• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay

    2013-09-17 06:00:10ZhangDingwenCaoZhiguoFanLibinDengYongfeng

    Zhang Dingwen Cao Zhiguo Fan Libin Deng Yongfeng

    (School of Transportation, Southeast University, Nanjing 210096, China)

    S oft marine clay deposits around the coast of Lianyungang and Yancheng regions in Jiangsu province.Its natural water content varies from 50%to 110%and the liquidity indices of the marine clay are in the range of close to or more than one.In particular, the salt concentration is high in pore water of marine soft soil.Due to its very high water content,low shear strength and high salt concentration,the disposal of marine clay at construction sites is a challenge encountered by engineers.An improvement of the super soft soil within a short period to serve as a geomaterial is necessary in ocean and geotechnical engineering practise.

    The deep mixing method is an attractive ground improvement technique for high water content soft clay.In the deep mixing method,powder cement or slurry cement is injected into the natural soil at the required depth and a blade is pushed into the ground to mix the soil and cement.This technique has been increasingly used worldwide, especially in Europe, North America and Asia since its development in Sweden and Japan in 1970s[1].The deep mixing method was introduced to China in the early 1980s.Because this technique can effectively reduce the compressibility and permeability and increase the strength of soft ground,it rapidly spread throughout China in the 1990s,especially for controlling seepage and as a cut-off barrier, reduction of settlement, prevention of sliding failure and increasing the bearing capacity of the ground[2-5].The bond strength of cement-treated soil is controlled by many factors such as soil gradation,types of clay minerals, organic matter, pH, slat concentration,mixing energy and so on.Numerous researchers have performed experimental studies on the fundamental mechanical properties and engineering behaviour of soil-cement in the past four decades[6-9].

    Concerning the effect of salt concentration on the cement-treated soil,limited researches have been conducted.Moh[10]found that the increase in salt content can increase the compressive strength of the treated soils by mixing them with chemical admixtures such as sodium chloride, calcium chloride and sodium hydroxide in clay.Angelova[11]studied the impact of the same or similar inorganic chemical additives on the strength of stabilised soil,and showed that after a longer curing time(up to two years),the effect of these additives was not consistent.In contrast, Xing et al.[12]reported that different amounts of Mg2+, Cl-, and SO24-not only caused differences in the microstructures of soil-cement but also influenced the soil-cement strength.Xing et al.[12]found that Cl-h(huán)as a negative effect on the strength of soil-cement in the short and the long term.Modmoltin and Voottipruex[13]reported that the influence of salts on cementtreated Bangkok Clay,bentonite and kaolinite varied as a result of the soil structure and chemical reactions.Modmoltin et al.[14]showed that the salt in soil can decrease the detrimental effect of organic matter on the strength of lime-treated and cement-treated soil.Literature reviews demonstrate that the reported results are not consistent and the influence of the salt concentration on the cement-treated soil needs to be further investigated.Especially,there is not a rational prediction model to help engineers to design the cementation of salt-rich soil.

    This study, therefore, aims to quantify the influence of the sodium chloride salt concentration on the strength of cement stabilized Lianyungang soft marine clays.Clay with various sodium chloride salt concentrations was prepared artificially and stabilized by ordinary Portland cement with different contents.A series of UCS tests were performed on cement stabilized clay specimens after desired curing periods.Based on the experimental results, a new parameter,termed as porosity-salt concentration/cement content(PSC)ratio,is found to be appropriate to describe the effect of salt on the strength of cement-treated soil.

    1 Materials and Method

    1.1 Materials

    1.1.1 Soil sample

    The Lianyungang marine clay used in this investigation was obtained from the Liezikou bridge construction field,Guannan County, Jiangsu Province, China.Clay was sampled at 2.0 m depth under the ground surface.The properties of Lianyungang marine clay samples are shown in Tab.1.The clay has a high plasticity with a liquid limit of 58.7%and a plastic limit of 33.8%.The total salt concentration is quite high, with a value of 46.16 g/L.Tab.2 presents the chemical analysis results of the pore water of Lianyungang marine clay.The results show that the dominant salt composition in the pore water is sodium chloride.Based on the sieving and hydrometer analysis(see Fig.1), the soil used in this research consists of 2.8%sand and 97.2%fines(53.5%silt and 43.7%clay),indicating that the Lianyungang marine clay is composed of silt and clay fractions.The pH value of the pore water of natural clay is about 7.8, which is close to neutrality.Liu et al.[15]reported that the most predominant clay minerals in Lianyungang marine deposits were illite-smectite mixed-layer mineral and illite.These results indicate that the Lianyungang marine clay has not only high water content, high void ratio, high compressibility,but also contains a much higher content of sodium chloride salt.

    Tab.1 Properties of Lianyungang marine clay

    Tab.2 Chemical analysis results of pore water of Lianyungang marine clay

    Fig.1 Soil particle distribution curve

    1.1.2 Cement

    Ordinary Portland cement type I is used to investigate the effect of the cement content(the ratio of cement weight to weight of the dry soil,termed as aw)on the strength of stabilized clay.

    1.2 Test method

    In order to investigate the effect of the salt concentration,the clays were treated to eliminate the salt by the wash method first.The wash method was applied as follows:the Lianyungang marine clay from the construction field was air-dried, crushed down, sieved, and dipped in distilled water for 24 h.Salt in the soft soil was removed after repeating this process 5 times.After that, the desired content of sodium chloride salt was added into the washed soil and mixed thoroughly for 10 min by a miniature mixing machine.Their sodium chloride salt concentrations(ratios of the sodium chloride salt weight to the dry soil weight, termed as Cs), were 2.5%, 5.0%,7.5%and 10.0%.

    The clay was then mixed with 10%,15%and 20%cement by mass of dry soil.In order to eliminate the effects of differences in water content,the samples were prepared to contain the same water content of 70%(i.e.1.2 times liquid limit)by adding the distilled water into the clay.Kitchen stand mixers were used to mix the cement into the clay for a total mixing time of 10 min until a homogenous clay-water-cement paste was attained.To ensure thorough mixing,the sides of the bowl were continuously scraped and the mixer was stopped as often as needed to scrape off any materials packed onto the bottom of the bowl.Upon completion of mixing, the soil was compacted into plastic tubes with an internal diameter of 50 mm and a height of 100 mm(see Fig.2).All the samples were compacted by hand vibrating to eliminate the entrapped air.The samples were cured at a temperature of about 20℃and a humidity of 95%for the desired curing periods.The samples were removed and carefully extruded from the plastic molds after curing the desired periods.The UCS tests were run on specimens after curing periods of 7,14 and 28 d according to the procedure of ASTM D2166-06 at a strain rate of 1%per minute.Before the UCS test, the diameter, height and weight of the specimens were measured with accuracies of about 0.1 mm and 0.01 g.

    Fig.2 Picture of prepared specimens

    2 Test Results and Discussion

    2.1 Effect of salt concentration on the UCS

    Since the UCS after curing 28 d is usually used as the design value,the UCS after curing 28 d is discussed hereafter.Fig.3 shows the UCS of the cement stabilized clay after curing 28 d vs.salt concentration, where each data point represents the mean of three specimens.The measured UCS of specimens after curing 7 d and 14 d exhibits the same trend as that after curing 28 d.It can be seen that the UCS of the specimens increases with the increase in cement content and curing time,indicating that a great amount of hydration compounds such as calcium silicate hydrate and calcium aluminate hydrate gels is formed.Compared with the UCS of undisturbed natural sample(i.e.15 kPa), the results indicate that the addition of cement induces a drastic strength improvement of Lianyungang marine clay and cement stabilization is an attractive and successful method to improve the engineering properties of the Lianyungang soft marine clay.

    Fig.3 UCS of specimens vs.salt concentration

    Fig.3 also indicates that the salt concentration has a great effect on the strength of cement-treated Lianyungang marine clay.It can be seen that the UCS decreases approximately linearly with the increase in the salt concentration.For instance, for specimens with a cement of 20%and a salt concentration of 2.5%, the 28-d UCS is 1.54 MPa.Nevertheless, if the salt concentration is increased to 10.0%, the 28-d UCS is only 1.146 MPa.This leads to the conclusion that the presence of sodium chloride salt in soil has a detrimental effect on the process of the cementation of cement-soil mixtures.This finding agrees with the experimental results of Sinat[16]and Xing et al[12].However, an increase in strength with salt content in cement-treated clay was reported by Miura et al.[17], Onitsuka et al.[18]and Nor[19].It should be noted that the strength increase with the increase in the salt concentration was achieved in cement-or lime-treated clay with a high humic acid content.It is generally accepted that the presence of the organic matter in the clay acts to the detriment of the strength of cement or lime stabilized clays.The salt contributes to coagulate with the organic cation,which leaves the clay particles exposed to cement or lime for pozzolanic reaction content, as a result, the strength of cement-or lime-treated soil increases with the increase in salt concentration.

    2.2 Prediction model of UCS of cement-treated saltrich clay

    Lorenzo and Bergado[8]reported that the after-curing void ratio(et)and cement content(aw)are the fundamental parameters to characterize the strength and compressibility of cement-admixed clay at high water contents.Fig.4 shows the UCS as a function of the after-curing voids/cement content ratio(et/aw,defined as the after-curing voids divided by the cement content).It can be seen that it is not possible to establish a unique relationship between these two factors.The results differ from those obtained by Lorenzo and Bergado[8]where the aftercuring voids/cement content ratio was found to be a useful parameter in the analysis of the strength development of materials that the writers studied.However, in their study the salt concentration of the soil was not reported and constant,so that the after-curing voids/cement content ratio does not reflect the influence of salt concentration.

    Fig.4 UCS vs.et/awratio

    As mentioned above,the UCS of cement-treated soil is dependent on the cement content, the salt concentration,the curing time and the total water content,and so on;

    wherenis the porosity.

    Since the structure of the cement-treated soil is dependent on cement content, soil mineral, curing time and water content in the cement-water-soil mixture,it is logical to utilize a parameter that combines the effects of these factors.The porositynis adopted in this study to take into account the effect of water content primarily.The porosity can be determined by void ratioeusing Eq.(2), which can be determined by the solid-liquid-air phase concept using Eq.(3)with the predetermined indices of specific gravity,water contentw,and bulk density.The bulk density is calculated according to the dimensions of the specimen measured before the UCS test.For convenience of use by engineers in practise,water content here refers to the water in the soil before the mix of cement(i.e.70%in this study).A composite specific gravity, based on the soil,cement and sodium chloride salt mass percentages in the specimen, is used.The specific gravity values of the soil, the cement, and the sodium chloride salt are 2.72,3.10 and 2.165, respectively.Sodium chloride salt is simply assumed as a solid phase,although it would react with hydrated products and form complicated forms.Such an assumption is useful to derive the values of the specific gravity of mixed soils.therefore, a new parameter, termed as the PSC ratio, is proposed to relate the UCS values and those factors.

    whereGsis the composite specific gravity of the treated soil(dimensionless);γ is the unit weight of the treated soil(kN/m3); γwis the unit weight of water(kN/m3).

    Fig.5 shows the UCS of the cement stabilized clay after curing 28 d vs.the PSC ratio.It can be seen that the unconfined compressive strengths increase with the decrease in the ratio.As expected, the increase in cement content,the reduction of water content and the decrease in salt concentration results in a reduction of the ratio,consequently,yielding an increase of unconfined compressive strength.A good correlation(coefficient of determination,R2>0.97)can be observed between this ratio and the UCS of the soil-cement mixture,which can be expressed as

    whereAis the slope of the linear regression,andBis the intercept with ordinate.Furthermore, all the fitting curves representing various salt concentrations present a similar format.The parametersAandBare dependent upon the salt concentration, as observed in Fig.6.

    Fig.5 UCS vs.PSC ratio

    Fig.6 Parameters A and B vs.salt concentration

    It is important to point out that the slopes of the fitting lines and the intercepts change linearly with the increase in the salt concentrationCsand the parameters can be fit very well by the following equations:

    Substituting Eqs.(5)and(6)into Eq.(4)gives

    Eq.(7)relates the UCS of cement-treated soil to the cement content,the salt concentration and the water content of the soil.This equation is very practical for finding the right design parameters.For instance, using Eq.(7),the engineer can choose the amount of cement to provide the soil-cement mixture that meets the strength required by the project for Lianyungang marine clay with a given salt concentration.

    It should be pointed out that those parameters in the empirical equation depend on the used materials(soil,cement and salt type).Therefore, one trying to stabilize a different soil has to carry out a similar testing program and develop the relevant equation using this approach.

    3 Conclusions

    1)The presence of sodium chloride salt in soil has a detrimental effect on the UCS of cement-treated Lianyungang soft marine clay.

    2)The PSC ratio is shown to be an appropriate parameter to evaluate the effect of the salt concentration on the UCS of the soil-cement mixture.

    3)An empirical equation is proposed to predict the UCS of cement-treated Lianyungang marine clay taking the effect of salt into account.It is possible that those parameters in the empirical equation depend on the used materials(soil, cement and salt type).

    Although this study provides information of the UCS of cement-treated Lianyungang marine clay,the microstructure mechanism of adverse effect of salt on the UCS of cement-treated soils requires additional research.

    [1]Bruce D A,Bruce M E C,Dimillio A F.Dry mix methods:a brief overview of international practice[C]//Proceedings of International Conference on Dry Mix Methods for DeepSoil Stabilization.Rotterdam, Netherlands,1999:15-25.

    [2]Porbaha A,Tanaka H,Kobayashi M.State of the art in deep mixing technology: part Ⅱ.applications[J].Ground Improvement,1998, 2(3):125-139.

    [3]Han J, Zhou H T, Ye F.State-of-practice review of deep soil mixing techniques in China[J].Journal of Transportation Research Record,2002, 1808:49-57.

    [4]Liu S Y,Hryciw R D.Evaluation and quality control of dry-jet-mixed clay soil-cement columns by standard penetration test[J].Journal of Transportation Research Record,2003, 1849:47-52.

    [5]Xu C, Ye G B.Deformation and bearing capacity of composite foundation with cement-soil mixed pile[J].Chinese Journal of Geotechnical Engineering,2005, 27(5):600-604.(in Chinese)

    [6]Coastal Development Institute of Technology.The deep mixing method—principle,design and construction[M].Rotterdam,Netherlands:A.A.Balkema Publishers,2002.

    [7]Horpibulsuk S, Miura N, Nagaraj T S.Assessment of strength development in cement admixed high water content clays with Abram's law as basis[J].Géotechnique,2003, 53(4):439-444.

    [8]Lorenzo G A, Bergado D T.Fundamental parameters of cement-admixed clay-new approach [J].JournalofGeotechnical and Geoenvironmental Engineering,ASCE,2004, 130(10):1042-1050.

    [9]Shen S L, Han J, Miura N.Laboratory evaluation of mixing energy consumption and its influence on soil-cement strength[J].Journal of Transportation Research Record,2004, 1868:23-30.

    [10]Moh Z C.Soil stabilization with cement and sodium additives[J].Journal of Soil Mechanics and Foundation Division,ASCE, 1962, 88(6):81-105.

    [11]Angelova R.Effect of some chemical additives on the strength development of soil-cement[C]//Proceedings of theInternationalConferenceontheImplicationsof Ground Chemistry and Microbiology for Construction.Bristol, UK, 1992:147-159.

    [12]Xing H F,Yang X M,Xu C,et al.Strength characteristics and mechanisms of salt-rich soil-cement[J].Engineering Geology,2009, 103(1/2):33-38.

    [13]Modmoltin C, Voottipruex P.Influence ofsalts on strength of cement-treated clays[J].Ground Improvement,2009, 162(2):15-26.

    [14]Modmoltin C,Lu J M,Onitsuka K.Influence of humic acid and salt concentration on lime stabilised Ariake clays and microstructure research [J].ChineseJournal of Geotechnical Engineering,2004, 26(2):281-286.

    [15]Liu S Y,Shao G H,Du Y J.Depositional and geotechnical properties of marine clays in Lianyungang, China[J].Engineering Geology,2011, 121(1):66-74.

    [16]Sinat K.Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization[D].Saga, Japan:Saga University, 2006.

    [17]Miura N,Taesiri Y,Koga Y,et al.Practical of improvement of Ariake clay by mixing admixtures[C]//Proceedings of the International Symposium on Shallow Sea and LowLand.Saga, Japan, 1998:159-168.

    [18]Onitsuka K, Modmoltin M, Kouno M, et al.Effect of organic matter on lime and cement stabilized Ariake clay[J].Journal of Geotechnical Engineering,JSCE, 2004,729(Ⅲ-62):1-13.

    [19]Nor Z B M Y.Stabilisation of organic clay using limeadded salt[D].Skudai, Malaysia:Universiti Teknologi Malaysia, 2007.

    十分钟在线观看高清视频www| 精品高清国产在线一区| 国产成人系列免费观看| 岛国在线观看网站| 精品久久久精品久久久| 黄色丝袜av网址大全| 满18在线观看网站| 久久久久久久午夜电影| 在线永久观看黄色视频| 国产野战对白在线观看| 黄色成人免费大全| 咕卡用的链子| x7x7x7水蜜桃| 后天国语完整版免费观看| 男女下面插进去视频免费观看| 国产av又大| 视频区欧美日本亚洲| 在线视频色国产色| 国产又爽黄色视频| 嫩草影视91久久| 成年版毛片免费区| 国产aⅴ精品一区二区三区波| 国产熟女午夜一区二区三区| 欧美日韩乱码在线| 亚洲性夜色夜夜综合| 国产成人系列免费观看| 欧美亚洲日本最大视频资源| 久久久久久免费高清国产稀缺| 欧美绝顶高潮抽搐喷水| 麻豆一二三区av精品| 九色国产91popny在线| 人妻久久中文字幕网| 国产精品秋霞免费鲁丝片| 国产成人影院久久av| 欧美激情极品国产一区二区三区| 丁香欧美五月| 99精品欧美一区二区三区四区| 国产精品一区二区精品视频观看| 伦理电影免费视频| 人人澡人人妻人| 97超级碰碰碰精品色视频在线观看| 国产av又大| 亚洲人成电影观看| 最近最新中文字幕大全免费视频| 少妇裸体淫交视频免费看高清 | 精品一品国产午夜福利视频| 少妇粗大呻吟视频| 久久国产精品影院| 色老头精品视频在线观看| 国产成人免费无遮挡视频| 国产99久久九九免费精品| 免费观看精品视频网站| 成人18禁在线播放| 中文字幕色久视频| www.精华液| 91麻豆av在线| 国产高清videossex| e午夜精品久久久久久久| 欧美一级毛片孕妇| 国产成人一区二区三区免费视频网站| 国产麻豆成人av免费视频| 黄片大片在线免费观看| 人成视频在线观看免费观看| 久久久久久久精品吃奶| 亚洲国产欧美一区二区综合| 黄色视频,在线免费观看| 国产一区二区三区在线臀色熟女| 久久精品人人爽人人爽视色| 欧美日韩乱码在线| 一个人观看的视频www高清免费观看 | 视频区欧美日本亚洲| 大型黄色视频在线免费观看| 变态另类成人亚洲欧美熟女 | cao死你这个sao货| 高清黄色对白视频在线免费看| 俄罗斯特黄特色一大片| 91成年电影在线观看| 欧美成人一区二区免费高清观看 | 成在线人永久免费视频| 99精品欧美一区二区三区四区| 岛国视频午夜一区免费看| 国产精品久久久人人做人人爽| 美女高潮喷水抽搐中文字幕| 日韩欧美三级三区| 国产一区二区在线av高清观看| 久久久久久大精品| 亚洲中文av在线| 黑丝袜美女国产一区| 久久人妻福利社区极品人妻图片| 免费人成视频x8x8入口观看| 国产av精品麻豆| 天堂动漫精品| 国产精品日韩av在线免费观看 | 日韩有码中文字幕| 一区在线观看完整版| 叶爱在线成人免费视频播放| 成人免费观看视频高清| 亚洲黑人精品在线| 亚洲人成电影观看| 免费不卡黄色视频| 久久精品亚洲精品国产色婷小说| 麻豆国产av国片精品| 精品免费久久久久久久清纯| 69av精品久久久久久| 午夜亚洲福利在线播放| 免费观看人在逋| 午夜免费激情av| 丝袜人妻中文字幕| 国产精品美女特级片免费视频播放器 | 91成人精品电影| 色在线成人网| 国产高清视频在线播放一区| av中文乱码字幕在线| 国产91精品成人一区二区三区| 午夜福利,免费看| 美女免费视频网站| 国产真人三级小视频在线观看| 欧美成人午夜精品| 日韩免费av在线播放| 波多野结衣高清无吗| 亚洲av成人不卡在线观看播放网| 欧美日本亚洲视频在线播放| 亚洲一区二区三区不卡视频| 欧美久久黑人一区二区| 人妻久久中文字幕网| 久久人妻av系列| 啦啦啦观看免费观看视频高清 | 久久天堂一区二区三区四区| 18禁国产床啪视频网站| 老汉色av国产亚洲站长工具| 国产精品日韩av在线免费观看 | 熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| 亚洲精品在线观看二区| 日韩 欧美 亚洲 中文字幕| 亚洲,欧美精品.| or卡值多少钱| 国产成人精品久久二区二区91| 18禁裸乳无遮挡免费网站照片 | 精品免费久久久久久久清纯| 国产精品自产拍在线观看55亚洲| 成在线人永久免费视频| 1024视频免费在线观看| 人人妻人人澡人人看| 欧美日韩福利视频一区二区| 99久久国产精品久久久| 色综合欧美亚洲国产小说| 9色porny在线观看| 久久精品亚洲精品国产色婷小说| 在线观看免费视频日本深夜| 成人国产一区最新在线观看| 少妇被粗大的猛进出69影院| 午夜福利,免费看| 欧美日本中文国产一区发布| 啦啦啦 在线观看视频| 免费看美女性在线毛片视频| 嫁个100分男人电影在线观看| 国产极品粉嫩免费观看在线| 少妇的丰满在线观看| 久久午夜综合久久蜜桃| 日日爽夜夜爽网站| 岛国在线观看网站| 此物有八面人人有两片| 日韩成人在线观看一区二区三区| 久久亚洲精品不卡| 免费高清在线观看日韩| 午夜福利视频1000在线观看 | 美女大奶头视频| av免费在线观看网站| 欧美成人午夜精品| 伊人久久大香线蕉亚洲五| 国产一区在线观看成人免费| 国产三级黄色录像| 高清黄色对白视频在线免费看| 午夜老司机福利片| 多毛熟女@视频| 免费一级毛片在线播放高清视频 | 日韩av在线大香蕉| 黄色片一级片一级黄色片| 精品欧美一区二区三区在线| 国产激情欧美一区二区| 欧美日韩瑟瑟在线播放| 在线观看66精品国产| 国产精品影院久久| 18禁国产床啪视频网站| 国内毛片毛片毛片毛片毛片| 在线观看免费日韩欧美大片| 99久久精品国产亚洲精品| 亚洲欧洲精品一区二区精品久久久| 在线观看舔阴道视频| 久久香蕉精品热| 精品人妻1区二区| 国产精品久久久久久精品电影 | 欧美日本中文国产一区发布| 淫秽高清视频在线观看| 久久亚洲真实| 久久香蕉激情| 婷婷丁香在线五月| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲人成网站在线播放欧美日韩| 久久人人97超碰香蕉20202| 欧美黑人精品巨大| 国产伦人伦偷精品视频| 人人妻人人澡人人看| 人妻丰满熟妇av一区二区三区| 欧美性长视频在线观看| 999精品在线视频| 亚洲国产毛片av蜜桃av| 91麻豆精品激情在线观看国产| 国产av精品麻豆| 男人操女人黄网站| www.熟女人妻精品国产| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 中文字幕人成人乱码亚洲影| 亚洲男人天堂网一区| 中亚洲国语对白在线视频| av片东京热男人的天堂| 看免费av毛片| 亚洲人成网站在线播放欧美日韩| 久久狼人影院| 天天添夜夜摸| 日韩高清综合在线| 国产激情久久老熟女| 国产伦一二天堂av在线观看| 日韩欧美国产一区二区入口| 日韩欧美一区二区三区在线观看| 亚洲av成人av| videosex国产| 高清毛片免费观看视频网站| 狂野欧美激情性xxxx| 好看av亚洲va欧美ⅴa在| 天天躁夜夜躁狠狠躁躁| 久久精品影院6| 欧美成人一区二区免费高清观看 | 亚洲欧美精品综合久久99| 黄色毛片三级朝国网站| 色哟哟哟哟哟哟| 免费av毛片视频| 精品免费久久久久久久清纯| x7x7x7水蜜桃| 可以在线观看毛片的网站| 亚洲电影在线观看av| 在线观看免费视频网站a站| 极品教师在线免费播放| 99riav亚洲国产免费| 亚洲av电影不卡..在线观看| 国产精品电影一区二区三区| 色老头精品视频在线观看| 中文字幕人成人乱码亚洲影| 成人免费观看视频高清| 嫁个100分男人电影在线观看| 国产激情久久老熟女| 日韩精品中文字幕看吧| 欧美av亚洲av综合av国产av| 国产精品自产拍在线观看55亚洲| 无人区码免费观看不卡| 麻豆一二三区av精品| 身体一侧抽搐| 欧美激情 高清一区二区三区| 91av网站免费观看| 性欧美人与动物交配| 一级毛片精品| 国产一区二区三区视频了| 国产精品一区二区三区四区久久 | 日韩精品免费视频一区二区三区| 满18在线观看网站| 亚洲精品国产一区二区精华液| 欧美精品啪啪一区二区三区| 男人舔女人的私密视频| 国产精品自产拍在线观看55亚洲| 性欧美人与动物交配| www日本在线高清视频| 亚洲伊人色综图| 免费观看人在逋| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产99精品国产亚洲性色 | 欧美人与性动交α欧美精品济南到| 好男人在线观看高清免费视频 | 国产熟女午夜一区二区三区| 精品久久久久久久久久免费视频| 亚洲精品在线美女| 久久精品aⅴ一区二区三区四区| 狠狠狠狠99中文字幕| 欧美一级毛片孕妇| 日韩国内少妇激情av| 丝袜在线中文字幕| 久久中文看片网| 久久九九热精品免费| 久久国产精品人妻蜜桃| 97人妻天天添夜夜摸| 精品国产一区二区三区四区第35| 欧美在线一区亚洲| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| or卡值多少钱| av片东京热男人的天堂| 国产成人精品久久二区二区免费| 日本免费一区二区三区高清不卡 | 中文字幕色久视频| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 性色av乱码一区二区三区2| 女人被狂操c到高潮| 亚洲色图综合在线观看| 好男人电影高清在线观看| 久久精品aⅴ一区二区三区四区| 成人特级黄色片久久久久久久| 亚洲五月婷婷丁香| 亚洲精品国产一区二区精华液| 免费搜索国产男女视频| 免费在线观看完整版高清| 久久人妻熟女aⅴ| 色综合欧美亚洲国产小说| 激情在线观看视频在线高清| 久久国产精品男人的天堂亚洲| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看| 精品高清国产在线一区| 亚洲精品在线观看二区| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合久久99| 国产精品99久久99久久久不卡| 亚洲av美国av| 国产欧美日韩综合在线一区二区| 看片在线看免费视频| 久久久久久人人人人人| 久久久国产精品麻豆| 欧美黄色淫秽网站| 国产精品国产高清国产av| avwww免费| 午夜免费激情av| 可以在线观看毛片的网站| 亚洲成人精品中文字幕电影| 大型av网站在线播放| 中文字幕色久视频| 美女国产高潮福利片在线看| 国产av一区二区精品久久| 两性夫妻黄色片| 精品久久久精品久久久| 国产私拍福利视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产成人免费无遮挡视频| 亚洲熟女毛片儿| 久久久久久大精品| 精品久久蜜臀av无| 女同久久另类99精品国产91| 19禁男女啪啪无遮挡网站| 性少妇av在线| 男男h啪啪无遮挡| 国产成人系列免费观看| 桃红色精品国产亚洲av| 欧美日本视频| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 中文字幕高清在线视频| 神马国产精品三级电影在线观看 | 美国免费a级毛片| 男女做爰动态图高潮gif福利片 | 午夜免费鲁丝| 午夜影院日韩av| 中国美女看黄片| 黄色毛片三级朝国网站| 一级a爱片免费观看的视频| 亚洲五月婷婷丁香| 在线国产一区二区在线| 国产成人系列免费观看| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 91在线观看av| 黄色女人牲交| 这个男人来自地球电影免费观看| netflix在线观看网站| 好男人电影高清在线观看| 变态另类丝袜制服| aaaaa片日本免费| 国产亚洲av高清不卡| 免费高清在线观看日韩| 国产精品一区二区在线不卡| 最好的美女福利视频网| 黄片大片在线免费观看| 国内精品久久久久精免费| 国产av在哪里看| 中国美女看黄片| 欧美日本视频| 亚洲视频免费观看视频| 两性夫妻黄色片| 欧美绝顶高潮抽搐喷水| 欧美黄色片欧美黄色片| 在线av久久热| 国产亚洲精品久久久久久毛片| 精品久久久久久久毛片微露脸| 欧美中文综合在线视频| 国产亚洲av高清不卡| 久久精品影院6| 精品午夜福利视频在线观看一区| 亚洲欧美激情在线| 午夜影院日韩av| 国产成人精品久久二区二区91| 亚洲精品av麻豆狂野| 亚洲精品在线观看二区| 麻豆av在线久日| 丁香六月欧美| 中文字幕人成人乱码亚洲影| 制服诱惑二区| 不卡av一区二区三区| 国产欧美日韩一区二区三| 非洲黑人性xxxx精品又粗又长| 色老头精品视频在线观看| 长腿黑丝高跟| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 欧美乱色亚洲激情| 亚洲成人国产一区在线观看| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 亚洲人成77777在线视频| 欧美国产日韩亚洲一区| 每晚都被弄得嗷嗷叫到高潮| 男女下面插进去视频免费观看| 看片在线看免费视频| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 国产亚洲精品久久久久久毛片| 叶爱在线成人免费视频播放| 久久青草综合色| 啦啦啦免费观看视频1| 人人妻人人澡人人看| 在线观看66精品国产| 久久中文字幕一级| 日韩大尺度精品在线看网址 | 久久午夜亚洲精品久久| 美国免费a级毛片| 国产一区二区三区综合在线观看| 一边摸一边抽搐一进一小说| 亚洲精品中文字幕一二三四区| 久久影院123| 成人三级黄色视频| 波多野结衣一区麻豆| 国产精品一区二区精品视频观看| 91av网站免费观看| 一级毛片高清免费大全| 丰满的人妻完整版| 人人妻人人澡人人看| 老司机靠b影院| 桃红色精品国产亚洲av| 成人国产综合亚洲| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图| 欧美av亚洲av综合av国产av| 亚洲人成电影免费在线| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| av天堂久久9| 午夜a级毛片| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 精品久久久久久久人妻蜜臀av | 日本 欧美在线| 欧美乱色亚洲激情| 成人亚洲精品一区在线观看| 91老司机精品| 欧美午夜高清在线| 精品日产1卡2卡| 国产野战对白在线观看| 午夜精品久久久久久毛片777| 又紧又爽又黄一区二区| 亚洲国产精品成人综合色| 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 日韩欧美在线二视频| 欧美在线黄色| 首页视频小说图片口味搜索| 免费在线观看影片大全网站| 欧美成人一区二区免费高清观看 | 亚洲熟女毛片儿| 午夜免费激情av| 亚洲av五月六月丁香网| 国产精品精品国产色婷婷| 免费观看精品视频网站| 国产精品久久久久久精品电影 | 成人18禁在线播放| 最好的美女福利视频网| 操出白浆在线播放| 亚洲专区国产一区二区| 亚洲黑人精品在线| 国产亚洲精品av在线| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 国产野战对白在线观看| av视频免费观看在线观看| 婷婷精品国产亚洲av在线| 成在线人永久免费视频| 欧美中文综合在线视频| 亚洲 国产 在线| 性色av乱码一区二区三区2| 我的亚洲天堂| 欧美激情 高清一区二区三区| 日本三级黄在线观看| 成人三级黄色视频| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 午夜精品在线福利| 国语自产精品视频在线第100页| 日本免费a在线| 国产亚洲精品av在线| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 亚洲视频免费观看视频| 久久伊人香网站| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 黄色片一级片一级黄色片| 亚洲av成人不卡在线观看播放网| 国产成人一区二区三区免费视频网站| 亚洲中文字幕一区二区三区有码在线看 | 丁香欧美五月| 精品欧美一区二区三区在线| 欧美日本亚洲视频在线播放| 亚洲人成伊人成综合网2020| 12—13女人毛片做爰片一| 欧美人与性动交α欧美精品济南到| 精品国产超薄肉色丝袜足j| 禁无遮挡网站| 在线观看www视频免费| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 高清毛片免费观看视频网站| 国产精品亚洲一级av第二区| 日本 欧美在线| 中文亚洲av片在线观看爽| 大香蕉久久成人网| 妹子高潮喷水视频| 真人一进一出gif抽搐免费| 欧美亚洲日本最大视频资源| 在线观看日韩欧美| 国产欧美日韩一区二区三区在线| 在线观看免费午夜福利视频| 国产高清视频在线播放一区| 久9热在线精品视频| 欧美一区二区精品小视频在线| 亚洲精华国产精华精| 香蕉国产在线看| 欧美激情久久久久久爽电影 | 99国产精品一区二区三区| 51午夜福利影视在线观看| 99国产精品一区二区三区| 夜夜爽天天搞| 在线观看66精品国产| 嫁个100分男人电影在线观看| 在线观看66精品国产| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 国产亚洲av嫩草精品影院| 免费在线观看影片大全网站| 欧美人与性动交α欧美精品济南到| 亚洲成人久久性| 国产国语露脸激情在线看| 亚洲精品一区av在线观看| 精品欧美一区二区三区在线| 两个人免费观看高清视频| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 欧美国产精品va在线观看不卡| 久久久久久久精品吃奶| 一边摸一边做爽爽视频免费| 两性夫妻黄色片| 男人舔女人的私密视频| 99久久精品国产亚洲精品| 亚洲成人精品中文字幕电影| 国产97色在线日韩免费| 在线观看一区二区三区| 高清在线国产一区| 日本精品一区二区三区蜜桃| 成人欧美大片| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 黑丝袜美女国产一区| 欧美乱色亚洲激情| 最近最新免费中文字幕在线| 午夜两性在线视频| 人人妻人人澡人人看| 欧美在线黄色| 欧美大码av| 亚洲中文av在线| 美国免费a级毛片| 电影成人av| 精品国产亚洲在线| 亚洲人成电影免费在线| ponron亚洲| 国产97色在线日韩免费|