• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative systems biology between human and animal models based on next-generation sequencing methods

    2013-09-20 03:39:30YuQiZHAOGongHuaLIJingFeiHUANG
    Zoological Research 2013年2期

    Yu-Qi ZHAO, Gong-Hua LI, Jing-Fei HUANG,2,*

    1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223,China;

    2. Kunming Institute of Zoology, Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming Yunnan 650223, China

    Accurately modeling the physiology and pathology of human systems research requires the establishment of a quality animal model (Alvarado & Tsonis 2006;Francia et al, 2011, 2006; G?tz & Lttner 2008; Hasenfuss 1998; Lieschke & Currie, 2007). To this end, generally,how closely the model should mimic the human disease depends on the scientific question under investigation.Only in cases when the causal connections—structure function relationship or regulation of gene expression—are definitive, can the differences between human and animal models have minor effect on the analysis results(Hasenfuss, 1998). For example, although the zebrafish(Danio rerio) is phylogenetically distant from humans,its use as a complete animal model for in vivo drug discovery and development is growing rapidly(Chakraborty et al, 2009). However, if the pathophysiological processes are studied, especially for the complex diseases, then models should mimic clinical settings as closely as possible, otherwise the expected results may not be achieved or the findings of such studies will be of limited value.

    Accordingly, comparisons between human and animal models are becoming increasingly important for both clinical and fundamental applications (Alini et al,2008; Cox et al, 2009; Fuentes et al, 2009; Huh et al,2010; Merchenthaler & Shughrue, 2005; Nestler &Hyman, 2010; Northoff, 2009). Among the available strategies to assess this connection, comparative systems biology has begun attracting special attention (Cox et al,2009).1

    In this review, we introduce the concept of comparative systems biology. Next, we focus on the applications of next-generation sequencing methods,including RNA-seq and ChIP-seq, to comparative systems biology between human and animal models,before outlining some general directions of future developments and impacts of these types of studies.

    The rise of comparative systems biology

    One of the greatest twentieth century achievements in biological research is undoubtedly the sequencing of different genomes. There are now complete genome sequences for more than 1,000 organisms (excluding bacteria and archaea), with more sequences being completed (Henkelman, 2010). Once the genome of a species is available, researchers are able to begin mapping sequences against humans and find candidate disease genes and build a proper disease model. However,the ability to fundamentally understand the genotype–phenotype relationship in a distinct species is often hindered by the inherent complexity of biological systems. The difference in genotype–phenotype relationships between human and animal models may originate from three sources (Figure 1): (1) functional divergence of genes or proteins; (2) gene deletions or duplications; and (3) divergent up- or down-stream components, out of which gene deletions or duplications may play the leading role (Jaillon et al, 2004).

    Figure 1 Mechanisms of different genotype-phenotype relationships between human and animal models

    Over the last decade, this third mechanism has received more attention in systems biology. The Rb(Retinoblastoma) gene family is a good case, because the members in this family are functionally conserved while the involved pathways are divergent between C. elegans and humans (van den Heuvel & Dyson, 2008). Likewise,a previous study reported that over 20% of the essential genes for humans are non-essential for mice (Liao &Zhang, 2008). Consequently, traditional molecular biology techniques, while providing valuable insights into individual and/or simple genotype–phenotype relationship, are insufficient in deducing the complex phenotype-genotype relationships. Therefore, the more systematic methods at the systems biology level are necessary.

    The ultimate goal of systems biology is generating successful models to comprehensively describe living organisms. Comparative systems biology, an important subfield of systems biology, has no straightforward definition. In animal model research, the term first appeared in Ogawa et al’s (2008) work, reporting a comparative study of circadian oscillatory network models of Drosophila. Here, we define comparative systems biology as “comparisons of biological systems in different states or species to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels.” The comparison can be performed either horizontally (e.g.,between individuals or states) or longitudinally (between species). The latter, which is mainly focused on human and animal models, is reviewed in detail here.

    Over the past decade, comparative systems biology has attracted widespread interest, especially for its utility in comparisons between human and animal models of complex diseases. Miller et al (2010) used a systems biology approach to find a number of divergent network modules relevant to Alzheimer disease between humans and mice. In a previous work, we compared humans and four common animal models of cardiovascular disease through comparative transcriptome and pathway analysis,revealing that a few pathways have functionally diverged(Zhao et al, 2012). A recent review highlighted that the emerging technologies in comparative systems biology between human and animal models offers a platform to systematically explore not only the molecular mechanism of a particular disease, thus leading to the identification of disease modules and pathways, but also the molecular relationships among distinct(patho)phenotypes (Barabasi et al, 2011).

    The majority of recent comparative systems biology studies on obtain their data through traditional high throughput technologies, such as microarray and ChIP-chip. Despite the experimental and statistical rigor as well as substantial insights gained through these methods,there has been a fundamental shift from these first-generation technologies (microarray and ChIP-chip) to next-generation sequencing (RNA-seq and ChIP-seq)over the last five years. We surmise that the applications of next-generation sequencing methods will serve a crucial function in the field of comparative systems biology between human and animal models, offering a number of potential advantages.

    RNA-seq in transcriptome studies

    Previous studies demonstrated that changes in gene expression underlie many or even most of phenotypic differences between species (Marques et al, 2008; Yanai et al, 2004). As a result, comparative transcriptome analysis potentially provides information on functional conservation for candidate human disease genes within animal models.

    Initial trancriptomics studies largely relied on hybridization-based microarray technologies and have yielded valuable insights into the functional divergence between human and model animals (Enard et al, 2002;Liao & Zhang 2006). However, microarray technology has several limitations: over reliance upon existing knowledge about genome sequences; high background levels owing to cross-hybridization; and a limited dynamic range of detection owing to both background and saturation of signals (Wang et al, 2009). Recent advances in the DNA sequencing technology have enabled sequencing of cDNA derived from cellular RNA by massively parallel sequencing strategies, a process termed RNA-seq (Garber et al, 2011; Mortazavi et al,2008). Compared with the microarray, RNA-seq has the advantage of allowing high-resolution characterization and quantification of transcriptomes with low background noise and the ability to distinguish different isoforms.

    Figure 2 shows the key procedures performed during RNA-seq analysis of comparative transcriptomes between human and animal models. The computational challenges in this process have been reviewed in detail by (Garber et al, 2011), therefore, we mainly illustrated the potential advantages of RNA-seq in comparative systems biology, including (a) comparisons between human and non-model animals, and (b) actual biological systems induced by the states of gene expression.

    Figure 2 RNA-seq methods in comparative transcriptome analysisThere are two strategies for sequencing animal models. If the genome was not complete or was badly annotated, the genome-independent approach should be used (right part). The genome-guided approach is more typical (left part).

    Though a variety of organisms have been genomically sequenced, the majority of these are used as model organisms. Since microarray relies on the genome information, this technique has serious limitations in both quantifying and comparing gene expression profiles from non-model animals. RNA-seq, meanwhile, can be applied to reconstruct the complete and high-resolution transcriptomes across all species. To build the transcriptome, several methods based on RNA-seq have been developed, usually falling into two main classes:the ‘genome-guided’ (Guttman et al, 2010; Trapnell et al,2010) and genome-independent classes (De novo assembly) (Birol et al, 2009; Schulz et al, 2012). The first methods rely on a reference genome to initially map all the RNA-seq reads to the genome and then assemble overlapping reads into transcripts. Unfortunately, the genome-guided method is not always effective, both because despite a large drop in the cost of nextgeneration sequencing, the study of a complete genome is still costly and difficult, especially for non-model organisms, and because the particular model being studied may be sufficiently different from its reference genome because it comes from a different strain or line.Consequently, de novo assembly is particularly suitable for application to obtain accurate reconstructions. A recent study reported a large RNA-seq data set obtained from six organs of nine different mammals (human,chimpanzee, bonobo, gorilla, orangutan, macaque,mouse, opossum, and platypus) and one bird (chicken),including both males and females (Brawand et al, 2011),demonstrated the utility of applying comparative systems biology between human and non-model animals and elucidated the large evolutionary gaps among these model organisms.

    Determining the expression states (i.e., the presence or absence) of genes with low abundance is a challenge for microarray. Consequently, the reconstruction of the actual biological networks (e.g., protein-protein interaction, transcriptional regulation network, or metabolic network) in either human or animal models in a specific condition is very difficult, not to say anything of the difficulty in comparing the dynamic networks(Farmer et al, 2012). Moreover, abnormal variations in alternative splicing are also implicated in disease, thus alternative splicing is a critical factor to consider in building a proper and viable animal model (Luco et al,2011). Unfortunately, obtain the precise alternative splicing map using the microarray technique is almost impossible.

    RNA-seq data is highly replicable with relatively little technical variation. For many purposes, RNA-seq may be sufficient to sequence each mRNA sample once.The information obtained in a single lane of RNA-seq data appears to be comparable to that in a single array,and is therefore useful in enabling the identification of differentially expressed genes and allowing for additional,further analyses, such as detection of low-expressed genes, novel transcripts and alternative splice variants. In using this method, researchers can obtain actual biological networks in both human and animal models,and garner biologically meaningful results by comparing between these two networks. Rowley et al (2011), for example, compared the actual transcriptome in platelets between humans and mice, providing critical information used in the design of mouse models of hemostasis and in catalyzing the discovery of new platelet functions..

    ChIP-seq for detecting regulation changes

    Molecular interactions between proteins and DNA play an essential role in the regulation of gene expression(Cawley et al, 2004; Pokholok et al, 2006). Accordingly,changes in protein–DNA interactions between human and animal models may lead to the divergent functions of homologous pathways (Brown et al, 2011; Greber et al,2010), which is also an important aspect of comparative systems biology.

    Chromatin immunoprecipitation (ChIP) followed by genomic tiling microarray hybridization (ChIP-chip) has become the most widely used approach for genome-wide identification and characterization of in vivo protein-DNA interactions during the past decade (Ho et al, 2011).Specifically, when applied to the study of animal models of human disease, CHIP-chip approaches led to many important discoveries in relation to transcriptional regulation (Chen et al, 2008), epigenetic regulation through histone modification (Heintzman et al, 2007),and evolution of protein-DNA interactions (Kim et al,2007).

    Like the microarray technique, CHIP-chip also has some limitations arising from the innate characteristics of microarray hybridization. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) makes it possible to obtain the accurate information about the genome-wide profiling of DNA- protein interaction. Compared to the CHIP-chip, ChIP-seq has a higher resolution, fewer artifacts, a larger coverage and a more extensive dynamic range (Blow et al, 2010; Johnson et al, 2007; Mardis 2007; Schmid & Bucher, 2007; Visel et al, 2009).Subsequently, we will introduce the practical applications of ChIP-seq in comparison between human and animals, including (1) identifying the regulatory sequences, and (2) tracing the evolution of epigenetic regulation.

    The human genome project, while obtaining the complete genomic sequences, leaves open the question of how to identify the regulatory sequences that control the spatial and temporal expression of genes unanswered(Birney et al, 2007; McGaughey et al, 2008). Through applying the ChIP-seq techniques with the enhancerassociated protein p300 from mouse embryonic heart tissue, Blow et al (2010) made an attempt to identify candidate heart enhancers on genomic scale, revealing that most of the candidate heart enhancers were less deeply conserved in vertebrate evolution when compared to the enhancers that are active in other tissues. Such methods could also be applied to identification of other transcriptional factors (TFs), and therefore are helpful in the reconstruction of the transcriptional regulation network in human and animal models. Thankfully, the decreasing cost of ChIP-seq has extended the comparative systems biology investigation to some TFs.For example, Schmidt et al (2010) used ChIP-seq to determine experimentally the genome-wide occupancy of two TFs, i.e., CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates, revealing large interspecies differences in transcriptional regulation and providing insight into the evolution of regulatory networks.

    Epigenetic regulation is now accepted as being closely associated with human development, and subsequently many developmental disorders may be caused by the dysfunction of this regulation (Gottesman& Hanson, 2005). However, due to the deficient knowledge of this phenomena in other animals, build proper animal models for these studies is difficult.Nevertheless, a recent study that employed the CHIP-seq technique to investigate the epigenetic regulation of histone H3 K4 on frogs (Xenopus tropicalis), revealed a hierarchy in the spatial control of zygotic gene activation(Akkers et al, 2009). Taken together, these advances lead us to speculate that the applications of CHIP-seq in comparative systems biology will be of great help in understanding embryonic diseases.

    Despite the advances that ChIP-seq offers,researchers should be cautious when performing ChIP-seq analysis because the experimental steps in ChIP-seq involve several potential sources of artefacts (Park,2009). For example, one challenge in this technique is that the identified enriched regions are of different types for different proteins (for details, refer to (Park, 2009)).The other potential source of artefacts comes from the divergence of both protein and DNA; therefore when using this analysis, the control experiment should be designed carefully.

    Perspective applications of comparative systems biology

    Comparative systems biology takes advantage of the systematic information from other organisms and can be used to great effect in studying human physiology and disease. Over the coming years, we expect many exciting developments as this field evolves in several potential directions.

    Dynamic networks

    Biological systems exhibit complex dynamic behavior, enabling cells to react to various conditions or cell states such as cell cycle progression (Zhu et al, 2007).Although static biological systems have been well studied (Benfey & Mitchell-Olds, 2008; Gianchandani et al, 2006; Macilwain, 2011; Werner, 2007), the information gained from such studies is of limited use in moving forward due to the fact that the static interactions are often identified from cells exposed to a single condition or at a single time point, i.e., under nonnative conditions. Only recently have approaches emerged that attempt to analyze the dynamics of complex biological networks. For transcriptional regulatory interactions,ChIP-seq technology is likely to become increasingly popular as it can be used to uncover contextual and temporal variation. For context-specific metabolic network, RNA-seq could provide the dynamic states of metabolic enzymes.

    Biological engineering

    The ability to manipulate living organisms is at the heart of a range of emerging technologies aimed at addressing critical problems in environment, energy, and health. Because of their complexity and interconnectivity, however, animal models have been less than useful for engineered manipulation. To move forward with employing animal models with greater breadth and application, we vitally need more detailed information that can be obtained using new methods like those outlined in the present study. for instance utilizing real-time RNA-seq technique to obtain the information about the effects of perturbations on biological systems(Faith et al, 2011). Next-generation sequencing technology and the concurrent development of applications for it are a fast-moving area of biomedical research that greatly advance the development of comparative systems biology.

    Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM,Francoijs KJ, Stunnenberg HG, Veenstra GJC. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus Embryos. Dev Cell, 17(3): 425-434.

    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K,Melrose J, Ralphs J, Stokes I, Wilke HJ. 2008. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J,17(1): 2-19.

    Alvarado AS, Tsonis PA. 2006. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet, 7(11): 873-884.

    Barabasi AL, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to human disease. Nate Rev Genet, 12(1): 56-68.

    Benfey PN, Mitchell-Olds T. 2008. From genotype to phenotype:Systems biology meets natural variation. Science, 320(5875): 495-497.Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR,Margulies EH, Weng ZP, Snyder M, Dermitzakis ET,Stamatoyannopoulos JA and others. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799-816.

    Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao YJ, Hirst M, Schein JE, Horsman DE, Connors JM,Gascoyne RD, Marra MA, Jones SJM. 2009. De novo transcriptome assembly with ABySS. Bioinformatics, 25(21): 2872-2877.

    Blow MJ, McCulley DJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2010. ChIP-Seq

    identification of weakly conserved heart enhancers. Nat Genet, 42(9):806-810.

    Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P,Weier M, Liechti A, Aximu-Petri A, Kircher M and others. 2011. The evolution of gene expression levels in mammalian organs. Nature,478(7369): 343-348.

    Brown S, Teo A, Pauklin S, Hannan N, Cho CHH, Lim B, Vardy L,Dunn NR, Trotter M, Pedersen R and others. 2011. Activin/nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells, 29(8):1176-1185.

    Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D,Piccolboni A, Sementchenko V, Cheng J, Williams AJ and others. 2004.Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4): 499-509.

    Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G. 2009.Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Metab, 10(2): 116-124.

    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL,Zhang WW, Jiang JM and others. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106-1117.

    Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A,Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T. 2009.Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol, 5: 279.

    Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P,Nieselt-Struwe K, Muchmore E, Varki A, Ravid R and others. 2002.Intra-and interspecific variation in primate gene expression patterns.Science, 296(5566): 340-343.

    Faith JJ, McNulty NP, Rey FE, Gordon JI. 2011. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science,333(6038): 101-104.

    Farmer MA, Baliki MN, Apkarian AV. 2012. A dynamic network perspective of chronic pain. Neurosci Lett, 520(2): 197-203.

    Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. 2011. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer, 11(2): 135-141.

    Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L. 2006.The value of animal models for drug development in multiple sclerosis.Brain, 129(8): 1940-1952.

    Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MAL. 2009.Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science, 323(5921): 1578-1582.

    Garber M, Grabherr MG, Guttman M, Trapnell C. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods, 8(6): 469-477.

    Gianchandani EP, Brautigan DL, Papin JA. 2006. Systems analyses characterize integrated functions of biochemical networks. Trends Biochem Sci, 31(5): 284-291.

    Gottesman II, Hanson DR. 2005. Human development: Biological and genetic processes. Annu Rev Psychol, 56(1): 263-286.

    G?tz J, Ittner LM. 2008. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci, 9(7): 532-544.

    Greber B, Wu GM, Bernemann C, Joo JY, Han DW, Ko K, Tapia N,Sabour D, Sterneckert J, Tesar P and others. 2010. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 6(3): 215-226.

    Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X,Fan L, Koziol MJ, Gnirke A, Nusbaum C and others. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 28(5):503-510.

    Hasenfuss G. 1998. Animal models of human cardiovascular disease,heart failure and hypertrophy. Cardiovasc Res, 39(1): 60-76.

    Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD,Barrera LO, Van Calcar S, Qu CX, Ching KA and others. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311-318.

    Henkelman RM. 2010. Systems biology through mouse imaging centers: experience and new directions. Annu Rev Biomed Eng, 12(1):143-166.

    Ho JWK, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. 2011.ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis. Bmc Genomics, 12: 134.

    Huh Y, Ju MS, Park H, Han SJ, Bang YM, Ferris CF, Koppe GA, King JA, Kim ML, Kim DJ and others. 2010. Clavulanic acid protects neurons in pharmacological models of neurodegenerative diseases.Drug Develop Res, 71(6): 351-357.

    Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E,Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A and others. 2004.Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 431(7011): 946-957.

    Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830):1497-1502.

    Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.Cell, 128(6): 1231-1245.

    Liao BY, Zhang JZ. 2006. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol,23(3): 530-540.

    Liao BY, Zhang JZ. 2008. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc Natl Acad Sci USA, 105(19): 6987-6992.

    Lieschke GJ, Currie PD. 2007. Animal models of human disease:zebrafish swim into view. Nat Rev Genet, 8(5): 353-367.

    Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. 2011.Epigenetics in alternative Pre-mRNA splicing. Cell, 144(1): 16-26.

    Macilwain C. 2011. Systems biology: evolving into the mainstream.Cell, 144(6): 839-841.

    Mardis ER. 2007. ChIP-seq: welcome to the new frontier. Nat Methods,4(8): 613-614.

    Marques AC, Vinckenbosh N, Brawand D, Kaessmann H. 2008.Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol, 9(3): 5R4.

    McGaughey DM, Vinton RM, Huynh J, Al-Saif A, Beer MA,McCallion AS. 2008. Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res,18(2): 252-260.

    Merchenthaler I, Shughrue PJ. 2005. Neuroprotection by estrogen in animal models of ischemia and Parkinson's disease. Drug Develop Res,66(2): 172-181.

    Miller JA, Horvath S, Geschwind DH. 2010. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways.Proc Natl Acad Sci USA, 107(28): 12698-12703.

    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008.Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5(7): 621-628.

    Nestler EJ, Hyman SE. 2010. Animal models of neuropsychiatric disorders. Nat Neurosci, 13(10): 1161-1169.

    Northoff G. 2009. Comparison between animal models and human imaging findings in major depressive disorder-convergences and divergences. Biol Psychiat, 65(8): 18S-18S.

    Ogawa Y, Arakawa K, Kaizu K, Miyoshi F, Nakayama Y, Tomita M.2008. Comparative study of circadian oscillatory network models of Drosophila. Artif Life, 14(1): 29-48.

    Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10(10): 669-680.

    Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA.2006. Activated signal transduction kinases frequently occupy target genes. Science, 313(5786): 533-536.

    Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS. 2011. Genome-wide RNA-seq

    analysis of human and mouse platelet transcriptomes. Blood, 118(14):E101-E111.

    Schmid CD, Bucher P. 2007. ChIP-Seq data reveal nucleosome architecture of human promoters. Cell, 131(5): 831-832.

    Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD,Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S and others. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science, 328(5981): 1036-1040.

    Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.Bioinformatics, 28(8): 1086-1092.

    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511-515.

    van den Heuvel S, Dyson NJ. 2008. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Bio, 9(9): 713-724.

    Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854-858.

    Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1): 57-63.

    Werner E. 2007. All systems go. Nature, 446(7135): 493-494.

    Yanai I, Graur D, Ophir R. 2004. Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. Omics, 8(1): 15-24.

    Zhao YQ, Sheng ZZ, Huang JF. 2012. A systematic analysis of heart transcriptome highlights divergent cardiovascular disease pathways between animal models and humans. Mol Biosyst, 8(2): 504-510.

    Zhu XW, Gerstein M, Snyder M. 2007. Getting connected: analysis and principles of biological networks. Gene Dev, 21(9): 1010-1024.

    国产激情久久老熟女| 亚洲一区二区三区欧美精品| 久久精品国产亚洲av香蕉五月 | 久久精品久久久久久噜噜老黄| 制服诱惑二区| 国产色视频综合| 麻豆国产av国片精品| 亚洲伊人久久精品综合| 精品卡一卡二卡四卡免费| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 不卡一级毛片| 在线精品无人区一区二区三| 色精品久久人妻99蜜桃| 男女高潮啪啪啪动态图| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 1024视频免费在线观看| 免费久久久久久久精品成人欧美视频| 曰老女人黄片| 国产精品国产av在线观看| 人成视频在线观看免费观看| 高清av免费在线| 亚洲自偷自拍图片 自拍| 日本五十路高清| 91精品三级在线观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩,欧美,国产一区二区三区| 日韩,欧美,国产一区二区三区| 国产伦人伦偷精品视频| 久久香蕉激情| 精品熟女少妇八av免费久了| 亚洲精品乱久久久久久| 美女扒开内裤让男人捅视频| 久久午夜综合久久蜜桃| 亚洲精品乱久久久久久| 欧美一级毛片孕妇| 熟女少妇亚洲综合色aaa.| 国产精品一区二区在线不卡| 久久 成人 亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 他把我摸到了高潮在线观看 | 久久久国产精品麻豆| 国产色视频综合| 国产日韩一区二区三区精品不卡| 激情视频va一区二区三区| 国产一卡二卡三卡精品| 中文欧美无线码| √禁漫天堂资源中文www| 两性午夜刺激爽爽歪歪视频在线观看 | 久久天躁狠狠躁夜夜2o2o| 亚洲成国产人片在线观看| 一区二区三区乱码不卡18| 国产精品熟女久久久久浪| 悠悠久久av| 国产一区有黄有色的免费视频| 亚洲久久久国产精品| 欧美日韩视频精品一区| 脱女人内裤的视频| 国产高清视频在线播放一区 | 天天躁日日躁夜夜躁夜夜| av天堂在线播放| 国产精品一区二区在线观看99| 国产欧美日韩一区二区精品| 久久精品aⅴ一区二区三区四区| 69av精品久久久久久 | 精品国产乱子伦一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 成年av动漫网址| 亚洲中文av在线| 热99re8久久精品国产| 男男h啪啪无遮挡| 欧美+亚洲+日韩+国产| 在线天堂中文资源库| 国产极品粉嫩免费观看在线| 欧美乱码精品一区二区三区| 精品视频人人做人人爽| 黄片大片在线免费观看| 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| av网站在线播放免费| 夜夜骑夜夜射夜夜干| 三上悠亚av全集在线观看| 三上悠亚av全集在线观看| 少妇 在线观看| 三上悠亚av全集在线观看| 亚洲国产看品久久| 亚洲国产精品999| 成在线人永久免费视频| 亚洲一区二区三区欧美精品| 亚洲av男天堂| 窝窝影院91人妻| 手机成人av网站| 黑人巨大精品欧美一区二区蜜桃| 午夜福利一区二区在线看| 国产免费现黄频在线看| 久久精品成人免费网站| 女人精品久久久久毛片| 黄色怎么调成土黄色| 国产老妇伦熟女老妇高清| 久久精品国产a三级三级三级| 精品人妻1区二区| 久久国产精品男人的天堂亚洲| 女性生殖器流出的白浆| 少妇的丰满在线观看| 免费日韩欧美在线观看| 亚洲精品一二三| 青草久久国产| 亚洲中文日韩欧美视频| 国产精品香港三级国产av潘金莲| 中文欧美无线码| 黄色毛片三级朝国网站| 丁香六月天网| 久久久久国内视频| 人人澡人人妻人| 午夜视频精品福利| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆| 国产精品久久久久久精品电影小说| 在线永久观看黄色视频| 视频区图区小说| 国产亚洲精品一区二区www | 伊人久久大香线蕉亚洲五| 99精国产麻豆久久婷婷| av天堂久久9| 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 免费久久久久久久精品成人欧美视频| 欧美日韩黄片免| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 国产亚洲欧美在线一区二区| 国产成人免费观看mmmm| 国产日韩欧美视频二区| 大陆偷拍与自拍| 亚洲avbb在线观看| 美女视频免费永久观看网站| 男女免费视频国产| 色视频在线一区二区三区| 18禁观看日本| 亚洲七黄色美女视频| 大码成人一级视频| 97人妻天天添夜夜摸| 深夜精品福利| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| 亚洲va日本ⅴa欧美va伊人久久 | 免费久久久久久久精品成人欧美视频| 午夜视频精品福利| 免费观看人在逋| 美女扒开内裤让男人捅视频| 啦啦啦啦在线视频资源| 国内毛片毛片毛片毛片毛片| 法律面前人人平等表现在哪些方面 | 免费高清在线观看日韩| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 精品国产一区二区久久| 99九九在线精品视频| 午夜影院在线不卡| 欧美成狂野欧美在线观看| 一区二区三区四区激情视频| av在线老鸭窝| 亚洲美女黄色视频免费看| 国产99久久九九免费精品| 婷婷色av中文字幕| 成年动漫av网址| 久久精品国产综合久久久| 五月天丁香电影| 日本五十路高清| videosex国产| 国产色视频综合| www.精华液| 丰满少妇做爰视频| 日韩一区二区三区影片| 国产一区有黄有色的免费视频| videosex国产| 男人操女人黄网站| 欧美中文综合在线视频| 少妇猛男粗大的猛烈进出视频| 精品少妇一区二区三区视频日本电影| 精品亚洲成国产av| videosex国产| 国产国语露脸激情在线看| 人人妻人人添人人爽欧美一区卜| 亚洲中文字幕日韩| 久久国产精品人妻蜜桃| 99久久人妻综合| 永久免费av网站大全| 精品一区二区三区av网在线观看 | 国产一级毛片在线| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜添小说| 精品亚洲成a人片在线观看| 中亚洲国语对白在线视频| xxxhd国产人妻xxx| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| 精品少妇内射三级| 亚洲视频免费观看视频| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 国产一区二区激情短视频 | 国产av一区二区精品久久| 欧美精品一区二区免费开放| 国产精品熟女久久久久浪| 久久中文看片网| 午夜老司机福利片| 热re99久久精品国产66热6| 国产一区二区三区在线臀色熟女 | 久久久水蜜桃国产精品网| 最新在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 满18在线观看网站| 精品高清国产在线一区| 一本一本久久a久久精品综合妖精| 亚洲国产av新网站| 婷婷色av中文字幕| 国产福利在线免费观看视频| 热re99久久国产66热| 蜜桃在线观看..| 国产精品偷伦视频观看了| 天堂8中文在线网| 欧美精品啪啪一区二区三区 | 91成年电影在线观看| 国产一区二区三区av在线| 9色porny在线观看| 欧美成人午夜精品| 国产一卡二卡三卡精品| 国产色视频综合| 高潮久久久久久久久久久不卡| 伊人久久大香线蕉亚洲五| 免费高清在线观看日韩| 亚洲av男天堂| 免费在线观看视频国产中文字幕亚洲 | 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产成+人综合+亚洲专区| 波多野结衣av一区二区av| 欧美xxⅹ黑人| 国产激情久久老熟女| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 高潮久久久久久久久久久不卡| 国产一级毛片在线| 亚洲精品粉嫩美女一区| 中文字幕人妻熟女乱码| 国产亚洲精品一区二区www | 亚洲国产欧美在线一区| 免费在线观看视频国产中文字幕亚洲 | 国产亚洲精品久久久久5区| 各种免费的搞黄视频| 老司机亚洲免费影院| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 久久热在线av| 黄色 视频免费看| 啦啦啦 在线观看视频| 久久这里只有精品19| 国产精品久久久久成人av| 啦啦啦免费观看视频1| 免费高清在线观看视频在线观看| 天天躁日日躁夜夜躁夜夜| 纯流量卡能插随身wifi吗| 国产在视频线精品| 女人高潮潮喷娇喘18禁视频| 亚洲九九香蕉| 亚洲免费av在线视频| 老司机影院成人| 久久毛片免费看一区二区三区| 欧美成狂野欧美在线观看| 美女福利国产在线| 国产一区有黄有色的免费视频| 欧美精品一区二区大全| 欧美久久黑人一区二区| 色视频在线一区二区三区| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 男女边摸边吃奶| 美女福利国产在线| 国产免费av片在线观看野外av| 亚洲国产av影院在线观看| 欧美日韩av久久| 亚洲av美国av| 黄色片一级片一级黄色片| 老司机影院成人| 日韩三级视频一区二区三区| 欧美中文综合在线视频| 三上悠亚av全集在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲av片天天在线观看| 国产主播在线观看一区二区| 操出白浆在线播放| 亚洲一区中文字幕在线| 日韩,欧美,国产一区二区三区| 可以免费在线观看a视频的电影网站| 高清欧美精品videossex| 亚洲国产看品久久| 中亚洲国语对白在线视频| 亚洲精品国产一区二区精华液| 亚洲国产成人一精品久久久| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 18禁观看日本| 日韩有码中文字幕| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 老司机亚洲免费影院| 亚洲九九香蕉| 无限看片的www在线观看| 成人亚洲精品一区在线观看| 国产av国产精品国产| 欧美黄色片欧美黄色片| 9色porny在线观看| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲国产欧美一区二区综合| 老司机影院成人| 香蕉丝袜av| 中文字幕高清在线视频| 亚洲人成77777在线视频| 啦啦啦视频在线资源免费观看| 99国产精品免费福利视频| 国产高清国产精品国产三级| 国产一卡二卡三卡精品| 精品第一国产精品| 亚洲第一青青草原| kizo精华| 国产片内射在线| 国产淫语在线视频| 美女扒开内裤让男人捅视频| 人妻 亚洲 视频| 国产激情久久老熟女| 日韩视频在线欧美| 一级片'在线观看视频| 天天影视国产精品| 亚洲第一欧美日韩一区二区三区 | 欧美97在线视频| 少妇的丰满在线观看| 国产亚洲av片在线观看秒播厂| 亚洲伊人久久精品综合| 亚洲伊人色综图| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 后天国语完整版免费观看| 不卡一级毛片| 99精品久久久久人妻精品| 免费在线观看影片大全网站| 欧美日韩一级在线毛片| 欧美 日韩 精品 国产| 一区在线观看完整版| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 亚洲精品成人av观看孕妇| 免费看十八禁软件| 一区二区三区激情视频| 欧美成狂野欧美在线观看| 另类精品久久| 成年人黄色毛片网站| 精品国产超薄肉色丝袜足j| 国产精品成人在线| 国产高清视频在线播放一区 | 精品国产一区二区三区四区第35| 国产亚洲午夜精品一区二区久久| 国产精品国产av在线观看| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 久久亚洲精品不卡| 久久久精品94久久精品| 久久亚洲国产成人精品v| 一级毛片电影观看| 午夜福利,免费看| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产日韩一区二区| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 欧美激情久久久久久爽电影 | 国产精品欧美亚洲77777| av欧美777| 欧美另类一区| 欧美激情 高清一区二区三区| 国产精品一区二区在线不卡| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 捣出白浆h1v1| 国产免费一区二区三区四区乱码| 精品国产乱码久久久久久男人| 超碰成人久久| 中亚洲国语对白在线视频| 国产视频一区二区在线看| 国产黄频视频在线观看| 美女国产高潮福利片在线看| 欧美激情极品国产一区二区三区| www.熟女人妻精品国产| 一个人免费看片子| 欧美一级毛片孕妇| 久久毛片免费看一区二区三区| 中国国产av一级| 99国产精品免费福利视频| 国产av国产精品国产| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看 | 中文字幕精品免费在线观看视频| 欧美精品一区二区大全| 一区二区三区激情视频| 女警被强在线播放| 精品亚洲成国产av| 亚洲欧洲日产国产| 精品乱码久久久久久99久播| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| av不卡在线播放| 69av精品久久久久久 | 国产91精品成人一区二区三区 | 国产欧美日韩一区二区三区在线| 桃花免费在线播放| 男人添女人高潮全过程视频| 欧美大码av| 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 欧美性长视频在线观看| 亚洲精品日韩在线中文字幕| 少妇粗大呻吟视频| 日韩大片免费观看网站| 两个人免费观看高清视频| 搡老乐熟女国产| 亚洲精品美女久久av网站| 9191精品国产免费久久| 满18在线观看网站| 一区二区三区激情视频| 国产成人一区二区三区免费视频网站| 国产又爽黄色视频| 久久热在线av| 欧美黑人欧美精品刺激| 高清在线国产一区| 嫩草影视91久久| 天天影视国产精品| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美精品济南到| 亚洲色图综合在线观看| 精品国产一区二区三区四区第35| 日韩有码中文字幕| 少妇粗大呻吟视频| 一区在线观看完整版| 久久久精品区二区三区| 超色免费av| 亚洲欧美日韩另类电影网站| 电影成人av| 黑人巨大精品欧美一区二区mp4| 麻豆av在线久日| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 男人爽女人下面视频在线观看| 18在线观看网站| 12—13女人毛片做爰片一| 亚洲av男天堂| 久久久欧美国产精品| xxxhd国产人妻xxx| 国产亚洲精品久久久久5区| 侵犯人妻中文字幕一二三四区| 69精品国产乱码久久久| 亚洲欧美色中文字幕在线| 欧美另类一区| 美女高潮到喷水免费观看| 免费在线观看视频国产中文字幕亚洲 | 日本猛色少妇xxxxx猛交久久| 一本一本久久a久久精品综合妖精| 亚洲中文日韩欧美视频| av网站免费在线观看视频| 999精品在线视频| 夜夜夜夜夜久久久久| 成年动漫av网址| 日本av手机在线免费观看| 国产男女超爽视频在线观看| 人妻人人澡人人爽人人| 欧美日韩亚洲综合一区二区三区_| 久久精品国产综合久久久| 国产日韩欧美亚洲二区| 国产一区二区三区在线臀色熟女 | 亚洲欧美日韩高清在线视频 | 欧美老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 亚洲精品一二三| 中文字幕最新亚洲高清| avwww免费| 国产亚洲欧美精品永久| avwww免费| svipshipincom国产片| av欧美777| 免费av中文字幕在线| 国产免费av片在线观看野外av| √禁漫天堂资源中文www| 午夜免费观看性视频| 国产亚洲午夜精品一区二区久久| 久久亚洲精品不卡| 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影 | 国产成人啪精品午夜网站| 久久狼人影院| 欧美少妇被猛烈插入视频| 亚洲精品一二三| 搡老乐熟女国产| 亚洲成av片中文字幕在线观看| 色视频在线一区二区三区| 午夜福利,免费看| 我的亚洲天堂| 精品国产乱码久久久久久男人| 日韩一区二区三区影片| 99久久精品国产亚洲精品| 久久久欧美国产精品| 精品卡一卡二卡四卡免费| 色精品久久人妻99蜜桃| av线在线观看网站| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 777久久人妻少妇嫩草av网站| 精品熟女少妇八av免费久了| 一区福利在线观看| 国产成人免费无遮挡视频| 国产精品久久久久久人妻精品电影 | 亚洲少妇的诱惑av| 欧美精品av麻豆av| 国产男女超爽视频在线观看| 国产亚洲av高清不卡| 久久这里只有精品19| 日韩欧美一区二区三区在线观看 | 国产区一区二久久| 一本一本久久a久久精品综合妖精| 99九九在线精品视频| 亚洲人成电影观看| videos熟女内射| 亚洲情色 制服丝袜| 性色av乱码一区二区三区2| 亚洲精品中文字幕在线视频| 老司机福利观看| 捣出白浆h1v1| 9热在线视频观看99| 久久精品久久久久久噜噜老黄| 精品人妻在线不人妻| 王馨瑶露胸无遮挡在线观看| 超色免费av| tube8黄色片| 久久综合国产亚洲精品| 亚洲精品中文字幕一二三四区 | 日韩熟女老妇一区二区性免费视频| 欧美精品亚洲一区二区| 99久久国产精品久久久| 日韩欧美一区二区三区在线观看 | 狂野欧美激情性xxxx| 十八禁网站免费在线| 亚洲一区中文字幕在线| 三级毛片av免费| 91麻豆精品激情在线观看国产 | 国产成人影院久久av| 丁香六月天网| 久久久久久久精品精品| 大型av网站在线播放| 亚洲全国av大片| 黑人猛操日本美女一级片| 成在线人永久免费视频| 999久久久精品免费观看国产| 人妻久久中文字幕网| 欧美激情极品国产一区二区三区| 日韩 亚洲 欧美在线| 99热网站在线观看| 99re6热这里在线精品视频| 美女国产高潮福利片在线看| 久久久久国内视频| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 精品一区二区三卡| 久久人人爽av亚洲精品天堂| 高清黄色对白视频在线免费看| 91字幕亚洲| 午夜久久久在线观看| 久久国产精品大桥未久av| 999久久久精品免费观看国产| 2018国产大陆天天弄谢| 国产一区二区三区在线臀色熟女 | 最新在线观看一区二区三区| 91精品三级在线观看| 欧美精品亚洲一区二区| 国产97色在线日韩免费| 日韩三级视频一区二区三区| 亚洲精品第二区| 精品久久蜜臀av无| 国产亚洲欧美在线一区二区| 亚洲三区欧美一区| 一级片'在线观看视频| 国产男女超爽视频在线观看| 不卡一级毛片| 国产精品欧美亚洲77777| 91av网站免费观看| 午夜精品国产一区二区电影| 国产片内射在线| 亚洲七黄色美女视频| av线在线观看网站| 国产成人av激情在线播放| 国产精品 国内视频| 天天躁狠狠躁夜夜躁狠狠躁| 窝窝影院91人妻| 欧美日韩成人在线一区二区|