• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵(III)活化氧分子反應(yīng)的自旋軌道耦合和零場(chǎng)分裂

    2013-09-17 06:58:54呂玲玲王小芳朱元成劉新文王永成
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:西北師范大學(xué)化工學(xué)院天水

    呂玲玲 王小芳 朱元成 劉新文 袁 焜 王永成

    (1天水師范學(xué)院生命科學(xué)與化學(xué)學(xué)院,甘肅天水741001;2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    1 Introduction

    The mononuclear non-heme iron enzymes are an important group with a diverse range of chemical reactions including dioxygenation,hydroxylation,ring closure,oxidative desatura-tion,and aromatic ring cleavage.1Within this broad class,the oxygen-activating enzymes are one of the most extensively studied fields.1-4Most non-heme oxygenases catalyze O2activation using a high spin Fe(II)site through a redox process that also involves the substrate to provide the required number of electrons.By contrast,a small group of non-heme iron enzymes perform a high spin Fe(III)site to activate substrate for direct attack by O2,such as the lipoxygenases and intradiol dioxygenases.

    Protocatechuate 3,4-dioxygenase(3,4-PCD)is one of the intradiol dioxygenase family.It catalyzes the ring cleavage of protocatechuate(PCA)to form β-carboxy-cis,cis-muconate,with the incorporation of both oxygen atoms from molecular oxygen.Based on different electronic descriptions of the enzyme-substrate(ES)complex,various mechanisms1have been proposed for the initial O2binding and activation steps,but they have not been definitively observed,therefore are not well understood.Mechanism forcatecholring cleavage by non-heme iron intradiol dioxygenases has been computationally investigated using density functional theory(DFT)by Borowski and Siegbahn.5In 2003,Deeth and Bugg6have also reported the studied results for the extradiol cleavage mechanism.But,in these investigations,the electronic structures and intersystem crossing processes of the initial O2binding complexes have not been discussed in detail.

    However,we know that the chemistry of transition metals and their compounds(especially,metal-containing enzymes complexes such as cytochromes P450 and non-heme iron)is strongly influenced by the availability of multiple low-lying electronic states in these species.7-9Shaik and co-workers10have proposed that multiple spin states play an important role in these reactions,with many of them involving what they have called“two-state reactivity(TSR)”.The initial complexes of the triplet ground state O2(S=1)bound to Fe(III)(S=5/2)of 3,4-PCD-PCA can have a total spin of S=7/2,S=5/2,or S=3/2,and form the different spin state complexes.This means that the reactions should involve spin-conserving and spin-inversion processes.These will result in the complexity of the reaction mechanism.

    Therefore,detailed analyses of electronic structures and intersystem crossing processes in the initial complexes are very important in order to better understand the O2activation mechanism.In present paper we computed electronic exchange coupling(J)and zero-field splitting(ZFS)using qausi-restricted theory at the DFT level11implemented with the program ORCA.12Then spin-orbit coupling(SOC)matrix elements were obtained by the approximate one-electron spin-orbit Hamiltonian.13Some very meaningful conclusions have been obtained by these calculations.

    2 Computational details

    2.1 Step of the system

    The activate-site geometric structure of 3,4-PCD-PCA was obtained from the averaged crystallographic coordinate of P.putida 3,4-PCD complex with PCA(PDB code 3PCA).14Hydrogen atoms were placed at standard bond lengths and angles.Optimize calculations were performed on a model of the triplet state O2(S=1)bound to 3,4-PCD-PCA involving two Me-imidazoles to model His460 and His462,4-Me-phenolate to model Tyr408,and a bidentate PCA in the fully deprotonated state,which is shown in Scheme 1.

    Unrestricted calculations allow α and β electrons to occupy orbitals with different spatial localizations and,can describe the spin localized on two different paramagnetic centers.Therefore,density functional theory calculations were performed using the Gaussian 03 program15with spin-unrestricted functional U-BP86 with 10%Hartree-Fock exchange and the Pople triple-ζ basis set,6-311G(d)to optimize geometry of the active model described above.For comparison,calculations were also performed with the spin-unrestricted U-B3LYP functional with the LanL2DZ effective core potential basis set.Transition state structures were found to have one imaginary frequency,which correlated to the motion of the bond being broken or formed.

    2.2 Calculations of zero-field splitting(ZFS)tensor

    In the absence of nuclear spins and exchange interactions,the effective spin Hamiltonian of these interactions is usually written as

    where HZeis Zeeman effect operator,HZFSis zero-field splitting operator,βBis the Bohr magneton,B is the magnetic flux density,S is the effective spin operator,and g and D are the g-tensor and ZFS-tensor,respectively.Hspinacts on the basis functions|SM〉with M=S,S-1,…,-S.If we choose a coordinate system that diagonalizes D,HZFScan be rewritten:

    Scheme 1 Active-site geometric structures of 3,4-PCD-PCA(PDB code 3PCA)

    Thus,the ZFS is uniquely defined by the parameters D and E and the tensor orientation.Typically,D and E/D are given in a coordinate system that fulfils the following condition:

    DFT calculations of the ZFS were carried out using qausirestricted theory11by the ORCA program.12Previous studies11have investigated the dependences of the g-tensor and ZFS on the exchange-correlation functional.Thus,in this work,we obtain ZFS parameters(D and E)from additional single-point calculations using 6-311G(d)basis sets and the BP86 GGA functional.We use a recently described SOC operator that efficiently implements a spin-orbit mean-field(SOMF)method.16

    2.3 Spin-orbit coupling and exchange coupling calculations

    Exchange coupling constants(J)are calculated using the Yamaguchi formula,which covers consistently the whole range of situations from the strong to the weak exchange coupling limit:17,18

    where EHSand EBSaccount for the energies of the high-spin and broken-symmetry states,respectively;〈S2〉HSand〈S2〉BSdenote the spin angular momentum calculated in the high-spin and broken-symmetry solutions,respectively.These calculations were performed with a development version of the ORCA program.12

    In addition,in order to obtain the more detailed SOC matrix elements,the SOC calculations of the sextet and quartet states were studied using the approximate one-electron spin-orbit Hamiltonian(hi)13given in Eq.(4):

    where Likand Siare the orbital and spin angular momentum operators for electron i in the framework of the nuclei indexed k,respectively,andZ*kis the effective nuclear charge,rikis the distance of between each electron samples(i)and all nuclei(k).One-electron SOC calculations were carried out using the GAMESS program.19

    3 Results and discussion

    3.1 Initial complex electronic states

    The optimized geometries and energetic data for the octet,sextet,and quartet electronic states are depicted in Fig.1,in order to keep the discussion more simple,the goal complex,denoted as 1,is initially formed as 3,4-PCD-PCA and O2collide end-on with each other,where the superscripts denote the spin multiplicities(81,61,and41).

    3.1.1 Octet state(S=7/2)

    The singly occupied molecular orbitals(SOMOs)of81 are plotted in Fig.2 and It clearly shows that O2has two unpaired electrons,O2π*(y)and π*(z),while five others reside on the ferrous Fe(III)center,namely occupy five d orbitals,thus forming a high-spin(HS)Fe(III)(S=5/2)combined ferromagnetically with a triplet O2(S=1).Therefore the octet81 is approximately understood as van der Waals complex,which involves O2in a end-on orientation with a long Fe―O bond length of about 0.2558 nm at the U-B3LYP/LanL2DZ level(0.2487 nm for U-BP86/6-311G*),as shown in Fig.1.

    3.1.2 Sextet state(S=5/2)

    We obtained a sextet61 complex as shown in Fig.1.Compared with81,the Fe―O bond length was shortened to 0.1906 nm for U-BP86/6-311G*,while the O―O bond length was increased to 0.1281 nm.These show that O2and Fe center has obvious chemically bonded effect in the sextet61 complex.The electronic structure of61 is schematically shown in Fig.3.It is seen that O2is a superoxide,having a singly occupied O2π*(y),which is vertical to the Fe―OO plane,while the other doubly occupied π*(z)[π*(z)is in Fe―OO plane]forms a two-electron bond with the iron dz2orbital.61 has an ferromagnetically coupling of the S=1/2 superoxo anion O-2with S=2 Fe(IV)center.81 as zero reference,the U-BP86 calculated relative energy of61 is-12.14 kJ·mol-1.

    3.1.3 Quartet state(S=3/2)

    For the quartet state41,in contrast with the sextet61 case,one pronounced difference is that the Fe(IV)center has two singly occupied orbitals(dxyand π*xz,S=1),that is,41 differs from61 by a spin-flip of the a singly occupied orbital from σx2-y2to dyz,consequently,dyzis doubly occupied.O2(S=1/2)is still a superoxide with a singly occupied π*(y)and a doubly occupied π*(z)orbitals,and coupled ferromagnetically with the Fe(IV)(S=1),thus formed an intermediate-spin S=3/2 complex,41.The U-BP86 calculated energy difference is 9.21 kJ·mol-1relative to the61 state.

    3.2 Intersystem crossing process of initial complexes

    As has been already discussed before,the triplet O2(S=1)mixes with Fe(III)(S=5/2)resulting in the different spin states with a total spin of S=7/2,S=5/2,or S=3/2,and smaller energy differences among them.Moreover,we found that the spin states from the octet to quartet state are changed with the decrease of the Fe―O bond length(from 0.2487 to 0.1895 nm at the U-BP86/6-311G*level),and the sextet61 is the most stable as shown in Fig.4.In this respect,the interesting question is raised:how is the intersystem crossing of the different spin states happened?

    3.2.1 Exchange coupling(J)

    Fig.1 Selected bond lengths(nm)and energies(listed under the structures)obtained from the key point optimizations at the U-BP86/6-311G(d)and U-B3LYP/LanL2DZ levels(in the parentheses)

    Let us turn to discuss this question now,starting from the octet state81.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions of81 were also inferred from overlaps calculated from the broken-symmetry wave function(U-BP86/6-311G*),the results calculated are plotted in Fig.5.In general,the broken-symmetry orbitals of different spin indexes(i.e.,α or β)are not orthogonal to each other and are localized on Fe(?iα)or O2(?jβ).Therefore,to this extent,the overlaps Sij=〈?jα|?jβ〉are intimately related to the strength of antiferromagnetic spin coupling.As seen from Fig.5,the overlap between the localized Fe dz2and O2π*(z),129α and 129β,is considerably better and Sij=〈129α|129β〉=0.3758 at the Fe―O distance of 0.2487 nm.The low spin coupling between 129α and 129β electron pair is therefore strong enough to lead to a Fe―O bonding.By contrast,the other overlap S=〈130α|130β〉of the Fe dyzand O2π*(y)is much weaker and Sij=0.0868.Thus the magnitude of the overlaps strongly suggested that the first Fe dz2:O2π*(z)was clearly dominant ex-change pathway,whereas Fe dyz:O2π*(y)contributed to a lesser extent and was fairly comparable.At the same time,we found that the overlaps are increased with the decrease of the Fe―O bonding,and the change of the exchange coupling constant J is very similar to that of the overlaps,the J values are increased from-20.8 to-81.4 cm-1with the distance of the Fe―O bonding from 0.2487 to 0.2200 nm.These calculations provided a detailed approximation to antiferromagnetism induced by Fe dz2:O2π*(z)delocalization.

    Fig.2 Electronic configuration of the octet state81

    Fig.3 Occupied active natural orbitals of61 at the BP86/6-311G(d)level

    Fig.4 Schematic representation of calculated reaction paths at the B3LYP/LanL2DZ level

    Therefore the formation of61 from81 is most likely due to the electron exchange induced enhanced intersystem crossing(EISC).20Certainly,for antiferromagnetic exchange,the energy gap between61 and81 is also very important.The energy gap between these two states is about 12.14 kJ·mol-1,one might expect that EISC would be faster.The electron exchange interaction between Fe(III)(S=5/2)and O2(S=1)serves as the first-order perturbation that drives EISC.The magnitude of this perturbation,and thus the overall intersystem crossing rate,depends strongly on the electronic overlap between the orbitals that contribute to the singly occupied molecular orbitals(SOMO)of the Fe(III)(S=5/2)center and O2(S=1).

    In addition,antiferromagnetic exchange coupling can lead to the partly forming of41 due to the weaker overlap S=〈130α|130β〉.We also noted that the quartet wave function can have some admixture of the sextet wave function.The effect was more noticeable,the expectation value of the total spin operator after annihilation,〈S2〉=5.47 was far from the value expected for a pure quartet state,〈S2〉=3.75.Based on the following expressions for the spin expectation values of the contaminated quartet state:18

    where C is the configuration coefficient,S is the total spin operator,subscripts 6 and 4 denote sextet state and quartet state,respectively.From Eq.(5)we obtain the contribution of the quartet state which is about 67%of the mixing states.This reason is that a second-order term of ZFS,SOC)introduces some angular momentum into the sextet state.These mechanisms above are described in Fig.3.

    3.2.2 Zero-field splitting(ZFS)

    Fig.5 Pathways of the exchange coupling from81 to61 or41

    The net effects for ZFS are to introduce a splitting of the 2S+1,in the absence of an external magnetic field.This will main-ly attribute to the ZFS?s two contributions:11(a)a first-order term,the direct dipolar spin-spin(SS)interaction between pairs of electrons and(b)a second-order term,arising from SOC.Thus an analysis and interpretation of the ZFS is imperative in this study.

    BP86 calculations were performed to determine the signs of the D and E values for61.The ZFS parameters[D=Dzz-1/2(Dxx+Dyy),E=1/2(Dxx-Dyy)]are calculated,D=+8.589 cm-1and E/D=+0.068.The more detailed results of the calculated ZFS using the quasi-restricted DFT method are shown in Table 1.From the results in Table 1,the major contribution arises from the second-order SOC contribution(around 97.5%of D),while the SS contributions are essentially negligible.Concerning the SOC part,it contains four significant contributions:α→α(D=0.332 cm-1),β→β(D=0.240 cm-1),α→β(D=8.138 cm-1),and β→α (D=-0.336 cm-1).However the major contribution comes from the α→β spin-flip excitation.This excitation contributes around 77.2%of the DSOCvalue,corresponding to the spin-pairing ΔS=-1(i.e.,sextet→quartet)transitions.The second larger SOC contribution arises from the β→α spin-raising ΔS=+1(sextet→octet)excitation(around 4%of DSOC)corresponding to ligand-to-metal charge-transfer transitions.The remaining two SOC contributions come from the spin allowed ΔS=0(sextet→sextet)ligand-field excitations and have usually been solely held responsible for the ZFS.However,these contributions are only around 7%compared to the DSOCvalue.

    The ΔS=-1 state(sextet is flipped to quartet state)is found to make significant contributions to DSOC,with the primary contribution arising from the single-determinant spin-paired states within the single occupied sets of orbitals,σx2-y2,π*xz,dxy,and dyz(see Fig.3).Namely,andvital spin-flip excitation.Applying the angular momentum operator to this four orbitals generates three nonzero SOC integrals:ndlz|dxy〉which make the largest contribution to the SOC and lead to the larger values of Dxx(=8.8 cm-1),Dzz(=16.8 cm-1),and Dyy(=7.6 cm-1).It identifies the origin of large ZFS as spinorbit coupling to low-lying ΔS=-1 state,and shows that the quartet41 can arise from normal spin-orbit induced intersystem crossing as compared with the weaker exchange coupling.

    3.2.3 Spin-orbit coupling

    Table 1 Contributions to the calculated zero-field splitting between spin-orbit coupling and spin-spin for the sextet state

    Based on the above analysis,the sextet61 from81 is fast formed via EISC,following the system will well change its spin multiplicities from the sextet state to the quartet ground state41 by SOC in the O2gradual approach to Fe center process.However,a spin-forbidden transition requires an effect of SOC that provides a major mechanism for the intersystem crossing process.21-24Therefore,we must inspect the orbital relationships which promote the SOC matrix elements.

    The ROHF orbitals for the construction of the quartet and sextet CASCI wave functions to be used in the SOC evaluation have been generated by the sextet ROHF calculation.At the CAS(7,6)level the dominant determinants of the MCSCF wave functions have configuration interaction(CI)coefficients of 0.98 and 0.17 for the sextet and 0.86 and-0.48 for the quartet state(configurations of less than 0.1 have not been listed).Thus the permissible approximation of the sextet wave function by a single configuration(0.98)enables us to analyze the SOC matrix elements.The quartet configuration is described as shown in Eq.(6),

    Nonzero elements of the p-components(p=x,y,z)of the SOC matrix,,are always proportional to the function,Fp,as given in Eq.(7).

    To further understand the efficient SOC,it is very important that the SOC matrix elementsandare discussed.Because the SOC constant(ξFe)is an order of magnitude greater than that of oxygen,making it a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quartet states.Thus

    where the η term is the MS-depended weight weighing factor,and θ=α and/or β.In the present case,for the sextet state,the fundamental open-shell configuration has one dominant coeffi-cient,i.e.,C0=0.98≈1,while coefficients of quartet states are Cj1=0.86 and Cj2=-0.48,respectively.

    Table 2 Calculated SOC matrix elements(cm-1)in the41 structure

    Fig.6 Electronic evolution during the O―O bond cleavage

    Therefore:

    Here,only the first term is nonzero value,the electron shift from dx2-y2to dyzcreates an non-zero angular momentum in the Lx-direction,resulting in the larger SOC matrix elements as listed in Table 2.The second term is zero value due to the mismatch for the dx2-y2→dyztransition with Lzangular momentum direction.Similarly,the larger z-direction SOCs come from〈dx2-y2│LFe,z│dxy〉〈α│Sz│α〉coupling of the second term in Eq.(9).These analyses are in good agreement with the SOC calculations of the approximate one-electron spin-orbit Hamiltonian(see Table 2)and D-tensor of ZFS,25namely there exist the larger SOC matrix elements in Lx-and Lz-directions,resulting in the SOC constant of 353.16 cm-1.These also further indicated that the significant contributions to D arise from the ΔS=-1 spin-flip transition,and the quartet state41 is produced by a spin-orbit coupling intersystem crossing.

    3.3 Cleavage process of the O―O bond

    Structural parameters of the transition state(4TS)on the quartet surface are collected in Fig.1.The O―O bond cleavage pathway is shown in Fig.6.The O―O bond activation takes place through a precursor intermediate42 and transition state(4TS),to afford a cleavage product4P.The4TS has the feature of partially broken O―O bond(0.1687 nm),in which the activation barrier is 111.37 kJ·mol-1with respect to42.4TS is characterized as a transition structure by one imaginary frequency of 839.7i cm-1,and the vibrational vector corresponds to the expected components of the reaction coordinate,i.e.,breaking of the O―O bond.

    Schematic of the frontier molecular orbitals which participate in the three-electron transfer process upon the O―O bond cleavage is shown in Fig.6.As can been seen from Fig.6,the doubly occupied PCA π orbital is the HOMO in the complex,one electron from the doubly occupied PCA π orbital can be donated directly to the O2π*orbital to form the distorted O―CPCAbond.Two electrons are transferred to the O2π*orbital generating a Fe(IV)-peroxide.There is the strong covalent interaction between the PCA HOMO and Fe dxzorbitals in the α manifold,the second electron of the PCA HOMO is transferred to Fe,at the same time the transfer of an Fe d electron into the O2σ*orbital to break the O―O bond is accomplished.Finally,cleavage of the O―O bond leads to formation of an Fe(IV)-oxo.Therefore,the transfer of these three electrons(one α and two β)shows that the Fe center acts as a buffer to transfer an electron pair from PCA π orbital to the triplet O2in the spin forbidden reaction.

    4 Conclusions

    The O2activating mechanism by non-heme iron enzyme,3,4-PCD-PCA,has been studied using theoretical calculations.The electronic structure origins and intersystem crossing of the different spin states(a total spin of S=7/2,S=5/2,or S=3/2)were discussed by the broken-symmetry method and SOC mechanism.The octet state81 is stable with the aid of the electrostatic interaction,while the ultrafast formation of61 is most likely due to EISC.As for the formation of the quartet state41 from the sextet61,there coexist the two effects,electron spin exchange coupling and spin-orbit coupling in the sextet61.As a driving force of spin conversion the exchange interaction competes with spin-orbit coupling interaction.The calculated results show that the latter is the dominant factor due to the larger SOC constant(353.16 cm-1).The doublet21 optimization is failure using various DFT methods,all optimizations can not be converged due to the energy fluctuation.

    The O―O bond activation takes place through a precursor intermediate42 and transition state(4TS),to afford a cleavage product4P.The electronic transfer of the PCA HOMO is the vital role for the cleavage of the O―O bond.The Fe center of non-heme enzyme is a buffer to transfer an electron pair from PCAHOMO orbital to the O2in the reaction.

    (1)Pau,M.Y.M.;Davis,M.I.;Orville,A.M.;Lipscomb,J.D.;Solomon,E.I.J.Am.Chem.Soc.2007,129,1944.doi:10.1021/ja065671x

    (2) Costas,M.;Mehn,M.P.;Jensen,M.P.;Que,L.,Jr.Chem.Rev.2004,104,939.doi:10.1021/cr020628n

    (3) Solomon,E.I.;Brunold,T.C.;Davis,M.I.;Kemsley,J.N.;Lee,S.K.;Lehnert,N.;Neese,F.;Skulan,A.J.;Yang,Y.S.;Zhou,J.Chem.Rev.2000,100,235.doi:10.1021/cr9900275

    (4) Nam,W.Accounts Chem.Res.2007,40,522.doi:10.1021/ar700027f

    (5) Borowski,T.;Siegbahn,P.E.M.J.Am.Chem.Soc.2006,128,12941.doi:10.1021/ja0641251

    (6) Deeth,R.J.;Bugg,T.D.H.J.Biol.Inorg.Chem.2003,8,409.

    (7) Fiedler,A.;Schroder,D.;Shaik,S.;Schwarz.H.J.Am.Chem.Soc.1994,116,10734.doi:10.1021/ja00102a043

    (8)Yoshizawa,K.;Shiota,Y.;Yamabe,T.J.Chem.Phys.1999,111,538.doi:10.1063/1.479333

    (9) Shaik,S.;Hirao,H.;Kumar,D.Accounts Chem.Res.2007,40,532.doi:10.1021/ar600042c

    (10) Schroder,D.;Shaik,S.;Schwarz,H.Accounts Chem.Res.2000,33,139.doi:10.1021/ar990028j

    (11) Neese,F.J.Am.Chem.Soc.2006,128,10213.doi:10.1021/ja061798a

    (12) Neese,F.ORCA,version 2.8-20;Max-Planck Institute for Bioinorganic Chemistry:Mülheim an der Ruhr,Germany,2010.

    (13)Fedorov,D.G.;Koseki,S.;Schmidt,M.W.;Gordon,M.S.Int.Rev.Phys.Chem.2003,22,551.

    (14) Elgren,T.E.;Orville,A.M.;Kelly,K.A.;Lipscomb,J.D.;Ohlendorf,D.H.;Que,L.,Jr.Biochemistry 1997,36,11504.doi:10.1021/bi970691k

    (15) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision E.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (16)Hess,B.A.;Marian,C.M.;Wahlgren,U.;Gropen,O.Chem.Phys.Lett.1996,251,365.doi:10.1016/0009-2614(96)00119-4(17) Rodriguez,J.H.;McCusker,J.K.J.Chem.Phys.2002,116,6253.doi:10.1063/1.1461363

    (18)Rodriguez,J.H.;Wheeler,D.E.;McCusker,J.K.J.Am.Chem.Soc.1998,120,12051.doi:10.1021/ja980917m

    (19) Schmidtm,M.W.;Baldridge,K.K.;Boatz,J.A.;Elbert,S.T.;Gordon,M.S.;Jensen,J.H.;Koseki,S.;Matsunaga,N.;Nguyen,K.A.;Su,S.J.;Windus,T.L.;Dupuis,M.;Motgomery,J.A.J.Comput.Chem.1993,14,1347.

    (20)Giacobbe,E.M.;Mi,Q.;Colvin,M.T.;Cohen,B.;Ramanan,C.;Scott,A.M.;Yeganeh,S.;Marks,T.J.;Ratner,M.A.;Wasielewski,M.R.J.Am.Chem.Soc.2009,131,3700.doi:10.1021/ja808924f

    (21) Isobe,H.;Yamanaka,S.;Kuramitsu,S.;Yamaguchi,K.J.Am.Chem.Soc.2008,130,132.doi:10.1021/ja073834r

    (22)Dede,Y.;Zhang,X.;Schlangen,M.;Schwarz,H.;Baik,M.H.J.Am.Chem.Soc.2009,122,114.

    (23)Lv,L.L.;Wang,Y.C.;Wang,Q.;Liu,H.W.J.Phys.Chem.C 2010,114,17610.

    (24) Lü,L.L.;Wang,Y.C.Acta.Phys.-Chim.Sin.2006,22,265.[呂玲玲,王永成.物理化學(xué)學(xué)報(bào),2006,22,265.]doi:10.3866/PKU.WHXB20060302

    (25)Lü,L.L.;Zhu,Y.C.;Wang,X.F.;Zuo,G.F.;Zhao,S.R.;Guo,F.;Wang,Y.C.Chin.Sci.Bull.2013,58,627.[呂玲玲,朱元成,王小芳,左國(guó)防,趙素瑞,郭 峰,王永成.科學(xué)通報(bào),2013,58,627.]doi:10.1007/s11434-012-5316-7

    猜你喜歡
    西北師范大學(xué)化工學(xué)院天水
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    西北師范大學(xué)作品
    大眾文藝(2023年9期)2023-05-17 23:55:52
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    天水嬸與兩岸商貿(mào)
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    天水地區(qū)的『秦與戎』
    重返絲綢之路—從天水到青海湖
    美食(2018年10期)2018-10-18 08:10:58
    十八禁高潮呻吟视频| 波多野结衣av一区二区av| 午夜精品国产一区二区电影| 伊人久久大香线蕉亚洲五| avwww免费| 岛国毛片在线播放| 满18在线观看网站| 18在线观看网站| 免费观看a级毛片全部| 少妇的丰满在线观看| 啦啦啦中文免费视频观看日本| 丝袜美足系列| 一边摸一边抽搐一进一出视频| 国产高清国产精品国产三级| 色婷婷av一区二区三区视频| 国产精品偷伦视频观看了| www.999成人在线观看| 人体艺术视频欧美日本| 视频在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 免费观看a级毛片全部| 国产精品成人在线| 精品一区二区三区四区五区乱码 | 亚洲,一卡二卡三卡| 久久久久久久精品精品| 男男h啪啪无遮挡| 女性被躁到高潮视频| 999精品在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩电影二区| 一区福利在线观看| 波野结衣二区三区在线| 母亲3免费完整高清在线观看| 永久免费av网站大全| 老鸭窝网址在线观看| 免费看十八禁软件| 欧美精品一区二区免费开放| 久久久精品国产亚洲av高清涩受| 成人国语在线视频| 国产亚洲欧美精品永久| 在线观看国产h片| 啦啦啦中文免费视频观看日本| 婷婷色综合www| 亚洲欧美一区二区三区国产| 欧美亚洲日本最大视频资源| 国产爽快片一区二区三区| 男人添女人高潮全过程视频| 亚洲精品一二三| 最近中文字幕2019免费版| 国产麻豆69| 中文字幕高清在线视频| 免费黄频网站在线观看国产| 黄频高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 精品福利观看| 熟女av电影| 中文字幕最新亚洲高清| 丝袜脚勾引网站| 久久亚洲精品不卡| 国产精品偷伦视频观看了| 精品第一国产精品| 男人舔女人的私密视频| 国产熟女欧美一区二区| 2018国产大陆天天弄谢| 欧美成人午夜精品| 国产在线免费精品| 欧美黄色淫秽网站| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 亚洲国产av新网站| 女性被躁到高潮视频| 青春草视频在线免费观看| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 这个男人来自地球电影免费观看| 欧美大码av| 精品国产超薄肉色丝袜足j| 欧美人与善性xxx| 男人操女人黄网站| 一本综合久久免费| 国产精品香港三级国产av潘金莲 | 亚洲专区国产一区二区| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 黄色毛片三级朝国网站| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 精品国产一区二区三区四区第35| 日韩av在线免费看完整版不卡| 久久午夜综合久久蜜桃| 悠悠久久av| 女性生殖器流出的白浆| 爱豆传媒免费全集在线观看| 麻豆乱淫一区二区| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 欧美日韩黄片免| www.av在线官网国产| 国产麻豆69| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码 | av有码第一页| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| www.999成人在线观看| 国产成人av教育| 亚洲精品国产av成人精品| 日韩 欧美 亚洲 中文字幕| 日韩av不卡免费在线播放| 欧美精品av麻豆av| 老汉色∧v一级毛片| 午夜福利免费观看在线| 亚洲欧洲日产国产| 好男人电影高清在线观看| 99国产综合亚洲精品| 大码成人一级视频| 另类精品久久| 叶爱在线成人免费视频播放| 制服人妻中文乱码| 精品人妻1区二区| 久久精品国产亚洲av高清一级| 国产激情久久老熟女| 亚洲三区欧美一区| 另类亚洲欧美激情| 在线天堂中文资源库| 在线观看www视频免费| 久久久久久久大尺度免费视频| 自线自在国产av| 在线观看一区二区三区激情| 欧美日韩亚洲综合一区二区三区_| 一级,二级,三级黄色视频| 成人三级做爰电影| 丰满少妇做爰视频| 久久精品国产a三级三级三级| 国产免费现黄频在线看| 两性夫妻黄色片| 国产精品人妻久久久影院| 久久午夜综合久久蜜桃| 啦啦啦在线免费观看视频4| 欧美日韩av久久| 欧美av亚洲av综合av国产av| 午夜福利,免费看| 免费观看av网站的网址| 精品久久久久久电影网| 亚洲精品av麻豆狂野| 纯流量卡能插随身wifi吗| 在线精品无人区一区二区三| 免费女性裸体啪啪无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄| 校园人妻丝袜中文字幕| 亚洲欧美精品综合一区二区三区| av视频免费观看在线观看| 99国产综合亚洲精品| 1024视频免费在线观看| 青草久久国产| 国产精品 欧美亚洲| 欧美一级a爱片免费观看看 | 欧美中文日本在线观看视频| 一本精品99久久精品77| 脱女人内裤的视频| 国产精品综合久久久久久久免费| 欧美又色又爽又黄视频| 国产成年人精品一区二区| 欧美性猛交╳xxx乱大交人| 久久香蕉激情| 成年免费大片在线观看| 两人在一起打扑克的视频| 窝窝影院91人妻| 白带黄色成豆腐渣| 12—13女人毛片做爰片一| 美女午夜性视频免费| www日本黄色视频网| 亚洲第一av免费看| 亚洲精品久久成人aⅴ小说| 两个人视频免费观看高清| 成人三级黄色视频| av欧美777| 亚洲人成77777在线视频| 精品熟女少妇八av免费久了| 日韩欧美国产在线观看| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线 | 午夜福利在线观看吧| 99久久国产精品久久久| 制服人妻中文乱码| 欧美激情久久久久久爽电影| 色在线成人网| 日韩三级视频一区二区三区| 哪里可以看免费的av片| 亚洲av第一区精品v没综合| 麻豆成人午夜福利视频| 在线av久久热| www.精华液| 99久久99久久久精品蜜桃| 午夜两性在线视频| 亚洲国产精品sss在线观看| 女生性感内裤真人,穿戴方法视频| 老鸭窝网址在线观看| 首页视频小说图片口味搜索| 久久青草综合色| 亚洲欧美精品综合一区二区三区| 亚洲第一av免费看| 国产欧美日韩精品亚洲av| 搡老妇女老女人老熟妇| 欧美色视频一区免费| 成人18禁在线播放| 黑人操中国人逼视频| 变态另类成人亚洲欧美熟女| 波多野结衣av一区二区av| 亚洲成av片中文字幕在线观看| 两个人视频免费观看高清| 亚洲欧美精品综合久久99| 中文字幕av电影在线播放| 国产精品99久久99久久久不卡| 国产三级在线视频| 男女床上黄色一级片免费看| 亚洲精品久久国产高清桃花| 黄片播放在线免费| 777久久人妻少妇嫩草av网站| 午夜免费成人在线视频| 亚洲av成人av| 18美女黄网站色大片免费观看| xxxwww97欧美| 淫妇啪啪啪对白视频| 亚洲欧美精品综合一区二区三区| 999久久久国产精品视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| 久久亚洲真实| 精品久久久久久久久久久久久 | 亚洲片人在线观看| 久久中文字幕人妻熟女| 欧洲精品卡2卡3卡4卡5卡区| 成人国产综合亚洲| 成人三级黄色视频| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 精品欧美一区二区三区在线| 啦啦啦韩国在线观看视频| 精品少妇一区二区三区视频日本电影| 亚洲国产精品999在线| 国产精品九九99| 麻豆成人午夜福利视频| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 好男人电影高清在线观看| 哪里可以看免费的av片| 亚洲人成电影免费在线| 国产1区2区3区精品| 麻豆成人av在线观看| 久久人人精品亚洲av| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 亚洲午夜理论影院| 久久精品国产亚洲av香蕉五月| 日韩有码中文字幕| 人人妻人人看人人澡| 妹子高潮喷水视频| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 国产区一区二久久| 熟妇人妻久久中文字幕3abv| 国产精品久久久av美女十八| 大型av网站在线播放| 欧美国产日韩亚洲一区| 国产亚洲精品久久久久久毛片| 男人舔女人下体高潮全视频| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 美国免费a级毛片| 欧美在线黄色| 国产亚洲精品久久久久5区| av片东京热男人的天堂| 国产亚洲精品av在线| 日韩欧美国产一区二区入口| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 夜夜躁狠狠躁天天躁| 免费在线观看影片大全网站| 久久精品影院6| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 91成人精品电影| 18禁美女被吸乳视频| 老司机福利观看| 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 香蕉丝袜av| 在线av久久热| 亚洲成人免费电影在线观看| 久久精品影院6| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 欧美黑人精品巨大| 中亚洲国语对白在线视频| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 成年女人毛片免费观看观看9| 亚洲va日本ⅴa欧美va伊人久久| 波多野结衣av一区二区av| 人成视频在线观看免费观看| 久久 成人 亚洲| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 精品第一国产精品| 此物有八面人人有两片| 欧美日韩乱码在线| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 最好的美女福利视频网| 亚洲av电影在线进入| 美女扒开内裤让男人捅视频| 亚洲电影在线观看av| 一个人免费在线观看的高清视频| 国产v大片淫在线免费观看| 激情在线观看视频在线高清| 亚洲男人天堂网一区| 美女 人体艺术 gogo| 又黄又粗又硬又大视频| av在线播放免费不卡| 后天国语完整版免费观看| 又黄又爽又免费观看的视频| 久久久久久大精品| 日本在线视频免费播放| 国内少妇人妻偷人精品xxx网站 | 免费在线观看影片大全网站| 99国产综合亚洲精品| 中文字幕最新亚洲高清| 村上凉子中文字幕在线| 久久中文字幕人妻熟女| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频日本深夜| 国产黄色小视频在线观看| 午夜成年电影在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 99国产极品粉嫩在线观看| 19禁男女啪啪无遮挡网站| 麻豆国产av国片精品| 韩国av一区二区三区四区| 久久亚洲精品不卡| 在线观看免费午夜福利视频| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 后天国语完整版免费观看| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 国产真实乱freesex| netflix在线观看网站| 免费av毛片视频| 免费在线观看黄色视频的| 好看av亚洲va欧美ⅴa在| 岛国视频午夜一区免费看| 特大巨黑吊av在线直播 | 老鸭窝网址在线观看| 50天的宝宝边吃奶边哭怎么回事| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 岛国视频午夜一区免费看| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 亚洲欧美一区二区三区黑人| 国产aⅴ精品一区二区三区波| 自线自在国产av| 在线观看午夜福利视频| 两个人看的免费小视频| 丁香欧美五月| tocl精华| 欧美国产精品va在线观看不卡| 国产精品免费一区二区三区在线| 操出白浆在线播放| 国产精品98久久久久久宅男小说| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 精品第一国产精品| 欧美精品亚洲一区二区| 欧美午夜高清在线| 久久久国产成人精品二区| 亚洲精品在线美女| 99国产精品一区二区蜜桃av| 中文字幕高清在线视频| 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 午夜激情av网站| 黄色视频不卡| 国产av一区在线观看免费| 色在线成人网| 欧美人与性动交α欧美精品济南到| 欧美不卡视频在线免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 夜夜躁狠狠躁天天躁| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| а√天堂www在线а√下载| 99国产精品99久久久久| 国产精品,欧美在线| 国产成人欧美在线观看| 久久久久久九九精品二区国产 | 后天国语完整版免费观看| 曰老女人黄片| 精品久久久久久久毛片微露脸| 国产又黄又爽又无遮挡在线| 在线视频色国产色| 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| www国产在线视频色| 在线观看www视频免费| 亚洲精华国产精华精| 夜夜躁狠狠躁天天躁| 婷婷六月久久综合丁香| 午夜成年电影在线免费观看| 12—13女人毛片做爰片一| 欧美乱妇无乱码| 国产亚洲精品久久久久久毛片| 两个人看的免费小视频| av在线播放免费不卡| 成人国语在线视频| 男女午夜视频在线观看| 精品无人区乱码1区二区| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 国产一级毛片七仙女欲春2 | av免费在线观看网站| 色精品久久人妻99蜜桃| 巨乳人妻的诱惑在线观看| 99精品久久久久人妻精品| 黄网站色视频无遮挡免费观看| 亚洲精华国产精华精| 国产精品一区二区精品视频观看| 最近最新中文字幕大全免费视频| 老司机深夜福利视频在线观看| 国产黄色小视频在线观看| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 国产亚洲精品综合一区在线观看 | 啪啪无遮挡十八禁网站| 超碰成人久久| 亚洲欧美一区二区三区黑人| 欧美 亚洲 国产 日韩一| 搡老妇女老女人老熟妇| 欧美绝顶高潮抽搐喷水| 国内毛片毛片毛片毛片毛片| 亚洲午夜理论影院| 免费高清在线观看日韩| 久久 成人 亚洲| 天堂√8在线中文| 精品一区二区三区av网在线观看| 久久天堂一区二区三区四区| 日韩欧美在线二视频| av欧美777| 精品午夜福利视频在线观看一区| 久久人人精品亚洲av| 久久久久久亚洲精品国产蜜桃av| 午夜影院日韩av| 久久草成人影院| 在线视频色国产色| 国产麻豆成人av免费视频| 男人舔女人的私密视频| 一进一出抽搐动态| 大型黄色视频在线免费观看| 免费在线观看黄色视频的| 免费在线观看影片大全网站| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| 人人妻人人澡人人看| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 亚洲成人久久性| 一本一本综合久久| 丝袜在线中文字幕| 制服诱惑二区| 一区二区三区高清视频在线| 一区二区三区精品91| 亚洲 欧美 日韩 在线 免费| 日本 欧美在线| 老司机在亚洲福利影院| 人成视频在线观看免费观看| 中文资源天堂在线| 日韩欧美免费精品| 免费在线观看视频国产中文字幕亚洲| 亚洲七黄色美女视频| 欧美 亚洲 国产 日韩一| 日本a在线网址| 国产精品乱码一区二三区的特点| 大型av网站在线播放| 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 9191精品国产免费久久| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 国产精品日韩av在线免费观看| 精品卡一卡二卡四卡免费| 叶爱在线成人免费视频播放| 超碰成人久久| 欧美在线一区亚洲| 成人国产综合亚洲| 欧美在线一区亚洲| 亚洲五月色婷婷综合| 一区二区三区精品91| 欧美亚洲日本最大视频资源| 成人手机av| 亚洲中文字幕一区二区三区有码在线看 | 又大又爽又粗| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 女人爽到高潮嗷嗷叫在线视频| 国产精品爽爽va在线观看网站 | 欧美又色又爽又黄视频| 日韩一卡2卡3卡4卡2021年| 婷婷精品国产亚洲av在线| 亚洲欧美激情综合另类| 91成人精品电影| 成年女人毛片免费观看观看9| 国产真人三级小视频在线观看| 国产aⅴ精品一区二区三区波| 国产精品精品国产色婷婷| 一边摸一边做爽爽视频免费| 桃色一区二区三区在线观看| 亚洲第一青青草原| 搞女人的毛片| 欧美色视频一区免费| 巨乳人妻的诱惑在线观看| 免费观看精品视频网站| 99国产精品一区二区蜜桃av| 大型黄色视频在线免费观看| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| 国产精品亚洲一级av第二区| 欧美日韩一级在线毛片| 日本 av在线| 亚洲中文日韩欧美视频| 这个男人来自地球电影免费观看| 人人妻人人澡欧美一区二区| 国产精品一区二区免费欧美| 亚洲av第一区精品v没综合| 999精品在线视频| 成人亚洲精品av一区二区| 亚洲中文av在线| 变态另类成人亚洲欧美熟女| 两人在一起打扑克的视频| 久久久久久久久久黄片| 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区精品| 午夜a级毛片| 热re99久久国产66热| 丝袜人妻中文字幕| 久久久国产欧美日韩av| 免费观看精品视频网站| 夜夜爽天天搞| 国产av在哪里看| 精品久久久久久久久久免费视频| 国产高清有码在线观看视频 | 欧美在线黄色| 麻豆一二三区av精品| 在线观看午夜福利视频| 亚洲欧美日韩无卡精品| 国产精品电影一区二区三区| 色精品久久人妻99蜜桃| 欧美日本亚洲视频在线播放| 国内精品久久久久精免费| 人成视频在线观看免费观看| 国产精品影院久久| 日本一本二区三区精品| 狠狠狠狠99中文字幕| 好男人电影高清在线观看| 国产人伦9x9x在线观看| 一夜夜www| 大型黄色视频在线免费观看| 亚洲天堂国产精品一区在线| 男女之事视频高清在线观看| 日韩免费av在线播放| 亚洲欧洲精品一区二区精品久久久| 香蕉丝袜av| 国产高清视频在线播放一区| √禁漫天堂资源中文www| or卡值多少钱| 亚洲中文字幕一区二区三区有码在线看 | 亚洲狠狠婷婷综合久久图片| 一区二区三区激情视频| 可以免费在线观看a视频的电影网站| 啦啦啦 在线观看视频| 一级黄色大片毛片| 可以免费在线观看a视频的电影网站| 欧美激情极品国产一区二区三区| 精品不卡国产一区二区三区| 免费看日本二区| 成人免费观看视频高清| 亚洲熟女毛片儿| 欧美成人免费av一区二区三区| 午夜福利免费观看在线| 国产99白浆流出| 日本三级黄在线观看| 欧美日韩乱码在线| 大型黄色视频在线免费观看| 精品第一国产精品| 亚洲黑人精品在线|