of the Kunming Institute of Zoology, Chinese Academy of Sciences. All sampling procedures were approved by the Institute’s Institutional Animal Care and Use Committee. Genomic DNA was extracted from the blood, ear and/or muscle tissues of each individual by using the genomic DNA extraction kit (Tiangen, Beijing).

    Microsatellite identification and amplification

    Based on the genomic DNA sequences of the northern tree shrew (Tupaia belangeri) provided by the Ensembl database (ftp://ftp.ensembl.org/), 20 loci were chosen with a core repeat unit of 4-6 nucleotides. Primer pairs were designed using primer premier 5. PCR amplification condition for each locus contained a predenaturation cycle at 94 ℃ for 5 min, followed by 30 cycles of denaturation at 94 ℃ for 30 s, annealing at 55 ℃ for 30 s, and extension at 72 ℃ for 30 s, followed by a final extension cycle at 72℃ for 5 min.Amplification was performed in a total volume of 20 μL,which contained 10×Taq polymerase reaction buffer(100 mmol/L Tris-HCl, pH 8.3; 500 mmol/L KCl; 15 mmol/L MgCl2), 0.2 mmol/L dNTPs, 10 μmol/L of each forward and reverse primer, 0.5 U Taq DNA polymerase(TaKaRa, Dalian, China), and 50 ng genomic DNA. PCR products were electrophoresed on 8% polyacrylamide gels to test successful and specific amplification. For those loci with no amplification or with non-specific bands, we optimized the reaction conditions by increasing or decreasing the annealing temperature, or adjusting the concentration of Mg2+to achieve the best efficiency and specificity. We validated the authentic sequencing of each amplified locus by TA-cloning sequencing. In brief, PCR product was ligated into PMD 19-T vector (TaKaRa, Dalian, China), followed by transforming DH5α competent cells (Tiangen, Beijing)according to the manufacturer’s instructions. We picked up three to five plasmids with the right inserts for sequencing.

    After the pretest for primer pairs and the optimization for amplification, we labeled the forward primer of each locus by including 6-FAM (Carboxyfluorescein) at the 5' end of the primer. PCR amplification for each locus was performed using the above optimized conditions. PCR product was diluted with double-distilled water to achieve a concentration of 1 ng/μL. We mixed 1 μL diluted PCR product with 0.1 μL GenescanTM-500 LIZ?(Applied Biosystems) and Hi-DiTMFormamide (Applied Biosystems), and added ddH2O to make a 10 μL volume of cocktail. The mixture was denatured at 95 ℃ for 5 min, then immediately chilled on ice. We loaded 1 μL of cocktail on an automated sequencer (ABI PRISM 3100, Applied Biosystems). Alleles were scored using program Genemarker V1.5 (SoftGenetics LLC, State College, PA).

    Statistical analysis

    Allele frequencies, observed heterozygosity (Ho),expected heterozygosity (He) and deviation from the Hardy-Weinberg equilibrium (HWE) based on the likelihood ratio test were calculated by POPgene 1.32(Yeh & Boyle, 1997). Polymorphism information content(PIC), power of discrimination (PD), power of exclusion(probability of excluding relatives of the true father from paternity, PE) and paternity index (PI, which is the ratio of the probability that a genetic marker/allele the alleged father passed to the child to the probability that a randomly selected unrelated man of similar ethnic background could pass the allele to the child) were calculated by PowerStats V1.2 (Promega, Madison, WI).Non-exclusion probabilities (NEP), probability of identity (Pid), probability of identity of siblings (Pid-sib)and null allele frequency (F (null)) were calculated using Cervus 3.0 (Kalinowski et al, 2007).

    RESULTS

    Characterization of the microsatellites

    Among the 20 selected loci, only 14 could be successfully amplified in the Chinese tree shrew using the primer pairs designed in this study (Table 1). The sequence authenticity of each locus was verified by sequencing and the microsatellite sequences were deposited in GenBank under accession numbers JQ173849-JQ173882 (Figure 1). There are some mutations in the repeat motif (e.g., from AAG to GAG in loci TB9 and TB14), besides the change of the number of repeats. The remaining 6 loci either failed to be amplified or with apparent non-specific amplification (Table S1).

    To test whether the 14 loci were polymorphic in the Chinese tree shrew population, we screened 117 individuals by using 5'-fluorescently labeled primers.Two loci, TB2 and TB10, were non-polymorphic in the tested samples. However, a comparison of the sequencedfragments of these two loci with the reference sequence from the Ensembl database showed length polymorphisms (Figure S1), suggesting that these two loci might present polymorphisms among tree shrews from different regions, but not in tree shrews collected from Kunming. This result was in accordance with our previous studies of mtDNA sequence variation in the Chinese tree shrew (Chen et al, 2011; Xu et al, 2012), in which we observed some nucleotide differences between the Chinese tree shrew from Kunming and the reported northern tree shrew outside China, though both were grouped as Tupaia belangeri.

    Table 1 Information of 14 primer pairs for amplifying microsatellite loci in Chinese tree shrew(Tupaia belangeri chinensis) and PCR condition

    Figure 1 GeneScan maps and sequences of 12 polymorphic microsatellites in Chinese tree shrew population

    Chinese tree shrew population has a high microsatellite polymorphism

    Tables 2 and 3 list the estimated parameters for each of the 12 polymorphic microsatellites in Chinese tree shrews. The number of alleles per locus ranged from 4 to 20, with an average of 8.75 alleles. The effective alleles ranged from 1.19 (TB1 locus) to 10.47 (TB18 locus), and had an average of 4.05. The mean values of observed heterozygosity and expected heterozygosity were 0.566 and 0.616, respectively. Loci TB1 and TB15 had a relatively low level of polymorphism (PIC value<0.25),TB3 and TB6 were moderately polymorphic (0.25<PIC value<0.5), and the other loci were highly polymorphic(PIC value>0.5) (Table 2). The high PIC value and observed heterozygosity indicated a high genetic diversity of the analyzed tree shrew population, whichwas consistent with the previous mtDNA analysis (Chen et al, 2011). A likelihood ratio test for concordance with HWE revealed that only loci TB12, TB17 and TB20 deviated from HWE (P<0.05), but none was significant after applying a Bonferroni correction.

    Table 2 Genetic diversity measures for 12 polymorphic microsatellite loci tested in 117 Chinese tree shrews

    To further evaluate the potential use of the 12 microsatellite markers, we calculated some forensic efficiency parameters based on the tested samples. The linkage disequilibrium was tested by the online SHEsis program (Shi & He, 2005), but no significant linkage between loci was detected (Table S2). The power of discrimination (PD) was from 0.218 (TB1) to 0.971(TB18), and the cumulative PD in this study was as high as 99.99999998%. Waits et al (2001) recommend a reasonable probability of identifying individuals in a given region using dominant and codominant markers as 0.01-0.0001. In this study, the values of combined Pid and combined Pid-sib were 4.89×10-11and 0.00001,respectively. These values are far smaller than 0.01,which suggests that these 12 loci had sufficient data for individual identification.

    As testing for more markers would increase the cost,time and the risk of analytical errors (Waits & Paetkau,2005), it was necessary to choose the minimum number of markers that fulfill the aim of individual identification.We eliminated the four less polymorphic loci (TB6, TB3,TB15 and TB1) but still obtained considerably high values for combined PD (CPD=99.99999955%),combined Pid (CPid=8.61×10-10), and combined Pid-sib(CPid-sib=5.28×10-5). It is thus evident that the remaining 8 loci are sufficient for individual discrimination.

    For parentage testing, parameters such as average non-exclusion probability (NE-1P), average nonexclusion probability for one candidate parent given the genotype of a known parent of the opposite sex (NE-2P),average non-exclusion probability for a candidate parent pair (NE-PP), power of exclusion (PE) and paternity index (PI) were widely used in the field. The Chinese tree shrew population had a NE-1P value of 0.322-0.994,a NE-2P value of 0.192-0.945, a NE-PP value of 0.059-0.897, a PE value of 0.668-0.012, and a PI value of 3.05-0.57, respectively (Table 3). Excluding the four loci (TB3, TB15, TB1, and TB6) with few polymorphisms, we still obtained sufficient data for parentage testing.

    Table 3 Individual identification and parentage testing parameters for 12 polymorphic microsatellite markers in a population of Chinese tree shrew (n=117)

    The null allele frequency was also calculated to evaluate the efficiency of this set of microsatellite markers because of its influence on population analysis (Chapuis& Estoup, 2007). Null allele is any microsatellite allele at a microsatellite locus that consistently fails to amplify to detected levels in the PCR assays, and it has no significant effect on parentage analysis when the frequency is less than 0.2 (Dakin & Avise, 2004). In our study, all the null allele frequencies were less than 0.2 (Table 3). Therefore,these markers can be used for population analysis of tree shrews, at least in parentage analysis with little influence on the average exclusion probability.

    DISCCUSSION

    Tree shrews have received wide attention in recent years for their potential use in biomedical research and drug discovery (Cao et al, 2003; Fuchs & Corbach-S?hle,2010; Peng et al, 1991). Despite decades of cultivation efforts, no inbred strain has been established for the tree shrew, which hindered a wide use of this animal in biomedical research; this might account for the inconsistency of previous results concerning animal models. Thus establishing some inbred lines of tree shrews is crucial, and we have launched an ambitious project to fulfill this goal.

    To facilitate our current inbreeding program for the Chinese tree shrew and to evaluate the genetic diversity of wild tree shrews, we needed a set of microsatellite markers that had sufficient data for individual discrimination and parentage testing, as well as for the quantification of population heterogeneity. In this study,by referring to the available tree shrew genome sequence(albeit the coverage was only 2×), we were able to obtain 12 polymorphic loci in the Chinese tree shrew.Evaluation of different parameters related to genetic diversity, individual identification and parentage testing showed that eight of these loci had sufficient data for lineage tracing and measurement of diversity.

    Compared with these reported microsatellite markers, which were developed for T. glias and T. minor(Munshi-South & Wilkinson, 2006; Srikwan et al, 2002),our newly designed set based on the genome sequence of T. belangeri was specifically optimized for Chinese tree shrews. As we had no samples of other species in Tupaia,we did not know whether our primer pairs would work for these species. As Chinese tree shrews were proposed to contain six subspecies (Wang, 1987), it would be rewarding to screen the genetic diversity of these different subspecies, both for conservation of genetic resources and for selecting a proper founder to establish the inbred lines.

    Microsatellite markers have long been used in genetic analyses for both wild populations and/or domestic animals. In general, wild populations have a higher genetic diversity compared to the inbred strain or domestic breeds. Analysis of the inbred C57BL/6J mouse strain using microsatellite markers revealed a lower expected heterozygosity (<0.5) (Niu & Liang,2009),but the expected heterozygosity of the wild house mouse(Mus musculus) reached 0.62 in population from Cameroon and 0.82 in population from Germany(Thomas et al, 2005). Based on the analyses of 19 microsatellite loci, three pure breeds of dog (Greyhounds,Labradors and German Shepherds) showed expected low heterozygosities of 0.357, 0.481 and 0.431, respectively(Zajc et al, 1997). In this study, the expected heterozygosity of the Chinese tree shrew was 0.616,lower than that of the plain treeshrew (T. longipes) (0.74)but higher than that of the large treeshrew (T. tana) (0.58)distributed in Sabah, Malaysia (Munshi-South &Wilkinson, 2006). As our population size was considerably large (n=117), we speculated that the observed heterozygosity might reflect the true situation of wild tree shrews distributed in Kunming, Yunnan Province.

    In short, we characterized a set of 12 polymorphic microsatellite markers for the Chinese tree shrew, which were confirmed to be sufficient for assessing population genetic structure and individual discrimination of this animal. An analysis of 117 wild individuals showed that the Chinese tree shrew had a considerably high heterozygosity. We hope that these markers will provide essential help for us to advance the inbreeding project of the Chinese tree shrew.

    Acknowledgements: We thank Mr. Long FAN in YAO’s lab for assistance with data analysis.

    Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A,Nilsson M, Short RV, Xu X, Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA,99(12): 8151-8156.

    Behl R, Sheoran N, Behl J, Tantia MS, Vijh RK. 2002. Microsatellite sequences of mammals and their applications in genome analysis in pigs: A review. Asian Austral J Anim, 15(12): 1822-1830.

    Butler JM. 2005. Forensic DNA Typing: Biology, Technology and Genetics of STR Markers. New York: Elsevier Academic Press.

    Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol, 32(3): 123-130.

    Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol, 24(3): 621-631.

    Chen SY, Xu L, Lu LB, Yao YG. 2011. Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China.Zool Res, 32(1): 17-23.

    Dakin EE, Avise JC. 2004. Microsatellite null alleles in parentage analysis. Heredity, 93(5): 504-509.

    Fuchs E, Corbach-S?hle S. 2010. Tree Shrews // The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. Oxford: Wiley-Blackwell, 262-275.

    Goldstein DB, Roemer GW, Smith DA, Reich DE, Bergman A, Wayne RK. 1999. The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics,151(2): 797-801.

    He BL, Shen PQ, Chen LL, Jiao JL, Liu RW, Li B, Zheng H, Li ML.2009. Polymorphism microsatellites in tree shrews (Tupaia belangeri chinensis). Acta Lab Anim Sci Sin, 17(2): 143-145 (in Chinese).

    Helgen KM. 2005. Order Scandentia // Wilson DE, Reeder DM.

    Mammal Species of the World: A Taxonomic and Geographic Reference. Maryland: Johns Hopkins University Press, 104-109.

    Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM,Springer MS, Murphy WJ. 2007. Molecular and genomic data identify the closest living relative of primates. Science, 318(5851): 792-794.

    Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol, 16(5): 1099-1106.

    Killian JK, Buckley TR, Stewart N, Munday BL, Jirtle RL. 2001.Marsupials and Eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution. Mamm Genome, 12(7): 513-517.Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S,Kheradpour P, Ernst J, Jordan G, Mauceli E, Ward LD, Lowe CB,Holloway AK, Clamp M, Gnerre S, Alfoldi J, Beal K, Chang J,Clawson H, Cuff J, Di Palma F, Fitzgerald S, Flicek P, Guttman M,Hubisz MJ, Jaffe DB, Jungreis I, Kent WJ, Kostka D, Lara M, Martins AL, Massingham T, Moltke I, Raney BJ, Rasmussen MD, Robinson J,Stark A, Vilella AJ, Wen J, Xie X, Zody MC, Baldwin J, Bloom T,Chin CW, Heiman D, Nicol R, Nusbaum C, Young S, Wilkinson J,Worley KC, Kovar CL, Muzny DM, Gibbs RA, Cree A, Dihn HH,Fowler G, Jhangiani S, Joshi V, Lee S, Lewis LR, Nazareth LV,Okwuonu G, Santibanez J, Warren WC, Mardis ER, Weinstock GM,Wilson RK, Delehaunty K, Dooling D, Fronik C, Fulton L, Fulton B,Graves T, Minx P, Sodergren E, Birney E, Margulies EH, Herrero J,Green ED, Haussler D, Siepel A, Goldman N, Pollard KS, Pedersen JS,Lander ES, Kellis M. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478(7370): 476-482.

    McBrien NA, Norton TT. 1992. The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri). Vision Res, 32(5): 843-852.

    Munshi-South J, Harpending H. 2008. Female-biased dispersal and gene flow in a behaviorally monogamous mammal, the large treeshrew(Tupaia tana). PLoS One, 3(9): e3228.

    Munshi-South J, Wilkinson GS. 2006. Isolation and characterization of polymorphic microsatellite loci in Bornean treeshrews (Tupaia spp.).Mol Ecol Notes, 6(3): 698-699.

    Niu Y, Liang S. 2009. Genetic differentiation within the inbred C57BL/6J mouse strain. J Zool, 278(1): 42-47.

    Olson LE, Sargis EJ, Martin RD. 2005. Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol, 35(3): 656-673.Peng YZ, Ye ZZ, Zou RJ, Wang YX, Tian BP, Ma YY, Shi LM. 1991.Biology of Chinese Tree Shrews (Tupaia belangeri chinensis).Kunming, China: Yunnan Science and Technology Press.

    Schl?etterer C, Pemberton J. 1994. The use of microsatellites for genetic analysis of natural populations. – In: Schierwater B, Streit B,Wagner GP & DeSalle R (Eds). Molecular ecology and evolution:approaches and applications. Experientia Supplementum 69.Birkh?user Verlag Basel, Switzerland, pp. 203-214

    Shi YY, He L. 2005. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res, 15(2): 97-98.

    Srikwan S, Hufford K, Eggerf L, Woodruff DS. 2002. Variable microsatellite markers for genotyping tree shrew, tupaia, and their potential use in genetic studies of fragmented populations. Science Asia,28(2): 93-97.

    Thomas M, Ihle S, Ravaoarimanana I, Kraechter S, Wiehe T, Tautz D.2005. Microsatellite variability in wild populations of the house mouse is not influenced by differences in chromosomal recombination rates.Biol J Linn Soc, 84(3): 629-635.

    van Kampen M, Kramer M, Hiemke C, Flugge G, Fuchs E. 2002. The chronic psychosocial stress paradigm in male tree shrews: evaluation of a novel animal model for depressive disorders. Stress, 5(1): 37-46.

    Waits L, Taberlet P, Swenson JE, Sandegren F, Franzen R. 2000.Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol, 9(4): 421-431.

    Waits LP, Paetkau D. 2005. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J Wildlife Manage, 69(4): 1419-1433.

    Waits LP, Luikart G, Taberlet P. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol, 10(1): 249-256.

    Wang J, Zhou QX, Tian M, Yang YX, Xu L. 2011. Tree shrew models:a chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zool Res, 32(1): 24-30.

    Wang YX. 1987. Taxonomic research on Burma-Chinese tree shrew,Tupaia belangeri (Wagner), from Southern China. Zool Res, 8(3): 213-230 (in Chinese).

    Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics, 39(3): 131-137.

    Xu L, Fan Y, Jiang XL, Yao YG. 2013a. Molecular evidence on the phylogenetic position of tree shrew (Tupia belangeri). Zool Res, 34(2):70-76.

    Xu L, Zhang Y, Liang B, Lv LB, Chen CS, Chen Y-B, Zhou JM, Yao YG. 2013b. Tree shrew under the spot light: emerging model of human diseases. Zool Res, 34 (2):59-69.

    Yan RQ, Su JJ, Huang DR, Gan YC, Yang C, Huang GH. 1996a.Human hepatitis B virus and hepatocellular carcinoma. I. Experimental infection of tree shrews with hepatitis B virus. J Cancer Res Clin Oncol,122(5): 283-288.

    Yan RQ, Su JJ, Huang DR, Gan YC, Yang C, Huang GH. 1996b.Human hepatitis B virus and hepatocellular carcinoma. II.Experimental induction of hepatocellular carcinoma in tree shrews exposed to hepatitis B virus and aflatoxin B1. J Cancer Res Clin Oncol,122(5): 289-295.

    Yeh FC, Boyle TJB. 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 129(2): 157.

    Zajc I, Mellersh CS, Sampson J. 1997. Variability of canine

    microsatellites within and between different dog breeds. Mamm

    Genome, 8(3): 182-185.

    黄色片一级片一级黄色片| 亚洲欧美日韩另类电影网站| av超薄肉色丝袜交足视频| 成人黄色视频免费在线看| 亚洲欧洲精品一区二区精品久久久| 色婷婷久久久亚洲欧美| 在线观看人妻少妇| 亚洲七黄色美女视频| 99久久国产精品久久久| 两个人看的免费小视频| 热re99久久精品国产66热6| 丁香六月天网| 中文字幕人妻丝袜制服| 日韩中文字幕视频在线看片| 亚洲国产精品成人久久小说| av天堂在线播放| 久久精品熟女亚洲av麻豆精品| 美女中出高潮动态图| 欧美午夜高清在线| 精品久久久久久久毛片微露脸 | 国产不卡av网站在线观看| 考比视频在线观看| 两个人免费观看高清视频| 精品国产一区二区三区四区第35| 亚洲欧美色中文字幕在线| 十八禁高潮呻吟视频| 在线观看人妻少妇| 男女无遮挡免费网站观看| 80岁老熟妇乱子伦牲交| h视频一区二区三区| 国产欧美日韩一区二区三 | 国产欧美日韩一区二区精品| 久久青草综合色| 超碰97精品在线观看| 亚洲,欧美精品.| 最新的欧美精品一区二区| 国产亚洲午夜精品一区二区久久| 水蜜桃什么品种好| 在线永久观看黄色视频| 国产精品成人在线| 亚洲精品av麻豆狂野| 悠悠久久av| 在线精品无人区一区二区三| 视频区图区小说| 丁香六月欧美| 免费黄频网站在线观看国产| cao死你这个sao货| 久久影院123| 侵犯人妻中文字幕一二三四区| 亚洲精品久久成人aⅴ小说| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 各种免费的搞黄视频| 国产亚洲精品一区二区www | 日本五十路高清| 国产成人精品在线电影| 精品欧美一区二区三区在线| 亚洲精品第二区| 久久毛片免费看一区二区三区| 日韩人妻精品一区2区三区| 国产成人啪精品午夜网站| 曰老女人黄片| 成年动漫av网址| 美女大奶头黄色视频| 国产成人啪精品午夜网站| 水蜜桃什么品种好| 91麻豆精品激情在线观看国产 | av线在线观看网站| 美女脱内裤让男人舔精品视频| 色婷婷av一区二区三区视频| 亚洲午夜精品一区,二区,三区| 精品国产一区二区三区四区第35| 免费高清在线观看视频在线观看| 国产av国产精品国产| 亚洲国产成人一精品久久久| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 在线永久观看黄色视频| 欧美日韩一级在线毛片| netflix在线观看网站| 亚洲精品一区蜜桃| 交换朋友夫妻互换小说| 中国国产av一级| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 亚洲色图 男人天堂 中文字幕| 精品国产乱子伦一区二区三区 | 波多野结衣一区麻豆| 少妇人妻久久综合中文| 亚洲欧洲日产国产| 精品国产乱子伦一区二区三区 | 国产黄色免费在线视频| 大型av网站在线播放| 亚洲国产欧美一区二区综合| 久久久久视频综合| 搡老乐熟女国产| 91大片在线观看| 久久国产亚洲av麻豆专区| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲欧美在线一区二区| 国产成人精品无人区| 成年人黄色毛片网站| 亚洲精品乱久久久久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲va日本ⅴa欧美va伊人久久 | 成人亚洲精品一区在线观看| 亚洲五月婷婷丁香| 午夜日韩欧美国产| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 一级毛片精品| 日韩视频在线欧美| 日本av免费视频播放| 亚洲精品av麻豆狂野| av天堂在线播放| 国产免费福利视频在线观看| 天堂8中文在线网| 纯流量卡能插随身wifi吗| 美女福利国产在线| 日韩 欧美 亚洲 中文字幕| 亚洲精品日韩在线中文字幕| 在线观看免费高清a一片| 99国产极品粉嫩在线观看| 性色av乱码一区二区三区2| 欧美国产精品一级二级三级| 亚洲全国av大片| 国产av精品麻豆| 欧美一级毛片孕妇| 亚洲成人免费电影在线观看| 亚洲性夜色夜夜综合| 午夜激情久久久久久久| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 夜夜夜夜夜久久久久| a级毛片黄视频| 亚洲成人国产一区在线观看| 一进一出抽搐动态| 国产精品熟女久久久久浪| av视频免费观看在线观看| 成年人黄色毛片网站| 男男h啪啪无遮挡| tube8黄色片| 色精品久久人妻99蜜桃| 大片免费播放器 马上看| 国产成人系列免费观看| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 精品国产一区二区三区四区第35| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到| 9191精品国产免费久久| 美女中出高潮动态图| 国产色视频综合| netflix在线观看网站| 一区福利在线观看| 美女主播在线视频| 国产精品熟女久久久久浪| a级片在线免费高清观看视频| 美女主播在线视频| 日韩 亚洲 欧美在线| 久久久久精品人妻al黑| 国产精品免费大片| 99久久人妻综合| 亚洲av欧美aⅴ国产| 久久久久久久精品精品| 日韩电影二区| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 黄片播放在线免费| 国产精品香港三级国产av潘金莲| 国产成人av教育| 色老头精品视频在线观看| 免费在线观看完整版高清| 一区二区av电影网| 麻豆乱淫一区二区| 肉色欧美久久久久久久蜜桃| 9色porny在线观看| 欧美成人午夜精品| 自线自在国产av| 欧美国产精品一级二级三级| 国产高清国产精品国产三级| 国产精品1区2区在线观看. | 欧美日韩视频精品一区| 色视频在线一区二区三区| 久久久精品区二区三区| 久久亚洲国产成人精品v| 欧美精品一区二区免费开放| av一本久久久久| 日韩 亚洲 欧美在线| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 日本五十路高清| cao死你这个sao货| av天堂久久9| 国产无遮挡羞羞视频在线观看| 欧美激情极品国产一区二区三区| 久久精品亚洲av国产电影网| www.熟女人妻精品国产| 国产精品熟女久久久久浪| 国产主播在线观看一区二区| 久久精品成人免费网站| 首页视频小说图片口味搜索| 91麻豆av在线| 法律面前人人平等表现在哪些方面 | 国产精品久久久久成人av| 国产无遮挡羞羞视频在线观看| 日韩欧美一区二区三区在线观看 | 色视频在线一区二区三区| 亚洲欧美激情在线| 午夜福利乱码中文字幕| 亚洲激情五月婷婷啪啪| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 男女无遮挡免费网站观看| 亚洲av日韩在线播放| 老司机福利观看| 久久人人爽av亚洲精品天堂| 国产亚洲精品一区二区www | 在线观看免费午夜福利视频| 看免费av毛片| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久男人| 国产精品一区二区在线不卡| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 动漫黄色视频在线观看| 一级片免费观看大全| 美女福利国产在线| 久久毛片免费看一区二区三区| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| 电影成人av| 亚洲成人手机| 亚洲精品美女久久久久99蜜臀| 老司机午夜福利在线观看视频 | 啦啦啦免费观看视频1| 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| av在线播放精品| 人妻 亚洲 视频| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 男女免费视频国产| 天堂8中文在线网| 亚洲精品国产av蜜桃| 日本欧美视频一区| 黄色视频在线播放观看不卡| 人妻 亚洲 视频| 成人国产av品久久久| 三级毛片av免费| 精品国产国语对白av| 在线观看一区二区三区激情| 老汉色∧v一级毛片| 欧美激情 高清一区二区三区| 欧美日韩成人在线一区二区| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 欧美午夜高清在线| 又大又爽又粗| 50天的宝宝边吃奶边哭怎么回事| 飞空精品影院首页| videosex国产| 老司机午夜福利在线观看视频 | 免费高清在线观看日韩| 国产极品粉嫩免费观看在线| 亚洲精品国产av成人精品| 在线观看一区二区三区激情| 国产福利在线免费观看视频| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 国产一卡二卡三卡精品| 香蕉国产在线看| 精品国产乱子伦一区二区三区 | 久久久久视频综合| 国产日韩欧美视频二区| 女人久久www免费人成看片| 在线av久久热| 日韩 亚洲 欧美在线| 亚洲久久久国产精品| 国产97色在线日韩免费| 一本大道久久a久久精品| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 亚洲自偷自拍图片 自拍| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 亚洲七黄色美女视频| 大片免费播放器 马上看| 国产欧美日韩精品亚洲av| 男女高潮啪啪啪动态图| 少妇被粗大的猛进出69影院| www.精华液| av在线老鸭窝| 首页视频小说图片口味搜索| www.自偷自拍.com| 欧美日韩视频精品一区| 欧美成人午夜精品| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品成人久久小说| 亚洲一码二码三码区别大吗| www日本在线高清视频| 国产精品一区二区在线观看99| 免费在线观看日本一区| 十八禁网站网址无遮挡| 黄片播放在线免费| 99re6热这里在线精品视频| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 亚洲免费av在线视频| 亚洲精品国产av蜜桃| tocl精华| 国产精品一二三区在线看| a级毛片在线看网站| 色老头精品视频在线观看| 国产亚洲精品久久久久5区| netflix在线观看网站| 女人久久www免费人成看片| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 欧美精品av麻豆av| 18禁国产床啪视频网站| 9色porny在线观看| 精品少妇黑人巨大在线播放| 色视频在线一区二区三区| 亚洲第一青青草原| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 中文精品一卡2卡3卡4更新| videos熟女内射| 一区二区av电影网| 亚洲少妇的诱惑av| 在线av久久热| 巨乳人妻的诱惑在线观看| 桃花免费在线播放| 在线观看一区二区三区激情| 人妻久久中文字幕网| 国产日韩欧美在线精品| 大码成人一级视频| 美女中出高潮动态图| 成人三级做爰电影| 久热这里只有精品99| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看 | 男女边摸边吃奶| 国产精品99久久99久久久不卡| 69av精品久久久久久 | 午夜福利乱码中文字幕| 精品一区在线观看国产| 久久av网站| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 丁香六月欧美| 黑丝袜美女国产一区| 久久青草综合色| av视频免费观看在线观看| 在线天堂中文资源库| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | netflix在线观看网站| a级片在线免费高清观看视频| e午夜精品久久久久久久| 亚洲精品在线美女| 国产成人精品无人区| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 国产伦人伦偷精品视频| 精品少妇久久久久久888优播| 男女无遮挡免费网站观看| 日本wwww免费看| 午夜两性在线视频| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 爱豆传媒免费全集在线观看| 老汉色∧v一级毛片| 伊人亚洲综合成人网| 欧美国产精品一级二级三级| 爱豆传媒免费全集在线观看| 一级a爱视频在线免费观看| 岛国毛片在线播放| 欧美另类一区| 国产xxxxx性猛交| 中国美女看黄片| 真人做人爱边吃奶动态| 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久小说| 老熟妇乱子伦视频在线观看 | 少妇裸体淫交视频免费看高清 | 亚洲成av片中文字幕在线观看| 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| 亚洲人成电影观看| 曰老女人黄片| 大陆偷拍与自拍| 91老司机精品| 欧美日本中文国产一区发布| 咕卡用的链子| 亚洲av欧美aⅴ国产| 侵犯人妻中文字幕一二三四区| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 极品人妻少妇av视频| 一个人免费看片子| 免费av中文字幕在线| 久久av网站| 一级毛片精品| 免费女性裸体啪啪无遮挡网站| www日本在线高清视频| 亚洲精华国产精华精| 在线观看www视频免费| 在线观看免费午夜福利视频| 十八禁高潮呻吟视频| 777米奇影视久久| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产一区二区精华液| 国产精品久久久人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 男女床上黄色一级片免费看| 国产免费一区二区三区四区乱码| 欧美在线一区亚洲| 热re99久久精品国产66热6| 精品国产乱码久久久久久小说| 女人高潮潮喷娇喘18禁视频| 国产男女内射视频| 高清视频免费观看一区二区| 国产av一区二区精品久久| 国产男女内射视频| 欧美激情 高清一区二区三区| 窝窝影院91人妻| 成在线人永久免费视频| 午夜激情av网站| 欧美亚洲 丝袜 人妻 在线| 12—13女人毛片做爰片一| 亚洲国产av新网站| 啦啦啦免费观看视频1| 国产高清videossex| 中文字幕人妻丝袜一区二区| 咕卡用的链子| 亚洲激情五月婷婷啪啪| 纯流量卡能插随身wifi吗| 成人国产av品久久久| 国产成人精品在线电影| 色老头精品视频在线观看| 嫁个100分男人电影在线观看| 久久久久久人人人人人| 可以免费在线观看a视频的电影网站| 两个人免费观看高清视频| 亚洲欧美日韩高清在线视频 | 日韩大片免费观看网站| 在线永久观看黄色视频| 国产成人免费无遮挡视频| 黄频高清免费视频| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄| 国产精品麻豆人妻色哟哟久久| av一本久久久久| 亚洲国产日韩一区二区| 欧美 亚洲 国产 日韩一| 国产黄色免费在线视频| 久久人人97超碰香蕉20202| 中文字幕色久视频| 久久亚洲国产成人精品v| 美女福利国产在线| av网站免费在线观看视频| 天堂俺去俺来也www色官网| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 久久人人爽av亚洲精品天堂| 叶爱在线成人免费视频播放| 久久人人爽人人片av| 最黄视频免费看| 在线观看一区二区三区激情| 国产精品一区二区免费欧美 | 亚洲精品第二区| 国产极品粉嫩免费观看在线| 久久狼人影院| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 午夜两性在线视频| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 91九色精品人成在线观看| av超薄肉色丝袜交足视频| 亚洲av男天堂| 久久亚洲国产成人精品v| 色播在线永久视频| 1024视频免费在线观看| 黑人巨大精品欧美一区二区蜜桃| 2018国产大陆天天弄谢| 亚洲精品粉嫩美女一区| 手机成人av网站| 精品熟女少妇八av免费久了| 国产精品香港三级国产av潘金莲| 亚洲色图综合在线观看| 纵有疾风起免费观看全集完整版| 12—13女人毛片做爰片一| av又黄又爽大尺度在线免费看| 人妻一区二区av| 美国免费a级毛片| 嫁个100分男人电影在线观看| 日本五十路高清| 久久久久精品国产欧美久久久 | 一级毛片女人18水好多| 亚洲av日韩在线播放| 老汉色∧v一级毛片| 久久久久国产一级毛片高清牌| 午夜福利,免费看| 一本综合久久免费| 久久九九热精品免费| 精品亚洲成a人片在线观看| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 国产无遮挡羞羞视频在线观看| 国产成人欧美在线观看 | 午夜福利乱码中文字幕| 男男h啪啪无遮挡| 色精品久久人妻99蜜桃| 99国产极品粉嫩在线观看| av天堂久久9| 国内毛片毛片毛片毛片毛片| 日韩中文字幕欧美一区二区| 一本色道久久久久久精品综合| 男女床上黄色一级片免费看| 免费日韩欧美在线观看| 在线观看免费午夜福利视频| 欧美黑人精品巨大| 国产成人精品久久二区二区免费| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 丝袜美腿诱惑在线| 国产精品久久久久久精品古装| 91麻豆av在线| 美女高潮到喷水免费观看| 日韩 亚洲 欧美在线| 极品人妻少妇av视频| 亚洲第一青青草原| 不卡av一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 精品少妇久久久久久888优播| 在线看a的网站| 亚洲专区中文字幕在线| 久久久久精品国产欧美久久久 | 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 新久久久久国产一级毛片| 欧美久久黑人一区二区| 天堂中文最新版在线下载| 欧美日韩亚洲高清精品| 丰满人妻熟妇乱又伦精品不卡| 黄色视频,在线免费观看| 亚洲成人免费电影在线观看| 老司机午夜福利在线观看视频 | 69av精品久久久久久 | 亚洲九九香蕉| 黄色 视频免费看| 免费久久久久久久精品成人欧美视频| 成人免费观看视频高清| 老司机亚洲免费影院| 国产黄色免费在线视频| 黄色 视频免费看| 亚洲伊人久久精品综合| 国产在线观看jvid| av一本久久久久| 岛国毛片在线播放| 中文字幕av电影在线播放| 99精国产麻豆久久婷婷| 手机成人av网站| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 热99re8久久精品国产| 在线观看www视频免费| 男人操女人黄网站| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 久久久精品免费免费高清| 黑人欧美特级aaaaaa片| 日本精品一区二区三区蜜桃| 9191精品国产免费久久| 美女大奶头黄色视频| 建设人人有责人人尽责人人享有的| 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线| 一本—道久久a久久精品蜜桃钙片| 欧美黑人精品巨大| 黄色怎么调成土黄色| 天天添夜夜摸| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 高潮久久久久久久久久久不卡| 国产男女超爽视频在线观看| 老熟妇乱子伦视频在线观看 | 免费在线观看日本一区| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 久久香蕉激情| 天天影视国产精品|