• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵(III)活化氧分子反應(yīng)的自旋軌道耦合和零場(chǎng)分裂

    2013-09-17 06:58:54呂玲玲王小芳朱元成劉新文王永成
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:西北師范大學(xué)化工學(xué)院天水

    呂玲玲 王小芳 朱元成 劉新文 袁 焜 王永成

    (1天水師范學(xué)院生命科學(xué)與化學(xué)學(xué)院,甘肅天水741001;2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    1 Introduction

    The mononuclear non-heme iron enzymes are an important group with a diverse range of chemical reactions including dioxygenation,hydroxylation,ring closure,oxidative desatura-tion,and aromatic ring cleavage.1Within this broad class,the oxygen-activating enzymes are one of the most extensively studied fields.1-4Most non-heme oxygenases catalyze O2activation using a high spin Fe(II)site through a redox process that also involves the substrate to provide the required number of electrons.By contrast,a small group of non-heme iron enzymes perform a high spin Fe(III)site to activate substrate for direct attack by O2,such as the lipoxygenases and intradiol dioxygenases.

    Protocatechuate 3,4-dioxygenase(3,4-PCD)is one of the intradiol dioxygenase family.It catalyzes the ring cleavage of protocatechuate(PCA)to form β-carboxy-cis,cis-muconate,with the incorporation of both oxygen atoms from molecular oxygen.Based on different electronic descriptions of the enzyme-substrate(ES)complex,various mechanisms1have been proposed for the initial O2binding and activation steps,but they have not been definitively observed,therefore are not well understood.Mechanism forcatecholring cleavage by non-heme iron intradiol dioxygenases has been computationally investigated using density functional theory(DFT)by Borowski and Siegbahn.5In 2003,Deeth and Bugg6have also reported the studied results for the extradiol cleavage mechanism.But,in these investigations,the electronic structures and intersystem crossing processes of the initial O2binding complexes have not been discussed in detail.

    However,we know that the chemistry of transition metals and their compounds(especially,metal-containing enzymes complexes such as cytochromes P450 and non-heme iron)is strongly influenced by the availability of multiple low-lying electronic states in these species.7-9Shaik and co-workers10have proposed that multiple spin states play an important role in these reactions,with many of them involving what they have called“two-state reactivity(TSR)”.The initial complexes of the triplet ground state O2(S=1)bound to Fe(III)(S=5/2)of 3,4-PCD-PCA can have a total spin of S=7/2,S=5/2,or S=3/2,and form the different spin state complexes.This means that the reactions should involve spin-conserving and spin-inversion processes.These will result in the complexity of the reaction mechanism.

    Therefore,detailed analyses of electronic structures and intersystem crossing processes in the initial complexes are very important in order to better understand the O2activation mechanism.In present paper we computed electronic exchange coupling(J)and zero-field splitting(ZFS)using qausi-restricted theory at the DFT level11implemented with the program ORCA.12Then spin-orbit coupling(SOC)matrix elements were obtained by the approximate one-electron spin-orbit Hamiltonian.13Some very meaningful conclusions have been obtained by these calculations.

    2 Computational details

    2.1 Step of the system

    The activate-site geometric structure of 3,4-PCD-PCA was obtained from the averaged crystallographic coordinate of P.putida 3,4-PCD complex with PCA(PDB code 3PCA).14Hydrogen atoms were placed at standard bond lengths and angles.Optimize calculations were performed on a model of the triplet state O2(S=1)bound to 3,4-PCD-PCA involving two Me-imidazoles to model His460 and His462,4-Me-phenolate to model Tyr408,and a bidentate PCA in the fully deprotonated state,which is shown in Scheme 1.

    Unrestricted calculations allow α and β electrons to occupy orbitals with different spatial localizations and,can describe the spin localized on two different paramagnetic centers.Therefore,density functional theory calculations were performed using the Gaussian 03 program15with spin-unrestricted functional U-BP86 with 10%Hartree-Fock exchange and the Pople triple-ζ basis set,6-311G(d)to optimize geometry of the active model described above.For comparison,calculations were also performed with the spin-unrestricted U-B3LYP functional with the LanL2DZ effective core potential basis set.Transition state structures were found to have one imaginary frequency,which correlated to the motion of the bond being broken or formed.

    2.2 Calculations of zero-field splitting(ZFS)tensor

    In the absence of nuclear spins and exchange interactions,the effective spin Hamiltonian of these interactions is usually written as

    where HZeis Zeeman effect operator,HZFSis zero-field splitting operator,βBis the Bohr magneton,B is the magnetic flux density,S is the effective spin operator,and g and D are the g-tensor and ZFS-tensor,respectively.Hspinacts on the basis functions|SM〉with M=S,S-1,…,-S.If we choose a coordinate system that diagonalizes D,HZFScan be rewritten:

    Scheme 1 Active-site geometric structures of 3,4-PCD-PCA(PDB code 3PCA)

    Thus,the ZFS is uniquely defined by the parameters D and E and the tensor orientation.Typically,D and E/D are given in a coordinate system that fulfils the following condition:

    DFT calculations of the ZFS were carried out using qausirestricted theory11by the ORCA program.12Previous studies11have investigated the dependences of the g-tensor and ZFS on the exchange-correlation functional.Thus,in this work,we obtain ZFS parameters(D and E)from additional single-point calculations using 6-311G(d)basis sets and the BP86 GGA functional.We use a recently described SOC operator that efficiently implements a spin-orbit mean-field(SOMF)method.16

    2.3 Spin-orbit coupling and exchange coupling calculations

    Exchange coupling constants(J)are calculated using the Yamaguchi formula,which covers consistently the whole range of situations from the strong to the weak exchange coupling limit:17,18

    where EHSand EBSaccount for the energies of the high-spin and broken-symmetry states,respectively;〈S2〉HSand〈S2〉BSdenote the spin angular momentum calculated in the high-spin and broken-symmetry solutions,respectively.These calculations were performed with a development version of the ORCA program.12

    In addition,in order to obtain the more detailed SOC matrix elements,the SOC calculations of the sextet and quartet states were studied using the approximate one-electron spin-orbit Hamiltonian(hi)13given in Eq.(4):

    where Likand Siare the orbital and spin angular momentum operators for electron i in the framework of the nuclei indexed k,respectively,andZ*kis the effective nuclear charge,rikis the distance of between each electron samples(i)and all nuclei(k).One-electron SOC calculations were carried out using the GAMESS program.19

    3 Results and discussion

    3.1 Initial complex electronic states

    The optimized geometries and energetic data for the octet,sextet,and quartet electronic states are depicted in Fig.1,in order to keep the discussion more simple,the goal complex,denoted as 1,is initially formed as 3,4-PCD-PCA and O2collide end-on with each other,where the superscripts denote the spin multiplicities(81,61,and41).

    3.1.1 Octet state(S=7/2)

    The singly occupied molecular orbitals(SOMOs)of81 are plotted in Fig.2 and It clearly shows that O2has two unpaired electrons,O2π*(y)and π*(z),while five others reside on the ferrous Fe(III)center,namely occupy five d orbitals,thus forming a high-spin(HS)Fe(III)(S=5/2)combined ferromagnetically with a triplet O2(S=1).Therefore the octet81 is approximately understood as van der Waals complex,which involves O2in a end-on orientation with a long Fe―O bond length of about 0.2558 nm at the U-B3LYP/LanL2DZ level(0.2487 nm for U-BP86/6-311G*),as shown in Fig.1.

    3.1.2 Sextet state(S=5/2)

    We obtained a sextet61 complex as shown in Fig.1.Compared with81,the Fe―O bond length was shortened to 0.1906 nm for U-BP86/6-311G*,while the O―O bond length was increased to 0.1281 nm.These show that O2and Fe center has obvious chemically bonded effect in the sextet61 complex.The electronic structure of61 is schematically shown in Fig.3.It is seen that O2is a superoxide,having a singly occupied O2π*(y),which is vertical to the Fe―OO plane,while the other doubly occupied π*(z)[π*(z)is in Fe―OO plane]forms a two-electron bond with the iron dz2orbital.61 has an ferromagnetically coupling of the S=1/2 superoxo anion O-2with S=2 Fe(IV)center.81 as zero reference,the U-BP86 calculated relative energy of61 is-12.14 kJ·mol-1.

    3.1.3 Quartet state(S=3/2)

    For the quartet state41,in contrast with the sextet61 case,one pronounced difference is that the Fe(IV)center has two singly occupied orbitals(dxyand π*xz,S=1),that is,41 differs from61 by a spin-flip of the a singly occupied orbital from σx2-y2to dyz,consequently,dyzis doubly occupied.O2(S=1/2)is still a superoxide with a singly occupied π*(y)and a doubly occupied π*(z)orbitals,and coupled ferromagnetically with the Fe(IV)(S=1),thus formed an intermediate-spin S=3/2 complex,41.The U-BP86 calculated energy difference is 9.21 kJ·mol-1relative to the61 state.

    3.2 Intersystem crossing process of initial complexes

    As has been already discussed before,the triplet O2(S=1)mixes with Fe(III)(S=5/2)resulting in the different spin states with a total spin of S=7/2,S=5/2,or S=3/2,and smaller energy differences among them.Moreover,we found that the spin states from the octet to quartet state are changed with the decrease of the Fe―O bond length(from 0.2487 to 0.1895 nm at the U-BP86/6-311G*level),and the sextet61 is the most stable as shown in Fig.4.In this respect,the interesting question is raised:how is the intersystem crossing of the different spin states happened?

    3.2.1 Exchange coupling(J)

    Fig.1 Selected bond lengths(nm)and energies(listed under the structures)obtained from the key point optimizations at the U-BP86/6-311G(d)and U-B3LYP/LanL2DZ levels(in the parentheses)

    Let us turn to discuss this question now,starting from the octet state81.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions of81 were also inferred from overlaps calculated from the broken-symmetry wave function(U-BP86/6-311G*),the results calculated are plotted in Fig.5.In general,the broken-symmetry orbitals of different spin indexes(i.e.,α or β)are not orthogonal to each other and are localized on Fe(?iα)or O2(?jβ).Therefore,to this extent,the overlaps Sij=〈?jα|?jβ〉are intimately related to the strength of antiferromagnetic spin coupling.As seen from Fig.5,the overlap between the localized Fe dz2and O2π*(z),129α and 129β,is considerably better and Sij=〈129α|129β〉=0.3758 at the Fe―O distance of 0.2487 nm.The low spin coupling between 129α and 129β electron pair is therefore strong enough to lead to a Fe―O bonding.By contrast,the other overlap S=〈130α|130β〉of the Fe dyzand O2π*(y)is much weaker and Sij=0.0868.Thus the magnitude of the overlaps strongly suggested that the first Fe dz2:O2π*(z)was clearly dominant ex-change pathway,whereas Fe dyz:O2π*(y)contributed to a lesser extent and was fairly comparable.At the same time,we found that the overlaps are increased with the decrease of the Fe―O bonding,and the change of the exchange coupling constant J is very similar to that of the overlaps,the J values are increased from-20.8 to-81.4 cm-1with the distance of the Fe―O bonding from 0.2487 to 0.2200 nm.These calculations provided a detailed approximation to antiferromagnetism induced by Fe dz2:O2π*(z)delocalization.

    Fig.2 Electronic configuration of the octet state81

    Fig.3 Occupied active natural orbitals of61 at the BP86/6-311G(d)level

    Fig.4 Schematic representation of calculated reaction paths at the B3LYP/LanL2DZ level

    Therefore the formation of61 from81 is most likely due to the electron exchange induced enhanced intersystem crossing(EISC).20Certainly,for antiferromagnetic exchange,the energy gap between61 and81 is also very important.The energy gap between these two states is about 12.14 kJ·mol-1,one might expect that EISC would be faster.The electron exchange interaction between Fe(III)(S=5/2)and O2(S=1)serves as the first-order perturbation that drives EISC.The magnitude of this perturbation,and thus the overall intersystem crossing rate,depends strongly on the electronic overlap between the orbitals that contribute to the singly occupied molecular orbitals(SOMO)of the Fe(III)(S=5/2)center and O2(S=1).

    In addition,antiferromagnetic exchange coupling can lead to the partly forming of41 due to the weaker overlap S=〈130α|130β〉.We also noted that the quartet wave function can have some admixture of the sextet wave function.The effect was more noticeable,the expectation value of the total spin operator after annihilation,〈S2〉=5.47 was far from the value expected for a pure quartet state,〈S2〉=3.75.Based on the following expressions for the spin expectation values of the contaminated quartet state:18

    where C is the configuration coefficient,S is the total spin operator,subscripts 6 and 4 denote sextet state and quartet state,respectively.From Eq.(5)we obtain the contribution of the quartet state which is about 67%of the mixing states.This reason is that a second-order term of ZFS,SOC)introduces some angular momentum into the sextet state.These mechanisms above are described in Fig.3.

    3.2.2 Zero-field splitting(ZFS)

    Fig.5 Pathways of the exchange coupling from81 to61 or41

    The net effects for ZFS are to introduce a splitting of the 2S+1,in the absence of an external magnetic field.This will main-ly attribute to the ZFS?s two contributions:11(a)a first-order term,the direct dipolar spin-spin(SS)interaction between pairs of electrons and(b)a second-order term,arising from SOC.Thus an analysis and interpretation of the ZFS is imperative in this study.

    BP86 calculations were performed to determine the signs of the D and E values for61.The ZFS parameters[D=Dzz-1/2(Dxx+Dyy),E=1/2(Dxx-Dyy)]are calculated,D=+8.589 cm-1and E/D=+0.068.The more detailed results of the calculated ZFS using the quasi-restricted DFT method are shown in Table 1.From the results in Table 1,the major contribution arises from the second-order SOC contribution(around 97.5%of D),while the SS contributions are essentially negligible.Concerning the SOC part,it contains four significant contributions:α→α(D=0.332 cm-1),β→β(D=0.240 cm-1),α→β(D=8.138 cm-1),and β→α (D=-0.336 cm-1).However the major contribution comes from the α→β spin-flip excitation.This excitation contributes around 77.2%of the DSOCvalue,corresponding to the spin-pairing ΔS=-1(i.e.,sextet→quartet)transitions.The second larger SOC contribution arises from the β→α spin-raising ΔS=+1(sextet→octet)excitation(around 4%of DSOC)corresponding to ligand-to-metal charge-transfer transitions.The remaining two SOC contributions come from the spin allowed ΔS=0(sextet→sextet)ligand-field excitations and have usually been solely held responsible for the ZFS.However,these contributions are only around 7%compared to the DSOCvalue.

    The ΔS=-1 state(sextet is flipped to quartet state)is found to make significant contributions to DSOC,with the primary contribution arising from the single-determinant spin-paired states within the single occupied sets of orbitals,σx2-y2,π*xz,dxy,and dyz(see Fig.3).Namely,andvital spin-flip excitation.Applying the angular momentum operator to this four orbitals generates three nonzero SOC integrals:ndlz|dxy〉which make the largest contribution to the SOC and lead to the larger values of Dxx(=8.8 cm-1),Dzz(=16.8 cm-1),and Dyy(=7.6 cm-1).It identifies the origin of large ZFS as spinorbit coupling to low-lying ΔS=-1 state,and shows that the quartet41 can arise from normal spin-orbit induced intersystem crossing as compared with the weaker exchange coupling.

    3.2.3 Spin-orbit coupling

    Table 1 Contributions to the calculated zero-field splitting between spin-orbit coupling and spin-spin for the sextet state

    Based on the above analysis,the sextet61 from81 is fast formed via EISC,following the system will well change its spin multiplicities from the sextet state to the quartet ground state41 by SOC in the O2gradual approach to Fe center process.However,a spin-forbidden transition requires an effect of SOC that provides a major mechanism for the intersystem crossing process.21-24Therefore,we must inspect the orbital relationships which promote the SOC matrix elements.

    The ROHF orbitals for the construction of the quartet and sextet CASCI wave functions to be used in the SOC evaluation have been generated by the sextet ROHF calculation.At the CAS(7,6)level the dominant determinants of the MCSCF wave functions have configuration interaction(CI)coefficients of 0.98 and 0.17 for the sextet and 0.86 and-0.48 for the quartet state(configurations of less than 0.1 have not been listed).Thus the permissible approximation of the sextet wave function by a single configuration(0.98)enables us to analyze the SOC matrix elements.The quartet configuration is described as shown in Eq.(6),

    Nonzero elements of the p-components(p=x,y,z)of the SOC matrix,,are always proportional to the function,Fp,as given in Eq.(7).

    To further understand the efficient SOC,it is very important that the SOC matrix elementsandare discussed.Because the SOC constant(ξFe)is an order of magnitude greater than that of oxygen,making it a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quartet states.Thus

    where the η term is the MS-depended weight weighing factor,and θ=α and/or β.In the present case,for the sextet state,the fundamental open-shell configuration has one dominant coeffi-cient,i.e.,C0=0.98≈1,while coefficients of quartet states are Cj1=0.86 and Cj2=-0.48,respectively.

    Table 2 Calculated SOC matrix elements(cm-1)in the41 structure

    Fig.6 Electronic evolution during the O―O bond cleavage

    Therefore:

    Here,only the first term is nonzero value,the electron shift from dx2-y2to dyzcreates an non-zero angular momentum in the Lx-direction,resulting in the larger SOC matrix elements as listed in Table 2.The second term is zero value due to the mismatch for the dx2-y2→dyztransition with Lzangular momentum direction.Similarly,the larger z-direction SOCs come from〈dx2-y2│LFe,z│dxy〉〈α│Sz│α〉coupling of the second term in Eq.(9).These analyses are in good agreement with the SOC calculations of the approximate one-electron spin-orbit Hamiltonian(see Table 2)and D-tensor of ZFS,25namely there exist the larger SOC matrix elements in Lx-and Lz-directions,resulting in the SOC constant of 353.16 cm-1.These also further indicated that the significant contributions to D arise from the ΔS=-1 spin-flip transition,and the quartet state41 is produced by a spin-orbit coupling intersystem crossing.

    3.3 Cleavage process of the O―O bond

    Structural parameters of the transition state(4TS)on the quartet surface are collected in Fig.1.The O―O bond cleavage pathway is shown in Fig.6.The O―O bond activation takes place through a precursor intermediate42 and transition state(4TS),to afford a cleavage product4P.The4TS has the feature of partially broken O―O bond(0.1687 nm),in which the activation barrier is 111.37 kJ·mol-1with respect to42.4TS is characterized as a transition structure by one imaginary frequency of 839.7i cm-1,and the vibrational vector corresponds to the expected components of the reaction coordinate,i.e.,breaking of the O―O bond.

    Schematic of the frontier molecular orbitals which participate in the three-electron transfer process upon the O―O bond cleavage is shown in Fig.6.As can been seen from Fig.6,the doubly occupied PCA π orbital is the HOMO in the complex,one electron from the doubly occupied PCA π orbital can be donated directly to the O2π*orbital to form the distorted O―CPCAbond.Two electrons are transferred to the O2π*orbital generating a Fe(IV)-peroxide.There is the strong covalent interaction between the PCA HOMO and Fe dxzorbitals in the α manifold,the second electron of the PCA HOMO is transferred to Fe,at the same time the transfer of an Fe d electron into the O2σ*orbital to break the O―O bond is accomplished.Finally,cleavage of the O―O bond leads to formation of an Fe(IV)-oxo.Therefore,the transfer of these three electrons(one α and two β)shows that the Fe center acts as a buffer to transfer an electron pair from PCA π orbital to the triplet O2in the spin forbidden reaction.

    4 Conclusions

    The O2activating mechanism by non-heme iron enzyme,3,4-PCD-PCA,has been studied using theoretical calculations.The electronic structure origins and intersystem crossing of the different spin states(a total spin of S=7/2,S=5/2,or S=3/2)were discussed by the broken-symmetry method and SOC mechanism.The octet state81 is stable with the aid of the electrostatic interaction,while the ultrafast formation of61 is most likely due to EISC.As for the formation of the quartet state41 from the sextet61,there coexist the two effects,electron spin exchange coupling and spin-orbit coupling in the sextet61.As a driving force of spin conversion the exchange interaction competes with spin-orbit coupling interaction.The calculated results show that the latter is the dominant factor due to the larger SOC constant(353.16 cm-1).The doublet21 optimization is failure using various DFT methods,all optimizations can not be converged due to the energy fluctuation.

    The O―O bond activation takes place through a precursor intermediate42 and transition state(4TS),to afford a cleavage product4P.The electronic transfer of the PCA HOMO is the vital role for the cleavage of the O―O bond.The Fe center of non-heme enzyme is a buffer to transfer an electron pair from PCAHOMO orbital to the O2in the reaction.

    (1)Pau,M.Y.M.;Davis,M.I.;Orville,A.M.;Lipscomb,J.D.;Solomon,E.I.J.Am.Chem.Soc.2007,129,1944.doi:10.1021/ja065671x

    (2) Costas,M.;Mehn,M.P.;Jensen,M.P.;Que,L.,Jr.Chem.Rev.2004,104,939.doi:10.1021/cr020628n

    (3) Solomon,E.I.;Brunold,T.C.;Davis,M.I.;Kemsley,J.N.;Lee,S.K.;Lehnert,N.;Neese,F.;Skulan,A.J.;Yang,Y.S.;Zhou,J.Chem.Rev.2000,100,235.doi:10.1021/cr9900275

    (4) Nam,W.Accounts Chem.Res.2007,40,522.doi:10.1021/ar700027f

    (5) Borowski,T.;Siegbahn,P.E.M.J.Am.Chem.Soc.2006,128,12941.doi:10.1021/ja0641251

    (6) Deeth,R.J.;Bugg,T.D.H.J.Biol.Inorg.Chem.2003,8,409.

    (7) Fiedler,A.;Schroder,D.;Shaik,S.;Schwarz.H.J.Am.Chem.Soc.1994,116,10734.doi:10.1021/ja00102a043

    (8)Yoshizawa,K.;Shiota,Y.;Yamabe,T.J.Chem.Phys.1999,111,538.doi:10.1063/1.479333

    (9) Shaik,S.;Hirao,H.;Kumar,D.Accounts Chem.Res.2007,40,532.doi:10.1021/ar600042c

    (10) Schroder,D.;Shaik,S.;Schwarz,H.Accounts Chem.Res.2000,33,139.doi:10.1021/ar990028j

    (11) Neese,F.J.Am.Chem.Soc.2006,128,10213.doi:10.1021/ja061798a

    (12) Neese,F.ORCA,version 2.8-20;Max-Planck Institute for Bioinorganic Chemistry:Mülheim an der Ruhr,Germany,2010.

    (13)Fedorov,D.G.;Koseki,S.;Schmidt,M.W.;Gordon,M.S.Int.Rev.Phys.Chem.2003,22,551.

    (14) Elgren,T.E.;Orville,A.M.;Kelly,K.A.;Lipscomb,J.D.;Ohlendorf,D.H.;Que,L.,Jr.Biochemistry 1997,36,11504.doi:10.1021/bi970691k

    (15) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision E.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (16)Hess,B.A.;Marian,C.M.;Wahlgren,U.;Gropen,O.Chem.Phys.Lett.1996,251,365.doi:10.1016/0009-2614(96)00119-4(17) Rodriguez,J.H.;McCusker,J.K.J.Chem.Phys.2002,116,6253.doi:10.1063/1.1461363

    (18)Rodriguez,J.H.;Wheeler,D.E.;McCusker,J.K.J.Am.Chem.Soc.1998,120,12051.doi:10.1021/ja980917m

    (19) Schmidtm,M.W.;Baldridge,K.K.;Boatz,J.A.;Elbert,S.T.;Gordon,M.S.;Jensen,J.H.;Koseki,S.;Matsunaga,N.;Nguyen,K.A.;Su,S.J.;Windus,T.L.;Dupuis,M.;Motgomery,J.A.J.Comput.Chem.1993,14,1347.

    (20)Giacobbe,E.M.;Mi,Q.;Colvin,M.T.;Cohen,B.;Ramanan,C.;Scott,A.M.;Yeganeh,S.;Marks,T.J.;Ratner,M.A.;Wasielewski,M.R.J.Am.Chem.Soc.2009,131,3700.doi:10.1021/ja808924f

    (21) Isobe,H.;Yamanaka,S.;Kuramitsu,S.;Yamaguchi,K.J.Am.Chem.Soc.2008,130,132.doi:10.1021/ja073834r

    (22)Dede,Y.;Zhang,X.;Schlangen,M.;Schwarz,H.;Baik,M.H.J.Am.Chem.Soc.2009,122,114.

    (23)Lv,L.L.;Wang,Y.C.;Wang,Q.;Liu,H.W.J.Phys.Chem.C 2010,114,17610.

    (24) Lü,L.L.;Wang,Y.C.Acta.Phys.-Chim.Sin.2006,22,265.[呂玲玲,王永成.物理化學(xué)學(xué)報(bào),2006,22,265.]doi:10.3866/PKU.WHXB20060302

    (25)Lü,L.L.;Zhu,Y.C.;Wang,X.F.;Zuo,G.F.;Zhao,S.R.;Guo,F.;Wang,Y.C.Chin.Sci.Bull.2013,58,627.[呂玲玲,朱元成,王小芳,左國(guó)防,趙素瑞,郭 峰,王永成.科學(xué)通報(bào),2013,58,627.]doi:10.1007/s11434-012-5316-7

    猜你喜歡
    西北師范大學(xué)化工學(xué)院天水
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    西北師范大學(xué)作品
    大眾文藝(2023年9期)2023-05-17 23:55:52
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    天水嬸與兩岸商貿(mào)
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    天水地區(qū)的『秦與戎』
    重返絲綢之路—從天水到青海湖
    美食(2018年10期)2018-10-18 08:10:58
    麻豆乱淫一区二区| 国产色婷婷99| 欧美日韩综合久久久久久| 2022亚洲国产成人精品| 又粗又硬又长又爽又黄的视频| 男女国产视频网站| 少妇 在线观看| av在线app专区| 亚洲性久久影院| 成人毛片60女人毛片免费| 搡女人真爽免费视频火全软件| 国产精品偷伦视频观看了| 亚洲欧美精品自产自拍| 亚洲国产av影院在线观看| 人人妻人人添人人爽欧美一区卜| 日日摸夜夜添夜夜爱| 亚洲国产色片| 亚洲av综合色区一区| 精品人妻一区二区三区麻豆| 夫妻性生交免费视频一级片| 极品人妻少妇av视频| 久久99热这里只频精品6学生| 国产黄色视频一区二区在线观看| 亚洲丝袜综合中文字幕| 亚洲av欧美aⅴ国产| 成人国语在线视频| 嫩草影院入口| 成人二区视频| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| 高清午夜精品一区二区三区| 黑人高潮一二区| videossex国产| 中文字幕亚洲精品专区| 人人妻人人澡人人爽人人夜夜| 婷婷色综合大香蕉| 91精品国产国语对白视频| 999精品在线视频| 熟女av电影| 国产永久视频网站| 亚洲欧洲精品一区二区精品久久久 | www.av在线官网国产| 日本与韩国留学比较| 亚洲精品国产色婷婷电影| 熟女人妻精品中文字幕| 欧美变态另类bdsm刘玥| 大香蕉久久成人网| 黄片播放在线免费| 久久久久久久大尺度免费视频| 免费看光身美女| 欧美日韩在线观看h| 成人18禁高潮啪啪吃奶动态图 | 免费大片黄手机在线观看| 黄片无遮挡物在线观看| 亚洲色图综合在线观看| 自线自在国产av| 女性生殖器流出的白浆| 精品一区二区免费观看| 国产亚洲精品久久久com| 91成人精品电影| 色网站视频免费| 亚洲国产av新网站| 国产免费视频播放在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线观看99| 国产欧美日韩综合在线一区二区| 一区二区三区乱码不卡18| 亚洲av在线观看美女高潮| 一个人看视频在线观看www免费| 在线观看免费日韩欧美大片 | 女人久久www免费人成看片| 国产熟女午夜一区二区三区 | 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 午夜影院在线不卡| 男女边摸边吃奶| 国产高清国产精品国产三级| 三上悠亚av全集在线观看| 黄色配什么色好看| av免费在线看不卡| 下体分泌物呈黄色| 国产成人一区二区在线| 草草在线视频免费看| 亚洲成人手机| 欧美一级a爱片免费观看看| 国产成人精品无人区| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 成人手机av| 国产成人av激情在线播放 | 一级,二级,三级黄色视频| av一本久久久久| 国产日韩欧美视频二区| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 51国产日韩欧美| 热99久久久久精品小说推荐| 国产熟女午夜一区二区三区 | 成人毛片60女人毛片免费| 色哟哟·www| 亚洲欧美日韩另类电影网站| 国产白丝娇喘喷水9色精品| 精品久久久久久电影网| a 毛片基地| 考比视频在线观看| 久久精品国产自在天天线| 高清不卡的av网站| 夜夜爽夜夜爽视频| 国产精品偷伦视频观看了| 久久97久久精品| 欧美成人午夜免费资源| 边亲边吃奶的免费视频| 久久影院123| 超碰97精品在线观看| 国产探花极品一区二区| 亚洲综合色惰| 久久影院123| 国产 精品1| 精品视频人人做人人爽| 欧美日韩成人在线一区二区| 国产成人a∨麻豆精品| 另类精品久久| 人妻 亚洲 视频| 亚洲一区二区三区欧美精品| av又黄又爽大尺度在线免费看| 性色avwww在线观看| 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| 黑人欧美特级aaaaaa片| av黄色大香蕉| 少妇被粗大的猛进出69影院 | 国产成人精品无人区| 男女高潮啪啪啪动态图| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 中国国产av一级| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 日韩中文字幕视频在线看片| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区 | 亚洲国产最新在线播放| 久久久欧美国产精品| 免费观看a级毛片全部| 成人无遮挡网站| 欧美97在线视频| 这个男人来自地球电影免费观看 | 国产免费一级a男人的天堂| 男女高潮啪啪啪动态图| 十八禁高潮呻吟视频| 国产成人精品无人区| 9色porny在线观看| 久久精品国产a三级三级三级| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 老熟女久久久| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 中文字幕免费在线视频6| 国产有黄有色有爽视频| 黑人欧美特级aaaaaa片| 夜夜爽夜夜爽视频| 久久久久精品久久久久真实原创| 亚洲人与动物交配视频| 免费高清在线观看日韩| 搡老乐熟女国产| 高清毛片免费看| 天堂中文最新版在线下载| 一级毛片电影观看| 国产亚洲av片在线观看秒播厂| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| tube8黄色片| 男女边摸边吃奶| 免费观看无遮挡的男女| 免费看不卡的av| 看非洲黑人一级黄片| 中文字幕精品免费在线观看视频 | 免费高清在线观看视频在线观看| 亚洲成人手机| kizo精华| 99热网站在线观看| 热re99久久精品国产66热6| 波野结衣二区三区在线| 国产男女内射视频| 飞空精品影院首页| 亚洲精品自拍成人| 午夜老司机福利剧场| 99久久精品一区二区三区| 一区在线观看完整版| 国产亚洲精品久久久com| 午夜福利,免费看| 美女国产视频在线观看| 欧美丝袜亚洲另类| 永久免费av网站大全| 最近中文字幕高清免费大全6| 亚洲av成人精品一区久久| av在线观看视频网站免费| 国模一区二区三区四区视频| 久久久久久久久久成人| 国产男女内射视频| 精品亚洲成国产av| 婷婷色综合大香蕉| a 毛片基地| 伦理电影大哥的女人| 大片电影免费在线观看免费| 十八禁高潮呻吟视频| 这个男人来自地球电影免费观看 | 午夜日本视频在线| 我要看黄色一级片免费的| 久久亚洲国产成人精品v| 亚洲av男天堂| a级毛色黄片| 国产精品久久久久久久电影| 亚洲,一卡二卡三卡| 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 桃花免费在线播放| 亚洲精品国产av蜜桃| a级毛片在线看网站| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 一级片'在线观看视频| 欧美成人精品欧美一级黄| 满18在线观看网站| 一本久久精品| 亚洲成色77777| 日韩强制内射视频| 久久国产精品男人的天堂亚洲 | 啦啦啦视频在线资源免费观看| 夜夜爽夜夜爽视频| 日韩大片免费观看网站| 久久精品国产亚洲av天美| 国产精品国产三级专区第一集| 国语对白做爰xxxⅹ性视频网站| 高清视频免费观看一区二区| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 伊人亚洲综合成人网| 一区二区三区免费毛片| 色5月婷婷丁香| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人精品欧美一级黄| 成人毛片a级毛片在线播放| 91精品国产国语对白视频| 18+在线观看网站| 我的女老师完整版在线观看| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 亚洲国产最新在线播放| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频 | 少妇 在线观看| 你懂的网址亚洲精品在线观看| 综合色丁香网| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 丝袜喷水一区| www.色视频.com| 超碰97精品在线观看| 成人毛片a级毛片在线播放| av国产久精品久网站免费入址| 日韩精品免费视频一区二区三区 | 伊人久久精品亚洲午夜| av专区在线播放| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 综合色丁香网| 在线观看www视频免费| 久久鲁丝午夜福利片| 亚州av有码| 狂野欧美激情性bbbbbb| 热99久久久久精品小说推荐| 在线天堂最新版资源| 中国三级夫妇交换| 国产在视频线精品| 热99久久久久精品小说推荐| 婷婷色综合大香蕉| 插阴视频在线观看视频| 伊人久久国产一区二区| 大话2 男鬼变身卡| 亚洲欧洲精品一区二区精品久久久 | 免费播放大片免费观看视频在线观看| 性色avwww在线观看| 成年女人在线观看亚洲视频| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 十八禁高潮呻吟视频| 交换朋友夫妻互换小说| av一本久久久久| 午夜精品国产一区二区电影| 插逼视频在线观看| 精品一区在线观看国产| 日韩视频在线欧美| 欧美精品国产亚洲| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 美女中出高潮动态图| 中国三级夫妇交换| 一个人免费看片子| 日韩中文字幕视频在线看片| 一级爰片在线观看| 亚洲伊人久久精品综合| av黄色大香蕉| av免费在线看不卡| 一个人免费看片子| 精品久久蜜臀av无| 亚洲三级黄色毛片| 国产男女内射视频| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 亚洲av成人精品一二三区| 亚洲精品中文字幕在线视频| 久久99热6这里只有精品| 男女免费视频国产| 成年人午夜在线观看视频| 免费观看av网站的网址| 一本一本综合久久| 肉色欧美久久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久av不卡| 免费av不卡在线播放| 国产av国产精品国产| 伦精品一区二区三区| 国产亚洲最大av| 久热这里只有精品99| 国产男人的电影天堂91| 成人综合一区亚洲| 久久久国产一区二区| 免费少妇av软件| 97超视频在线观看视频| 国产色爽女视频免费观看| 美女国产视频在线观看| 国产高清三级在线| av又黄又爽大尺度在线免费看| 日本91视频免费播放| 亚洲av.av天堂| av线在线观看网站| 女人精品久久久久毛片| 亚洲第一av免费看| 精品久久国产蜜桃| 免费看不卡的av| 99久久中文字幕三级久久日本| av线在线观看网站| 成人国语在线视频| 男女无遮挡免费网站观看| 午夜激情久久久久久久| 国产av一区二区精品久久| 国产精品人妻久久久影院| 日本91视频免费播放| 色吧在线观看| 精品一区二区三卡| 精品久久国产蜜桃| 97超碰精品成人国产| 久久午夜综合久久蜜桃| 久久精品国产亚洲av涩爱| 校园人妻丝袜中文字幕| www.av在线官网国产| 高清不卡的av网站| 成人亚洲欧美一区二区av| 一级毛片我不卡| 高清午夜精品一区二区三区| 男人爽女人下面视频在线观看| 久久99一区二区三区| 一本一本综合久久| 男女啪啪激烈高潮av片| 国产亚洲一区二区精品| av福利片在线| 99久久人妻综合| 亚洲国产av新网站| 亚洲av成人精品一区久久| xxx大片免费视频| 国产淫语在线视频| 制服人妻中文乱码| 亚洲在久久综合| 国精品久久久久久国模美| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 久久久国产精品麻豆| 精品国产国语对白av| 精品国产露脸久久av麻豆| 一本大道久久a久久精品| 国产免费福利视频在线观看| 最近的中文字幕免费完整| 国产极品天堂在线| 欧美日韩亚洲高清精品| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 高清av免费在线| 赤兔流量卡办理| 丰满迷人的少妇在线观看| 亚洲性久久影院| 91在线精品国自产拍蜜月| 女性生殖器流出的白浆| 我要看黄色一级片免费的| 久久99一区二区三区| 九色亚洲精品在线播放| 国产精品偷伦视频观看了| 国产精品久久久久久久久免| 少妇人妻久久综合中文| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 国产成人a∨麻豆精品| 国产av精品麻豆| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 水蜜桃什么品种好| 亚洲色图 男人天堂 中文字幕 | 午夜福利视频在线观看免费| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区| 亚洲,一卡二卡三卡| 国产男女超爽视频在线观看| av不卡在线播放| 伊人亚洲综合成人网| 三级国产精品片| 午夜av观看不卡| 亚洲av不卡在线观看| 少妇人妻久久综合中文| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 色视频在线一区二区三区| 欧美激情 高清一区二区三区| 一边亲一边摸免费视频| 免费观看的影片在线观看| 老熟女久久久| 制服诱惑二区| 在线亚洲精品国产二区图片欧美 | 中文精品一卡2卡3卡4更新| 亚洲三级黄色毛片| 国产国语露脸激情在线看| 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线 | 精品酒店卫生间| 黑人欧美特级aaaaaa片| 99久久精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产深夜福利视频在线观看| 日韩不卡一区二区三区视频在线| 九九爱精品视频在线观看| 如何舔出高潮| 亚洲欧洲国产日韩| 人人妻人人澡人人爽人人夜夜| 国产精品三级大全| 男女无遮挡免费网站观看| 少妇的逼好多水| 日韩欧美一区视频在线观看| 久久久精品94久久精品| 久久毛片免费看一区二区三区| 少妇的逼好多水| 建设人人有责人人尽责人人享有的| 男女边摸边吃奶| 欧美精品亚洲一区二区| 男的添女的下面高潮视频| 一本一本综合久久| 99视频精品全部免费 在线| 美女内射精品一级片tv| 亚洲中文av在线| 亚洲国产精品一区三区| 精品人妻在线不人妻| 亚洲av福利一区| 新久久久久国产一级毛片| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 欧美日韩综合久久久久久| 卡戴珊不雅视频在线播放| 日本黄色日本黄色录像| 黄片播放在线免费| 日韩在线高清观看一区二区三区| 多毛熟女@视频| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 97在线人人人人妻| 亚洲国产精品成人久久小说| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| 精品人妻在线不人妻| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品| 欧美日韩视频高清一区二区三区二| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 26uuu在线亚洲综合色| 欧美一级a爱片免费观看看| 青青草视频在线视频观看| 美女脱内裤让男人舔精品视频| 免费黄色在线免费观看| 最新中文字幕久久久久| 久久精品熟女亚洲av麻豆精品| 人人妻人人添人人爽欧美一区卜| 免费观看av网站的网址| 欧美3d第一页| 国产欧美另类精品又又久久亚洲欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99精品国语久久久| 新久久久久国产一级毛片| 国产视频首页在线观看| 成人亚洲欧美一区二区av| 久久精品夜色国产| 菩萨蛮人人尽说江南好唐韦庄| 两个人免费观看高清视频| 一二三四中文在线观看免费高清| av网站免费在线观看视频| 中文字幕亚洲精品专区| 精品久久久久久久久av| 看十八女毛片水多多多| 简卡轻食公司| 超色免费av| 啦啦啦啦在线视频资源| 欧美人与性动交α欧美精品济南到 | 晚上一个人看的免费电影| 日韩伦理黄色片| 99久久人妻综合| 成人国语在线视频| 日韩欧美一区视频在线观看| 丰满迷人的少妇在线观看| 少妇高潮的动态图| 国产成人免费无遮挡视频| www.av在线官网国产| 黄色怎么调成土黄色| 久久鲁丝午夜福利片| 久久久久久久精品精品| 国产精品不卡视频一区二区| 99九九线精品视频在线观看视频| 日韩成人伦理影院| 伦理电影免费视频| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | videos熟女内射| 十分钟在线观看高清视频www| 亚洲欧美色中文字幕在线| 各种免费的搞黄视频| 欧美精品高潮呻吟av久久| 欧美精品国产亚洲| 精品人妻在线不人妻| 亚洲欧洲精品一区二区精品久久久 | 看免费成人av毛片| 18禁在线播放成人免费| 欧美人与善性xxx| av卡一久久| 我的老师免费观看完整版| 欧美3d第一页| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| av免费在线看不卡| 一级爰片在线观看| 免费av中文字幕在线| 99re6热这里在线精品视频| av国产久精品久网站免费入址| 麻豆成人av视频| 美女内射精品一级片tv| 免费观看在线日韩| 性色avwww在线观看| 亚洲精品aⅴ在线观看| 亚洲成人一二三区av| 亚洲av成人精品一二三区| 天天影视国产精品| 亚洲av电影在线观看一区二区三区| 国产在线免费精品| 亚洲精品国产av成人精品| 午夜日本视频在线| 欧美成人午夜免费资源| 99热网站在线观看| 高清在线视频一区二区三区| 国产一区二区在线观看av| 国产在线一区二区三区精| 午夜久久久在线观看| 国产成人一区二区在线| 亚洲高清免费不卡视频| 久久99一区二区三区| 麻豆精品久久久久久蜜桃| 看非洲黑人一级黄片| 亚洲国产毛片av蜜桃av| 91久久精品国产一区二区三区| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 黄色一级大片看看| 免费观看的影片在线观看| freevideosex欧美| 蜜桃国产av成人99| 日韩大片免费观看网站| 久久久精品免费免费高清| 国产av国产精品国产| 日本免费在线观看一区| 日韩一区二区三区影片| 日本色播在线视频| 内地一区二区视频在线| 久久久国产一区二区| 精品人妻熟女毛片av久久网站| 亚洲综合精品二区| 午夜日本视频在线| 午夜精品国产一区二区电影| 国产一区亚洲一区在线观看|