• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature combination via importance-inhibition analysis

    2013-09-17 05:59:58YangSichunGaoChaoYaoJiaminDaiXinyuChenJiajun
    關(guān)鍵詞:省份河流

    Yang Sichun Gao Chao Yao Jiamin Dai Xinyu Chen Jiajun

    (1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China)

    (2School of Computer Science, Anhui University of Technology, Maanshan 243032, China)

    (3School of Computer Science and Information Engineering, Chuzhou University, Chuzhou 239000, China)

    A utomatic question answering(QA)[1]is a hot research direction in the field of natural language processing(NLP)and information retrieval(IR),which allows users to ask questions in natural language,and returns concise and accurate answers.QA systems include three major modules, namely question analysis, paragraph retrieval and answer extraction.As a crucial component of question analysis,question classification classifies questions into several semantic categories which indicate the expected semantic type of answers to questions.The semantic category of a question helps to filter out irrelevant answer candidates,and determine the answer selection strategies.

    In current research on question classification,the method based on machine learning is widely used,and features are the key to building an accurate question classifier[2-10].Li et al.[2-3]presented a hierarchical classifier based on the sparse network of winnows(SNoW)architecture, and made use of rich features, such as words,parts of speech, named entity, chunk, head chunk, and class-specific words.Zhang et al.[4]proposed a tree kernel support vector machine classifier,and took advantage of the structural information of questions.Huang et al.[5-6]extracted head word features and presented two approaches to augment hypernyms of such head words using WordNet.However, when used to train question classifiers,these features were almost combined incrementally via importance analysis(IA)which is based on the importance of individual features.This method is effective when using only a few features,but for very rich features,it may prevent question classification from further improvement due to the problem of ignoring the inhibition among features.

    In order to alleviate this problem,this paper proposes a new method for combining features via importance-inhibition analysis(IIA).By taking into account the inhibition among features as well as the importance of individual features,the IIA method more objectively depicts the process of combining features,and can further improve the performance of question classification.Experimental results on the Chinese questions set show that the IIA method performs more effectively than the IA method on the whole,and achieves the same highest accuracy as the one by the exhaustive method.

    1 Feature Extraction

    We use an open and free available language technology platform(LTP)(http://ir.hit.edu.cn/demo/ltp)which integrates ten key Chinese processing modules on morphology, word sense, syntax, semantics and other document analysis,and take the question“中國(guó)哪一條河流經(jīng)過(guò)的省份最多?(Which river flows through most provinces in China?)”as an example.The result of word segmentation, POS tagging, named entity recognition and dependency parsing of the sample question is presented in Fig.1.

    We extract bag-of-words(BOW),part-of-speech(POS), word sense(WSD,WSDm), named entity(NE),dependency relation(R)and parent word(P)as basic features.Here, WSD is the 3-layer coding, i.e.,coarse,medium and finegrained categoriesin the semantic dictionary “TongYiCiCiLin”, while WSDm is the 2-layer, i.e., coarse and medium grained word category.Tab.1 gives the features and their values of the sample question.

    Fig.1 Analysis result of the sample question with LTP platform

    Tab.1 Features and their values of the sample question

    2 Combining Features via Importance-inhibition Analysis

    The basic features described above belong to different syntactic and semantic categories,and contribute to question classification from various levels of language knowledge.We combine these basic features to further improve the performance of question classification.Since the BOW feature is the basis of other features,it is always combined with other features.For example, the POS feature follows the BOW feature when these two types of features are combined.

    With respect to the methods for combining features,the most intuitive one is the exhaustive method which lists all the feature combinations one by one.The exhaustive method is inefficient and not feasible in practical applications.In existing literature, combining features is conducted just on the basis of the importance of the features.However,this method may prevent it from further improvement on question classification due to the problem of ignoring the inhibition among features.For example,the dependency relation feature R and the POS feature belong to the same syntactic category,and they both contribute to question classification.However, since R covers POS to a large extent in syntactic expression,R will inhibit POS when they appear in the same feature combination.Similarly,the word sense features WSD and WSDm belong to the same semantic category,since the difference between WSD and WSDm is not obvious,they will inhibit each other when they are present at the same feature combination.From the above discussions, we find that an effective method for combining features should take into account the inhibition among features as well as the importance of individual features.

    In this paper,we propose a new method for combining features via importance-inhibition analysis.Before introducing the IIA method in detail,we should specify some notations.In our importance-inhibition analysis setting,the feature set is a basic concept following the common feature combination.

    A feature setFconsists of each featurefiextracted from a question, i.e.F={fii=1,2, …};F'is a subset ofF,and consists of each featuref(i)which has side effects for feature combinations, i.e.F'={f(i)i=1,2,…};F(ij)denotes thej-th one in thei-th round of feature combination,and it is a subset ofF;F*idenotes a feature combination with the highest accuracy in thei-th round,and it is also a subset ofF.

    Now we can give some formal definitions.

    Definition 1(importance) Given featuresfiandfj,fiis more important thanfjif the accuracy offiis higher than that offj.

    Definition 2(inhibition) Given a featurefiand a feature combinationF(ij),there exists inhibition betweenFi(j)andfiif the accuracy of the feature combinationF(ij)∪{fi}is lower than that ofF(ij)orfi.

    Definition 3(k_ary combination) Given a feature set F(ij),it is ak_ary feature combination in whichkfeatures are contained.

    Definition 4(bestk_ary combination) Given a(k-1)_ary combinationF(ij)and a candidate featurefi,F(xiàn)(ij)∪{fi}is the bestk_ary combination if it has the highest accuracy in the current round of feature combinations.

    Now let us move to the details of the IIA method.From the above definitions, we can easily see that, given featuresfi,fjand a feature combinationF(ij),the accuracy ofF(ij)∪{fi}is not always higher than that ofF(ij)∪{fj}whenfiis more important thanfj.By taking into account the inhibition among features,we combine features via a heuristic algorithm.First,choose BOW as the best 1_ary feature combination,and combine each candidate feature from the rest with BOW to form 2_ary feature combinations.Then choose the one with the highest accuracy as the best 2_ary feature combination,and filter out those features lower than the best 1_ary feature combination.Finally,repeat the above steps until the current candidate feature set is empty or all the feature combinations are no longer higher than the highest in the previous round.

    Algorithm 1 gives the implement of the IIA method.

    Algorithm 1Importance-inhibition analysis algorithm

    The IIA method is on the basis of the(k-1)_ary feature combination to obtain the bestk_ary one,so compared with the exhaustive method,it can significantly improve the efficiency of feature combination.In addition,since the IIA method takes into account the inhibition among features as well as the importance of individual features, compared with the IA method, it can more objectively depict the process of combining features and ensure a better performance of question classification.

    3 Experimental Results and Analysis

    3.1 Data set and evaluation

    In our experiments,we use the Chinese questions set provided by IRSC lab of HIT(http://ir.hit.edu.cn),which contains 6 266 questions belonging to 6 categories and 77 classes.

    The open and free available Liblinear-1.4(http://www.csie.ntu.edu.tw/~ cjlin/liblinear/)which is a linear classifier for data with millions of instances and features which is used to be the classifier.We use 10-fold cross validation on the total question set to evaluate the performance of the question classifications.

    3.2 Combining features via IIA

    According to the IIA method,we take BOW as the initial feature,and combine POS,NE,WSD,WSDm,R and P features gradually to form feature combinations,such as 2_ary,3_ary,4_ary and so on.The accuracies of individual features are presented in Fig.2(a).Figs.2(b)to(d)list all the accuracies of 2_ary,3_ary and 4_ary feature combinations respectively, where Base1, Base2 and Base3 stand for the corresponding best 1_ary, 2_ary,3_ary feature combinations.

    Fig.2 Accuracies of n_ary feature combinations.(a)1_ary;(b)2_ary;(c)3_ary;(d)4_ary

    In Fig.2(b)and Fig.2(c), the P feature has the highest classification accuracy among all the candidates,but the accuracies of Base1+P and Base2+P are not the highest in all the 2_ary and 3_ary feature combinations,respectively.In particular, the accuracy of Base1+P is the last but one in all the 2_ary feature combinations.

    In Fig.2(b), the accuracy of Base1+NE is lower than that of Base1,so NE is no longer considered in subsequent rounds.Similarly, in Fig.2(d), the accuracies of Base3+POS and Base3+WSDm are both lower than that of Base3,so POS and WSDm are not considered in subsequent rounds.This is greatly convenient for filtering noise features.

    In Fig.2(c)and Fig.2(d), the accuracies of Base1+NE,Base3+POS,Base3+WSDm are lower than those of Base1 and Base3, respectively.The reason is that R covers POS to a large extent in syntactic expression,and the difference between WSD and WSDm is very small.As a result,there exists the inhibition among features when they are in the same feature combination.

    3.3 Performance comparison with IA

    In order to verify the efficiency and effectiveness of IIA,we conduct performance comparison with IA.Tab.2 shows the accuracies of the feature combinations via IIA and IA,respectively,where the“2_ary”column means 2_ary combinations, the “Base”row denotes the best(n-1)_ary combinations, “+POS”row means the feature combined with its baseline,the accuracy in bold means the maximum ofn_ary combinations,and the one in bold with underline shows the maximum of all the combinations.

    Tab.2 Accuracies of feature combinations via IIA and IA %

    Fig.3 conducts the comparison of average and maximum accuracies between IIA and IA,where theXaxis denotesn_ary feature combinations,theYaxis denotes classification accuracies.

    Fig.3 Performance comparison between IIA and IA

    From Fig.3, we can see that IIA shows a gradual increase in average and maximum accuracies in all the feature combinations,while IA shows a slight decline in accuracy at the 4_ary and 7_ary ones.The reason is that IIA is based on the best previous feature combination to obtain the current one.In addition, IIA performs as well as IA in average accuracy at 3_ary feature combinations,and achieves a great improvement over IA in average and maximum accuracies at 2_ary and 4_ary feature combinations.In particular, IIA achieves 0.813 9% and 0.829 9%higher than IA in average and maximum accuracies at 4_ary feature combinations,so we can draw a conclusion that IIA performs significantly better than IA on the whole.

    In order to further verify the efficiency and effectiveness of IIA,we conduct performance comparison with the exhaustive method.Experimental results show that the exhaustive method carries on 6 rounds for acquiring 63 feature combinations,while IIA does 3 rounds with 13 feature combinations gained.This demonstrates that IIA is much more efficient and feasible than the exhaustive method in practical applications.Furthermore, IIA gets the accuracy of 82.413%which is the highest one gained by the exhaustive method.

    4 Conclusion

    In this paper,we propose a new method called IIA to combine features via importance-inhibition analysis.The method takes into account the inhibition among various features as well as the importance of individual features.Experimental results on the Chinese question set show that the IIA method performs more effectively than the IA method on the whole,and achieves the same highest accuracy as the one gained by the exhaustive method.

    The IIA method is a heuristic one in nature,and may be faced with the problem of a local optimum.In our further work,we will make great efforts to achieve more efficient and effective optimization for combining features.

    Acknowlegement We would like to thank the IRSC laboratory of Harbin Institute of Technology for their free and available LTP platform.

    [1]Zhang Z C, Zhang Y, Liu T, et al.Advances in opendomain question answering [J].Acta Electronica Sinica,2009,37(5):1058-1069.(in Chinese)

    [2]Li X, Roth D.Learning question classifiers[C]//Proc of the19th International Conference on Computational Linguistics.Taipei,China, 2002:1-7.

    [3]Li X, Roth D.Learning question classifiers:the role of semantic information[J].Journal of Natural Language Engineering, 2006, 12(3):229-250.

    [4]Zhang D, Lee W.Question classification using support vector machines[C]//Proc of the26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Toronto, Canada, 2003:26-32.

    [5]Huang Z H,Thint M,Qin Z C.Question classification using head words and their hypernyms[C]//Proc of the2008Conference on Empirical Methods in Natural Language Processing.Honolulu, Hawaii, USA, 2008:927-936.

    [6]Huang Z H,Thint M,Celikyilmaz A.Investigation of question classifier in question answering[C]//Proc of the2009Conference on Empirical Methods in Natural Language Processing.Singapore, 2009:543-550.

    [7]Li F T,Zhang X,Yuan J H,et al.Classifying what-type questions by head noun tagging[C]//Proc of the22nd InternationalConferenceonComputationalLinguistics.Manchester,UK, 2008:481-488.

    [8]Li X,Huang X J,Wu L D.Combined multiple classifiers based on TBL algorithm and their application in question classification [J].Journal of Computer Research and Development, 2008, 45(3):535-541.(in Chinese)

    [9]Sun J G,Cai D F,Lu D X,et al.HowNet based Chinese question automatic classification [J].Journal of Chinese Information Processing, 2007, 21(1):90-95.(in Chinese)

    [10]Zhang Z C, Zhang Y, Liu T, et al.Chinese question classification based on identification of cue words and extension of training set[J].Chinese High Technology Letters, 2009, 19(2):111-118.(in Chinese)

    猜你喜歡
    省份河流
    誰(shuí)說(shuō)小龍蝦不賺錢?跨越四省份,暴走萬(wàn)里路,只為尋找最會(huì)養(yǎng)蝦的您
    河流
    16省份上半年GDP超萬(wàn)億元
    流放自己的河流
    河流
    河流
    22個(gè)省
    決策探索(2017年11期)2017-06-23 18:41:32
    當(dāng)河流遇見(jiàn)海
    因地制宜地穩(wěn)妥推進(jìn)留地安置——基于對(duì)10余省份留地安置的調(diào)研
    靜靜的河流
    雕塑(2000年2期)2000-06-22 16:13:30
    在线观看66精品国产| 国产91av在线免费观看| av免费在线看不卡| 久久久久久九九精品二区国产| 免费一级毛片在线播放高清视频| 国产精品伦人一区二区| 免费观看的影片在线观看| 99九九线精品视频在线观看视频| 欧美日韩精品成人综合77777| 国产爱豆传媒在线观看| 欧美日韩国产亚洲二区| 啦啦啦韩国在线观看视频| 高清毛片免费看| 九九爱精品视频在线观看| 亚洲国产色片| 亚洲七黄色美女视频| 乱系列少妇在线播放| 高清毛片免费观看视频网站| 欧美成人a在线观看| 亚洲国产欧洲综合997久久,| 黄片wwwwww| 神马国产精品三级电影在线观看| 日本黄大片高清| av.在线天堂| www.av在线官网国产| 成人午夜精彩视频在线观看| 国产久久久一区二区三区| 亚洲成a人片在线一区二区| 久久午夜福利片| 69人妻影院| 亚洲最大成人av| 久久精品国产清高在天天线| 中文欧美无线码| 日韩人妻高清精品专区| 九草在线视频观看| 小蜜桃在线观看免费完整版高清| 久久精品国产亚洲网站| 欧美xxxx黑人xx丫x性爽| 性插视频无遮挡在线免费观看| 偷拍熟女少妇极品色| 波多野结衣高清作品| 亚洲美女视频黄频| 少妇的逼好多水| 国产高清有码在线观看视频| 1024手机看黄色片| 国产精品久久电影中文字幕| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 日本-黄色视频高清免费观看| 国产伦理片在线播放av一区 | 啦啦啦观看免费观看视频高清| 国产乱人偷精品视频| 99热这里只有精品一区| 国产麻豆成人av免费视频| 午夜福利视频1000在线观看| 久久韩国三级中文字幕| 一个人免费在线观看电影| 国产黄a三级三级三级人| 99热只有精品国产| 日韩欧美一区二区三区在线观看| 日本色播在线视频| 欧美日本亚洲视频在线播放| 只有这里有精品99| 日韩人妻高清精品专区| 精品一区二区三区人妻视频| 夜夜看夜夜爽夜夜摸| 欧美日韩综合久久久久久| 久久久久久久久久成人| 国产伦理片在线播放av一区 | 12—13女人毛片做爰片一| 1000部很黄的大片| 三级国产精品欧美在线观看| 国产老妇女一区| 插逼视频在线观看| 熟妇人妻久久中文字幕3abv| 久久久久久久久中文| 非洲黑人性xxxx精品又粗又长| 18禁裸乳无遮挡免费网站照片| 久久99热这里只有精品18| 2022亚洲国产成人精品| 国产高潮美女av| 亚洲电影在线观看av| 搞女人的毛片| 麻豆成人av视频| 国产伦理片在线播放av一区 | 国产成人精品久久久久久| 我的老师免费观看完整版| 久久精品国产亚洲av涩爱 | 久久精品国产清高在天天线| 日本色播在线视频| 免费看a级黄色片| 日韩人妻高清精品专区| 一区二区三区高清视频在线| 国产午夜福利久久久久久| 国产极品精品免费视频能看的| 日本成人三级电影网站| 国产精品国产高清国产av| 国产精品电影一区二区三区| 日本一本二区三区精品| 国产一级毛片在线| 亚洲欧美精品综合久久99| 午夜福利成人在线免费观看| 久久草成人影院| 亚洲av不卡在线观看| 秋霞在线观看毛片| 韩国av在线不卡| a级毛色黄片| 男人狂女人下面高潮的视频| 精品日产1卡2卡| 国产精品蜜桃在线观看 | 久久亚洲精品不卡| 精品一区二区免费观看| 最新中文字幕久久久久| 男人舔女人下体高潮全视频| 深夜精品福利| a级毛片免费高清观看在线播放| 偷拍熟女少妇极品色| 精品免费久久久久久久清纯| 日韩成人av中文字幕在线观看| 国国产精品蜜臀av免费| 91久久精品国产一区二区三区| 一个人免费在线观看电影| а√天堂www在线а√下载| 成人无遮挡网站| 午夜爱爱视频在线播放| 国产精品美女特级片免费视频播放器| 可以在线观看的亚洲视频| 18禁裸乳无遮挡免费网站照片| 久久午夜亚洲精品久久| 午夜福利视频1000在线观看| 99久国产av精品国产电影| 亚洲五月色婷婷综合| 丰满饥渴人妻一区二区三| 热re99久久精品国产66热6| 欧美成人午夜免费资源| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久丰满| 日本欧美视频一区| 亚洲精品一二三| 亚洲精品美女久久av网站| 性高湖久久久久久久久免费观看| 人人妻人人爽人人添夜夜欢视频| 久久久久国产网址| videosex国产| 色网站视频免费| 两个人的视频大全免费| 婷婷色麻豆天堂久久| 久久精品久久久久久噜噜老黄| 亚洲熟女精品中文字幕| 91aial.com中文字幕在线观看| av免费观看日本| 我的女老师完整版在线观看| 国产精品欧美亚洲77777| 青青草视频在线视频观看| 高清不卡的av网站| 美女cb高潮喷水在线观看| 国产乱来视频区| 三级国产精品片| 国产乱来视频区| 飞空精品影院首页| 国产日韩欧美亚洲二区| 午夜福利视频在线观看免费| 精品亚洲成a人片在线观看| 91成人精品电影| 久久这里有精品视频免费| 久久亚洲国产成人精品v| www.av在线官网国产| 波野结衣二区三区在线| videosex国产| 99国产综合亚洲精品| 不卡视频在线观看欧美| 国产精品.久久久| 肉色欧美久久久久久久蜜桃| 99视频精品全部免费 在线| 久久国产精品大桥未久av| 国产免费福利视频在线观看| 日韩av在线免费看完整版不卡| 在线观看免费日韩欧美大片 | 国产 精品1| 亚洲四区av| 一本久久精品| 99九九在线精品视频| 亚洲国产精品成人久久小说| 熟女人妻精品中文字幕| 久久久久久久久久久丰满| 久久精品熟女亚洲av麻豆精品| 久久狼人影院| av专区在线播放| kizo精华| 国产男女超爽视频在线观看| 在线天堂最新版资源| 天天躁夜夜躁狠狠久久av| 久久精品国产自在天天线| 亚洲怡红院男人天堂| 国产精品三级大全| 久久国产亚洲av麻豆专区| 久久久国产一区二区| 国产精品免费大片| 国产综合精华液| 成人无遮挡网站| 99热6这里只有精品| 伊人久久国产一区二区| 成人午夜精彩视频在线观看| 久久国产精品大桥未久av| 免费高清在线观看视频在线观看| 欧美日韩视频精品一区| 免费av中文字幕在线| 少妇猛男粗大的猛烈进出视频| 国内精品宾馆在线| 特大巨黑吊av在线直播| 国产色爽女视频免费观看| 日日摸夜夜添夜夜添av毛片| 婷婷色综合www| 一区二区三区乱码不卡18| 免费看av在线观看网站| 免费少妇av软件| 18+在线观看网站| 大陆偷拍与自拍| 男女边摸边吃奶| 爱豆传媒免费全集在线观看| 国产黄片视频在线免费观看| 热re99久久精品国产66热6| 又黄又爽又刺激的免费视频.| 蜜桃在线观看..| 人体艺术视频欧美日本| 91国产中文字幕| 免费不卡的大黄色大毛片视频在线观看| 男女边吃奶边做爰视频| av国产精品久久久久影院| 99久国产av精品国产电影| 久久久久久久大尺度免费视频| 久久婷婷青草| 国产精品99久久久久久久久| 亚洲欧美精品自产自拍| 成人国产麻豆网| 在线观看国产h片| 亚洲综合精品二区| 在线亚洲精品国产二区图片欧美 | 大码成人一级视频| 国模一区二区三区四区视频| 麻豆乱淫一区二区| 精品人妻一区二区三区麻豆| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品国产鲁丝片午夜精品| 狂野欧美白嫩少妇大欣赏| 亚洲国产色片| 日日爽夜夜爽网站| 精品卡一卡二卡四卡免费| 色婷婷久久久亚洲欧美| 日日啪夜夜爽| 黄色配什么色好看| 视频在线观看一区二区三区| 最近最新中文字幕免费大全7| av国产精品久久久久影院| 秋霞在线观看毛片| 老女人水多毛片| 97在线人人人人妻| 中国美白少妇内射xxxbb| 99国产综合亚洲精品| 日本与韩国留学比较| 日韩av免费高清视频| 91久久精品国产一区二区成人| 少妇 在线观看| 日韩视频在线欧美| 九草在线视频观看| 欧美日韩在线观看h| 国产精品欧美亚洲77777| 18禁在线无遮挡免费观看视频| 亚洲五月色婷婷综合| 一级爰片在线观看| 免费高清在线观看日韩| 黄片无遮挡物在线观看| 啦啦啦在线观看免费高清www| 中文字幕av电影在线播放| 国产精品久久久久久久久免| 成年女人在线观看亚洲视频| 老司机影院毛片| 亚洲欧美精品自产自拍| 少妇丰满av| 日韩强制内射视频| 亚洲国产色片| 涩涩av久久男人的天堂| 精品少妇黑人巨大在线播放| 午夜福利在线观看免费完整高清在| 成人国产麻豆网| 观看美女的网站| 狂野欧美白嫩少妇大欣赏| 国产乱人偷精品视频| 另类亚洲欧美激情| 黄色配什么色好看| 边亲边吃奶的免费视频| 国产成人精品婷婷| 日韩欧美精品免费久久| 午夜精品国产一区二区电影| 另类亚洲欧美激情| 熟女电影av网| 一本色道久久久久久精品综合| 王馨瑶露胸无遮挡在线观看| 亚洲人成网站在线播| 日韩,欧美,国产一区二区三区| 日本av免费视频播放| 多毛熟女@视频| 国内精品宾馆在线| 日本91视频免费播放| 色5月婷婷丁香| 国产极品天堂在线| 一本色道久久久久久精品综合| 亚洲国产最新在线播放| 中文字幕制服av| 99久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 如日韩欧美国产精品一区二区三区 | 国产在线免费精品| 欧美日韩成人在线一区二区| 18禁裸乳无遮挡动漫免费视频| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 精品少妇黑人巨大在线播放| 国产黄色免费在线视频| 国产国拍精品亚洲av在线观看| 高清欧美精品videossex| 99久久中文字幕三级久久日本| 亚洲情色 制服丝袜| av国产久精品久网站免费入址| 亚洲精品国产av蜜桃| 伦精品一区二区三区| 69精品国产乱码久久久| 人人澡人人妻人| a 毛片基地| 久久久国产欧美日韩av| 国产熟女欧美一区二区| 国产成人免费观看mmmm| 一级毛片我不卡| 国产高清三级在线| 成年美女黄网站色视频大全免费 | 999精品在线视频| 在线精品无人区一区二区三| 成人黄色视频免费在线看| 亚洲国产精品一区三区| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 久久精品久久久久久噜噜老黄| 久久精品久久精品一区二区三区| 欧美亚洲日本最大视频资源| 伦精品一区二区三区| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 国产欧美日韩一区二区三区在线 | 制服人妻中文乱码| 亚洲精品456在线播放app| 欧美+日韩+精品| 黄片无遮挡物在线观看| 在线观看美女被高潮喷水网站| 国产日韩欧美视频二区| 欧美人与善性xxx| 在线观看免费日韩欧美大片 | 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 国产一区亚洲一区在线观看| 最后的刺客免费高清国语| 亚洲第一av免费看| 全区人妻精品视频| 精品久久蜜臀av无| 美女国产高潮福利片在线看| 黄色欧美视频在线观看| 男女免费视频国产| 在线观看三级黄色| 日韩 亚洲 欧美在线| 午夜福利,免费看| 国产一区二区三区av在线| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 国产在线视频一区二区| 精品国产乱码久久久久久小说| 大片免费播放器 马上看| 高清在线视频一区二区三区| 中文字幕人妻丝袜制服| 日韩av免费高清视频| 狂野欧美白嫩少妇大欣赏| 国产成人午夜福利电影在线观看| 黄片无遮挡物在线观看| 观看美女的网站| 在线亚洲精品国产二区图片欧美 | 成人漫画全彩无遮挡| 久久青草综合色| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 久久国内精品自在自线图片| 国产69精品久久久久777片| 久久精品人人爽人人爽视色| 亚洲综合色网址| 天堂俺去俺来也www色官网| 亚洲成色77777| 精品久久蜜臀av无| 青春草国产在线视频| 国产成人freesex在线| 日韩中文字幕视频在线看片| 狂野欧美激情性bbbbbb| 亚洲国产日韩一区二区| 最近最新中文字幕免费大全7| 国产黄色视频一区二区在线观看| 亚洲,欧美,日韩| 精品国产一区二区久久| 在线 av 中文字幕| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| 国产精品久久久久久精品电影小说| 高清视频免费观看一区二区| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 国产男女内射视频| 18禁动态无遮挡网站| 国产免费福利视频在线观看| 国精品久久久久久国模美| 亚洲国产精品999| 欧美bdsm另类| 性色avwww在线观看| 精品一品国产午夜福利视频| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 97超视频在线观看视频| 99热6这里只有精品| 国产成人精品在线电影| 午夜久久久在线观看| 久热久热在线精品观看| 亚洲国产精品一区二区三区在线| 黄片播放在线免费| tube8黄色片| 成人手机av| 亚洲四区av| 国产成人freesex在线| 亚洲综合色网址| 自线自在国产av| 亚洲精品乱码久久久久久按摩| 搡老乐熟女国产| 久久久a久久爽久久v久久| 成年美女黄网站色视频大全免费 | 欧美 亚洲 国产 日韩一| 亚洲人成网站在线观看播放| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 亚洲成人av在线免费| 免费大片18禁| 国产淫语在线视频| 日本wwww免费看| 51国产日韩欧美| 久久国产精品大桥未久av| 日韩成人av中文字幕在线观看| 青春草视频在线免费观看| 日韩精品有码人妻一区| 少妇熟女欧美另类| 欧美三级亚洲精品| 久久97久久精品| 国产精品国产av在线观看| 免费不卡的大黄色大毛片视频在线观看| 如何舔出高潮| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频 | 国产欧美亚洲国产| 97在线视频观看| av在线app专区| 国产一区二区三区av在线| 国产 精品1| 一级毛片黄色毛片免费观看视频| 黄色毛片三级朝国网站| 免费看不卡的av| 爱豆传媒免费全集在线观看| 如何舔出高潮| 一区二区三区精品91| 亚洲av免费高清在线观看| 老司机影院毛片| 免费观看性生交大片5| 热99久久久久精品小说推荐| 一本—道久久a久久精品蜜桃钙片| 999精品在线视频| 一级,二级,三级黄色视频| 99久久精品国产国产毛片| 黄色配什么色好看| 成人影院久久| 天天影视国产精品| 色婷婷av一区二区三区视频| 超碰97精品在线观看| 亚洲av中文av极速乱| 春色校园在线视频观看| 欧美+日韩+精品| 免费av中文字幕在线| 自线自在国产av| 成人黄色视频免费在线看| 曰老女人黄片| 精品国产露脸久久av麻豆| 国产黄片视频在线免费观看| 青春草视频在线免费观看| 少妇人妻久久综合中文| 国产黄色视频一区二区在线观看| 精品国产露脸久久av麻豆| 国产av国产精品国产| av视频免费观看在线观看| 国产欧美另类精品又又久久亚洲欧美| 中文字幕制服av| 亚洲熟女精品中文字幕| 欧美日韩av久久| 人体艺术视频欧美日本| av在线播放精品| 美女中出高潮动态图| 日韩制服骚丝袜av| 丝袜在线中文字幕| 亚洲av中文av极速乱| a级毛片黄视频| 老司机影院毛片| 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91| 99久久人妻综合| 日韩中字成人| 国产视频内射| 男女啪啪激烈高潮av片| 插阴视频在线观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区三区| 在线观看免费视频网站a站| 成人国语在线视频| 亚洲精品乱码久久久v下载方式| 国产黄频视频在线观看| 午夜激情av网站| 国产免费一级a男人的天堂| 性色avwww在线观看| 国产在线视频一区二区| 美女xxoo啪啪120秒动态图| 久热这里只有精品99| 国产男女内射视频| 久久国产精品男人的天堂亚洲 | 国产午夜精品久久久久久一区二区三区| 国产精品久久久久成人av| 看十八女毛片水多多多| 黄色怎么调成土黄色| 麻豆成人av视频| 亚洲精品国产色婷婷电影| 久久狼人影院| 久久人人爽人人爽人人片va| 久久国产精品男人的天堂亚洲 | 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 99热这里只有是精品在线观看| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 久久久久久久久久人人人人人人| 美女福利国产在线| 免费大片黄手机在线观看| 亚洲精品av麻豆狂野| www.av在线官网国产| 亚洲欧美日韩卡通动漫| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 精品卡一卡二卡四卡免费| 色网站视频免费| 最后的刺客免费高清国语| 国产有黄有色有爽视频| 亚洲欧美清纯卡通| 免费观看在线日韩| 亚洲av免费高清在线观看| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 欧美xxⅹ黑人| 人妻人人澡人人爽人人| 一级毛片黄色毛片免费观看视频| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 一本大道久久a久久精品| 永久网站在线| 中文乱码字字幕精品一区二区三区| 寂寞人妻少妇视频99o| 久久久久网色| 男女啪啪激烈高潮av片| 三级国产精品片| 国产精品成人在线| 亚洲精品中文字幕在线视频| 99热国产这里只有精品6| 丝瓜视频免费看黄片| 国产极品粉嫩免费观看在线 | videosex国产| 午夜91福利影院| 99视频精品全部免费 在线| 我要看黄色一级片免费的| 三级国产精品欧美在线观看| 丝袜脚勾引网站| 亚洲av中文av极速乱| 妹子高潮喷水视频| 亚洲天堂av无毛| 欧美成人午夜免费资源| 日本vs欧美在线观看视频| 老女人水多毛片| 啦啦啦在线观看免费高清www| 久久婷婷青草| 中国国产av一级| 欧美激情 高清一区二区三区| 在线观看美女被高潮喷水网站| 九草在线视频观看| 国产精品久久久久久av不卡| 国产精品一区二区在线观看99| 久久午夜福利片| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 国产 一区精品| 激情五月婷婷亚洲| 秋霞伦理黄片| 丰满迷人的少妇在线观看|