謝子填,孫宇鋒
(1.韶關學院,廣東韶關 512005;2.廣東肇慶學院數(shù)學與信息科學學院,廣東肇慶 526061)
關于一個半離散非齊次核的逆向Hilbert型不等式*
謝子填1,2,孫宇鋒1
(1.韶關學院,廣東韶關 512005;2.廣東肇慶學院數(shù)學與信息科學學院,廣東肇慶 526061)
應用權函數(shù)方法及實分析技巧,給出一個新的帶有最佳常數(shù)因子的半離散非齊次核的逆向Hilbert型不等式,同時給出它的帶有最佳常數(shù)因子的等價式.
半離散;Hilbert不等式;Holder不等式;等價式
近年來,人們陸續(xù)對不等式(1)和(2)作了大量推廣[2-15].筆者應用權函數(shù),將給出一個帶有最佳常數(shù)因子的半離散非齊次核的逆向Hilbert型不等式,同時給出它的等價式.
引理1 定義權系數(shù)及權函數(shù)
由(13)和(14)式,有K+η1+η2≥H(ε+1.令ε→0+,有K≥H與假設K<H矛盾.可知K確為(8)式最佳值.
注意到(8),(9)和(10)式等價,易知式(9)和(10)式的常數(shù)因子也必為最佳值.
[1] HARDY G H.Note on a Theorem of Hilbert Concerning Series of Positive Term[J].Proc.London Math.Soc.,1925,23(2):XLV-XLVI.
[2] 楊必成.一個半離散的Hilbert不等式[J].廣東第二師范學院學報,2011,31(3):1-7.
[3] 楊必成.一個推廣的非齊次核的Hilbert型積分不等式[J].吉林大學學報:理學版,2010,48(5):719-722.
[4] XUE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality Whose Kernel is a Homogeneous Form of Degree-3[J].J.Math.Anal.Appl.,2008,339:324-331.
[5] 曾 崢,謝子填.一個新的有最佳常數(shù)因子的Hilbert型積分不等式[J].華南師范大學學報:自然科學版,2010(3):31-33.
[6] ZENG Zheng,XIE Zi-tian.A Hilbert’s Inequality with a Best Constant Factor[J].Journal of Inequalities and Applications,2009,Article ID 820176,8Pages,doi:10.1155/2009/820176.
[7] ZENG Zheng,XIE Zi-tian.On a New Hilbert-Type Integral Inequality with the Integral in Whole Plane[J].Journal of Inequalities and Applications,2010,Article ID 256796,8Pages,2010.doi:10.1155/2010/256796.
[8] XIE Zi-tian,ZENG Zheng.A New Hilbert-Type Inequality with the Integral in Whole Plane[J].Kyungpook Mathematical Journal,2012,52:291-298.
[9] XIE Zi-tian.A New Reverse Hilbert-Type Inequality with a Best Constant Factor[J].J.Math.Anal.Appl.,2008,343:1 154-1 160.
[10] 謝子填,楊必成,曾 崢.一個新的實齊次核的Hilbert型積分不等式[J].吉林大學學報:理學版,2010,48(6):941-945.
[11] 謝子填,曾 崢.一個實齊次核的Hilbert型積分不等式及其等價形式[J].浙江大學學報:理學版,2011,38(3):266-270.
[12] 謝子填.一個實數(shù)齊次核的Hilbert型積分不等式[J].吉首大學學報:自然科學版,2011,32(4):26-30.
[13] 謝子填,曾 崢.一個新的-4μ齊次半離散Hilbert型不等式[J].吉首大學學報:自然科學版,2012,33(3):15-19.
[14] XIE Zi-tian,ZENG Zheng.On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of Real Number-Degree and Its Operator Form[J].Advances and Applications in Mathematical Sciens,2011,10(5):481-490.
[15] XIE Zi-tian,ZENG Zheng.A New Hilbert-Type Inequality in Whole Plane with the Homogeneous Kernel of Degree 0[J].i-Manager’s Journal on Mathematics,2013,2(1):13-19.
[16] 匡繼昌.常用不等式[M].第3版.濟南:山東科技出版社,2004.
(責任編輯 向陽潔)
On a Half-Discrete Reverse Hilbert-Type Inequality with a Non-Homogeneous Kernel
XIE Zi-tian1,2,SUN Yu-feng1
(1.Shaoguan University,Shaoguan 512005,Guangdong China;2.School Mathematics and Information Sciences,Zhaoqing University,Zhaoqing 526061,Guangdong China)
By using the way of weight functions,a new half-discrete reverse Hilbert-type inequality is giver,with a non-homogeneous kernel and with a best constant factor.An equivalent form with a best constant factor is presented.
half-discrete;Hilbert-type inequality;H?lder’s inequality;equality form
O178
A
10.3969/j.issn.1007-2985.2013.05.004
1007-2985(2013)05-0011-05
2013-02-09
廣東省自然科學基金資助項目(S2012010010069)
謝子填(1948-),男,廣東肇慶人,廣東肇慶學院數(shù)學與信息科學學院教授,主要從事解析不等式研究.