線 郁,王美娥,陳衛(wèi)平,*
(1.中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085;2.中國(guó)科學(xué)院大學(xué),北京 100039)
植物吸收是土壤重金屬輸出的主要途徑之一,植物吸收重金屬遵循已知的礦質(zhì)元素吸收方式,主要通過(guò)對(duì)離子的吸收實(shí)現(xiàn)。土壤中重金屬的主要存在形態(tài)包括:水溶態(tài)、可交換態(tài)、碳酸鹽結(jié)合態(tài)、鐵錳氧化物結(jié)合態(tài)、有機(jī)結(jié)合態(tài)、殘?jiān)鼞B(tài)。能夠被植物吸收的重金屬離子一部分以溶質(zhì)形式存在于土壤溶液中(水溶態(tài)),還有一部分被粘土、腐殖質(zhì)等其他成分吸附(交換態(tài))[1],因此,水溶態(tài)和可交換態(tài)被劃分為生物可利用態(tài),是土壤重金屬中具有生物有效性的部分,可被生物吸收,進(jìn)而被生物利用或產(chǎn)生毒性。碳酸鹽結(jié)合態(tài)、鐵錳氧化物結(jié)合態(tài)和有機(jī)結(jié)合態(tài)的含量受土壤性質(zhì)影響,在土壤pH、氧化還原條件和膠體含量發(fā)生變化時(shí)能轉(zhuǎn)化為生物可利用態(tài),稱為潛在生物可利用態(tài)[2-3]。植物吸收重金屬的過(guò)程是土壤-土壤溶液-植物相互作用的綜合結(jié)果,除了植物本身對(duì)重金屬的轉(zhuǎn)移能力,植物吸收重金屬量的多少與重金屬生物可利用態(tài)和潛在生物可利用態(tài)的含量直接相關(guān),而土壤性質(zhì)是影響生物可利用態(tài)和潛在生物可利用態(tài)含量的主要因素[4-8]。
在土壤重金屬生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)過(guò)程中,尤其是預(yù)評(píng)價(jià)過(guò)程中,一般選用連續(xù)提取的方法測(cè)定土壤重金屬的化學(xué)形態(tài),根據(jù)水溶態(tài)和可交換態(tài)的含量評(píng)價(jià)其生物可利用性[9-10],但測(cè)定每一個(gè)待評(píng)價(jià)場(chǎng)地土壤中的重金屬化學(xué)形態(tài)不僅成本高,而且耗時(shí)費(fèi)力,選用模型模擬土壤重金屬生物有效性可以彌補(bǔ)這些缺點(diǎn)。機(jī)理或半機(jī)理模型可以通過(guò)參數(shù)來(lái)表征土壤重金屬植物暴露途徑的影響機(jī)制,因此,依據(jù)植物吸收土壤重金屬的機(jī)理構(gòu)建模型可以為土壤重金屬生物有效性風(fēng)險(xiǎn)評(píng)價(jià)法提供理論依據(jù)[11]。關(guān)于土壤性質(zhì)對(duì)植物重金屬富集量影響的模型研究較少,而且現(xiàn)有模型中涉及的土壤性質(zhì)不夠全面。McBride建立了作物中鎘的含量與土壤pH、土壤鎘總量的模型,模型中的系數(shù)隨土壤性質(zhì)和作物種類(lèi)變化[12]。Young等建立了蔬菜重金屬累積量與土壤鉛和砷總量、pH、有機(jī)碳含量的線性數(shù)學(xué)模型[13]。由于土壤重金屬生物可利用濃度與植物富集量直接相關(guān),很多學(xué)者試圖建立土壤重金屬生物可利用濃度與土壤pH、陽(yáng)離子交換量、土壤重金屬總量、鐵錳氧化物含量和土壤有機(jī)質(zhì)含量的模型[14-21]。所得模型多只與酸堿度有關(guān),且沒(méi)有考慮土壤質(zhì)地,模型中的系數(shù)和常數(shù)隨著在土壤類(lèi)型改變而變化,導(dǎo)致模型的應(yīng)用性不強(qiáng)。
本文通過(guò)對(duì)模式植物文獻(xiàn)數(shù)據(jù)的收集、處理和分析,篩選影響植物富集相應(yīng)重金屬的主要土壤因子,揭示土壤砷植物暴露的影響機(jī)制。并分別對(duì)各因子與植物富集濃度進(jìn)行回歸分析,各因子之間進(jìn)行相關(guān)分析及共線性分析,判斷因子間的共線性。通過(guò)主成分回歸建立土壤因子與植物富集砷濃度之間的回歸方程。最終通過(guò)數(shù)學(xué)模型解釋植物富集砷濃度隨土壤性質(zhì)變化的規(guī)律,為土壤重金屬生物有效性風(fēng)險(xiǎn)評(píng)價(jià)法提供理論依據(jù)。
模式植物需要滿足易獲得、研究廣泛、重金屬吸收途徑相對(duì)清楚等條件。植物吸收土壤重金屬的研究以超富集植物為代表。超富集植物的定義主要考慮植物體內(nèi)的生物富集系數(shù)和轉(zhuǎn)運(yùn)系數(shù)兩個(gè)因素[22]。目前發(fā)現(xiàn)的多種富集植物中,砷的超富集植物蜈蚣草因分布廣泛、適應(yīng)性強(qiáng)、生長(zhǎng)快速、生物量大、多年生而且易于繁殖等特點(diǎn)是用于植物修復(fù)的理想植物[23],研究資料充足。蜈蚣草是第一個(gè)被發(fā)現(xiàn)的砷的超富集植物,野外調(diào)查證實(shí)了其對(duì)砷的富集特性,自然生長(zhǎng)在砷污染土壤上的蜈蚣草地上部砷濃度可達(dá)1540mg/kg[24],有的甚至達(dá)到 4980mg/kg[23]。
蜈蚣草的相關(guān)研究主要分為兩大類(lèi),一類(lèi)是以土壤為生長(zhǎng)基質(zhì),一類(lèi)是以營(yíng)養(yǎng)液為生長(zhǎng)基質(zhì)(表1)。土培研究主要側(cè)重的土壤性質(zhì)包括:土壤砷濃度、土壤質(zhì)地、有機(jī)質(zhì)含量、pH、營(yíng)養(yǎng)元素種類(lèi)和含量、其他重金屬種類(lèi)和含量、土壤微生物等[23-53]。水培實(shí)驗(yàn)可以研究蜈蚣草對(duì)地下水砷污染的修復(fù)效果和吸收動(dòng)力學(xué),是反映添加營(yíng)養(yǎng)鹽的種類(lèi)和濃度對(duì)砷積累影響的理想研究體系,也是研究蜈蚣草富集機(jī)理的良好體系[54-70]。
在植物-土壤體系中,不同土壤性質(zhì)會(huì)影響同一種重金屬的生物可利用性,表現(xiàn)為植物富集濃度不同。在眾多相關(guān)研究中,直接揭示土壤性質(zhì)影響蜈蚣草生長(zhǎng)和砷富集效果的定性研究已有很多。不同的土壤性質(zhì)、總砷含量和可溶性砷含量會(huì)導(dǎo)致砷的富集差異[50-52]。低鐵離子濃度、粘粒含量和有機(jī)質(zhì)含量會(huì)導(dǎo)致可溶性砷含量增加,增加砷的富集[52,70]。土壤中添加堆肥和磷石膏會(huì)增加可溶性有機(jī)碳和可溶性砷含量,促進(jìn)蜈蚣草對(duì)砷的吸收[5]。水培研究指出,額外添加任何濃度的磷都會(huì)抑制砷的吸收,低磷濃度和低pH利于蜈蚣草積累砷[65,68-69]。而以土壤為基質(zhì)的研究指出,增加磷肥和升高pH會(huì)增加砷的移除量[53]。土培實(shí)驗(yàn)和水培實(shí)驗(yàn)的結(jié)論不同,從一方面反映了土壤環(huán)境中多因子相互作用的復(fù)雜過(guò)程。
表1 模式植物研究進(jìn)展Table1 Research progress of the model plant
1.2.1 數(shù)據(jù)選擇
從文獻(xiàn)中選取適合的數(shù)據(jù),數(shù)據(jù)應(yīng)滿足如下幾條:(1)為保證數(shù)據(jù)的完整性和有效性,一組數(shù)據(jù)至少含有兩個(gè)土壤因子數(shù)據(jù),相關(guān)分析和主成分回歸分析中缺失值按SPSS中默認(rèn)的“按列表排除個(gè)案”處理,土壤因子分為土壤總砷濃度(CtotAs)、酸堿度(pH)、土壤有機(jī)質(zhì)含量(SOM)、粉粒含量(Silt)、粘粒含量(Clay)、沙粒含量(Sand)、土壤陽(yáng)離子交換量(CEC)、總氮含量(CtotN)、總磷含量(CtotP)、總鉀含量(CtotK)、總鈣含量(CtotCa),植物富集濃度用Cplant表示;(2)選取土壤總砷濃度在(2—500)mg/kg的數(shù)據(jù);(3)統(tǒng)計(jì)因子中的元素均為元素總量。所得數(shù)據(jù)集用SPSS18.0進(jìn)行描述統(tǒng)計(jì),樣本數(shù)、均值、中值、最大值、最小值和標(biāo)準(zhǔn)差見(jiàn)表2。
表2 土壤因子數(shù)據(jù)集描述統(tǒng)計(jì)Table2 Descriptive statistics of soil factors data set
1.2.2 單因子回歸分析
分別以文獻(xiàn)統(tǒng)計(jì)出的11個(gè)因子作為自變量,植物富集砷濃度Cplant作為因變量,通過(guò)篩選出的數(shù)據(jù)集建立單個(gè)因子與植物富集濃度的回歸方程,分析相關(guān)性強(qiáng)弱。
1.2.3 各因子間相關(guān)性分析
通過(guò)SPSS18.0分析土壤環(huán)境下上述土壤因子之間相關(guān)性,數(shù)據(jù)經(jīng)缺省值“按列表排除個(gè)案”處理,處理后的數(shù)據(jù)集無(wú)缺失值。結(jié)合單因子回歸分析結(jié)果、水培數(shù)據(jù)分析結(jié)果和數(shù)據(jù)有效性檢驗(yàn),剔除對(duì)植物富集濃度影響小的因子。
1.2.4 因子共線性分析
采用SPSS 18.0多元線性回歸方法,數(shù)據(jù)經(jīng)缺省值“按列表排除個(gè)案”處理,處理后的數(shù)據(jù)集無(wú)缺失值。通過(guò)建立土壤因子與植物富集砷濃度的回歸方程,分析因子間的共線關(guān)系;結(jié)合各因子間相關(guān)性分析,判斷各土壤因子與植物富集濃度是否可以直接建立回歸關(guān)系。
1.2.5 主成分回歸
因子之間存在多元共線性時(shí),選用SPSS 18.0因子分析中的主成分分析對(duì)原因子進(jìn)行壓縮和解釋,數(shù)據(jù)經(jīng)缺省值“按列表排除個(gè)案”處理,處理后的數(shù)據(jù)集無(wú)缺失值。在主成分分析的基礎(chǔ)上建立主成分與目標(biāo)變量間的線性回歸方程既可以保留原指標(biāo)的絕大部分信息,主成分之間又相互獨(dú)立,所得的模型估計(jì)更穩(wěn)定。
各個(gè)因子與植物富集砷濃度的回歸方程見(jiàn)表3。單因子回歸結(jié)果可以看出,植物富集砷濃度與土壤總砷濃度極顯著相關(guān),決定系數(shù)R2為0.342;與土壤有機(jī)質(zhì)含量和沙粒含量顯著相關(guān),但R2很小;營(yíng)養(yǎng)元素與植物富集濃度無(wú)顯著相關(guān)性,決定系數(shù)趨近于0。
表3 單因子回歸方程Table3 Regression equation of single soil factor
數(shù)據(jù)有效性檢驗(yàn)過(guò)程要求數(shù)據(jù)滿足正定矩陣,營(yíng)養(yǎng)元素的數(shù)據(jù)由于缺失較多,不能滿足分析要求(具體數(shù)據(jù)未給出);同時(shí),水培數(shù)據(jù)分析結(jié)果顯示植株地上部砷濃度可忽略營(yíng)養(yǎng)元素的影響與溶液砷濃度建立極顯著回歸方程(見(jiàn)3.1);另外,上述單因子回歸分析結(jié)果,也顯示營(yíng)養(yǎng)鹽與植物砷富集濃度無(wú)顯著相關(guān)性。綜上3個(gè)原因,本文保留7個(gè)與Cplant有相關(guān)性且有效的土壤因子,探討部分因子與植物富集砷濃度的關(guān)系。
這7個(gè)因子分別為土壤總砷濃度(CtotAs)、酸堿度(pH)、土壤有機(jī)質(zhì)含量(SOM)、粉粒含量(Silt)、粘粒含量(Clay)、沙粒含量(Sand)、土壤陽(yáng)離子交換量(CEC)。各因子兩兩相關(guān)性分析結(jié)果見(jiàn)表4,數(shù)據(jù)顯示多個(gè)因子之間相關(guān)性顯著。其中,Sand、Clay、Silt三個(gè)因子為土壤質(zhì)地組成百分含量,加合等于1,所以這3個(gè)變量間相關(guān)性較大。陽(yáng)離子交換量是土壤膠體的屬性,無(wú)機(jī)膠體和有機(jī)膠體的含量決定其大?。?1],所以土壤質(zhì)地中粘粒含量對(duì)其影響較大。
表4 土壤因子的相關(guān)矩陣Table4 Correlation matrix of soil factors
多元線性回歸分析結(jié)果見(jiàn)表5、表6。方差膨脹因子(VIF)是容忍度的倒數(shù),值越大表示共線性越嚴(yán)重。一般當(dāng)0<VIF<10,不存在多重共線性;當(dāng)10≤VIF<100,存在較強(qiáng)的多重共線性;當(dāng)VIF≥100,存在嚴(yán)重多重共線性。3個(gè)自變量的方差膨脹因子>10,4個(gè)維度的特征根接近0,2個(gè)維度的條件指數(shù)>30,表明因子之間存在多元共線性,不能直接用于回歸分析,要進(jìn)行主成分分析后再進(jìn)行主成分回歸。
表5 多元線性回歸共線性統(tǒng)計(jì)——方差膨脹因子Table5 Multiple linear regression for collinearity statistics——Variance inflation factor
表6 多元線性回歸共線性統(tǒng)計(jì)——共線性診斷Table6 Multiple linear regression for collinearity statistics——Collinearity diagnostic
主成分分析通過(guò)公因子方差和特征值的篩選,將7個(gè)土壤因子降維為3個(gè)主成分(表7、表8)。從成分矩陣中可以看出成分1是反映土壤質(zhì)地的綜合指標(biāo),成分2是反映土壤pH的指標(biāo),成分3是反映砷總濃度的指標(biāo)。與文獻(xiàn)的定性研究相同,對(duì)應(yīng)的這些因子都會(huì)導(dǎo)致重金屬生物可利用性的變化,進(jìn)而影響植物吸收[72]。令 Sand、Clay、CEC、Silt、CtotAs、pH、SOM 分別為 X1、X2、X3、X4、X5、X6、X7,對(duì)應(yīng)成分矩陣分析結(jié)果有表 9中表達(dá)式(1)、(2)、(3)。再用 F1、F2、F3對(duì)應(yīng)各因子的得分與Y(Cplant)進(jìn)行回歸得到表達(dá)式(4),將表達(dá)式(1)、(2)、(3)代入(4)得方程(5)。式(5)中 X1—7為原始變量 x1—7經(jīng)過(guò)標(biāo)準(zhǔn)化的變量,由標(biāo)準(zhǔn)化的式(5)系數(shù)可以推斷,植物富集砷濃度受土壤中砷總濃度影響最大,受土壤質(zhì)地中砂粒含量影響較大;土壤粉粒、粘粒、有機(jī)質(zhì)含量和陽(yáng)離子交換量對(duì)富集也有一定影響;而土壤酸堿度對(duì)植物富集濃度的影響較小。為了便于應(yīng)用,要將式(5)轉(zhuǎn)化為依變量 Y(Cplant)與原始變量 x1—7的表達(dá)式。根據(jù) Xi=(xi-μi)/ σi,i=1—7(Xi為標(biāo)準(zhǔn)化的 xi,μi為對(duì)應(yīng)的均值,σi為對(duì)應(yīng)的標(biāo)準(zhǔn)差),得到回歸方程(6),建立土壤性質(zhì)與植物富集砷濃度的回歸關(guān)系[73]。
表7 各成分解釋的總方差Table7 The total variance explained by each component
表8 主成分分析成分矩陣Table8 Composition matrix of the principal component analysis
表9 主成分回歸方程Table9 Principal component regression equation
溶液中離子為生物可利用態(tài),統(tǒng)計(jì)以溶液為培養(yǎng)基質(zhì)的水培實(shí)驗(yàn)數(shù)據(jù),影響因子分為砷總量(CtotAs/(mg/kg))、酸堿度(pH)、硫總量(μmol/L)、鉀總量(μmol/L)、鈣總量(μmol/L)、鎂總量(μmol/L)、磷總量(μmol/L)、氮總量(μmol/L)、游離鐵含量(%)。對(duì)植物富集濃度與所有因子進(jìn)行逐步回歸分析表明,植株地上部砷濃度(Cplant/(mg/kg))可忽略pH、磷、鐵、鈣等因子的影響與溶液砷濃度建立極顯著回歸方程[54-70]。逐步回歸表達(dá)式為式(7)。同時(shí),對(duì)以土壤為培養(yǎng)基質(zhì)的文獻(xiàn)數(shù)據(jù)中,植物富集濃度與土壤孔隙水砷濃度(CpwAs/(mg/L))進(jìn)行單因子回歸,回歸方程為式(8)。
式中,**代表在α=0.01水平上顯著相關(guān);*代表在α=0.05水平上顯著相關(guān)。
土壤孔隙水中的砷與水培實(shí)驗(yàn)中的砷形態(tài)類(lèi)似,大部分為生物可利用態(tài),這部分砷是土壤總砷與土壤顆粒在pH、有機(jī)質(zhì)、陽(yáng)離子交換量等條件下相互作用后表現(xiàn)出來(lái)的。式(7)、(8)表明,植物富集濃度與重金屬生物可利用濃度密切相關(guān);聯(lián)系前文對(duì)土壤中7個(gè)影響因子的分析,上述7個(gè)土壤因子是通過(guò)影響金屬元素的生物可利用性,進(jìn)而影響植物對(duì)重金屬吸收,與現(xiàn)有理論相符,涉及的土壤因子更全面,且較土壤孔隙水砷濃度有更高的決定系數(shù)。
根據(jù)質(zhì)量平衡原理,假設(shè)土壤中生物可利用態(tài)的金屬離子全部可被植物吸收,且其潛在可利用態(tài)的不斷轉(zhuǎn)化可以保持生物可利用濃度恒定不變,據(jù)此建立土壤中生物可利用濃度和植物富集濃度之間的平衡方程。土壤砷植物暴露與土壤砷生物可利用濃度模型之間的轉(zhuǎn)化理論基礎(chǔ)可以概括為式(10),轉(zhuǎn)換為式(11)。Cplant可由式(6)得出,式(11)即可通過(guò)土壤的基本性質(zhì)表征土壤砷的生物有效性,也可揭示土壤砷的生物有效性受土壤因子影響的機(jī)制。
式中,L為植物平均根長(zhǎng),草本根系一般2—10 cm,L=6 cm;灌木一般達(dá)0.5—4 m,L=2.25 m;喬木根系達(dá)2—10 m,L=6 m[74];S為植被覆蓋面積。CBio為土壤砷生物可利用濃度;V為土壤體積;A為富集常數(shù);Cplant為植物體砷濃度;Biomass為植物體生物量。
所得砷植物暴露途徑的土壤因子模型為 Y=-9399+86 x1-98 x2-21 x3-210 x4+38 x5+1378 x6-697 x7,R2=0.881**。其中決定系數(shù)為0.881,常數(shù)項(xiàng)為-9399,表明模型中包含了一些不確定因素。離子以水溶態(tài)被植物吸收,植物吸水過(guò)程受蒸騰拉力影響,蒸騰作用又受溫度、濕度、光照、風(fēng)速、土壤條件等因素影響[1]。因此,在重金屬植物暴露途徑中,植物的生理狀況是導(dǎo)致模型存在不確定因素的一個(gè)原因。另外,根際環(huán)境與植物吸收重金屬有直接關(guān)系,植物根系分泌的有機(jī)酸改變了根際環(huán)境理化性質(zhì),溶解土壤中的固相重金屬,使重金屬水溶態(tài)和交換態(tài)含量增加,提高了重金屬的生物可利用性[53,75-78]。根際定義在根表1—5mm,而實(shí)驗(yàn)分析的土壤樣品基本都不來(lái)自于根際,式(5)顯示土壤酸堿度對(duì)植物富集濃度的影響較小,也可以部分反映根際效應(yīng)可能是導(dǎo)致模型存在不確定因素的原因。判定植物生理狀況和根際作用是否是導(dǎo)致模型存在不確定因素的主要原因還需進(jìn)一步研究驗(yàn)證。
通過(guò)對(duì)模式植物文獻(xiàn)數(shù)據(jù)的整理分析,揭示了土壤砷植物暴露的影響機(jī)制,建立了土壤性質(zhì)與植物砷暴露的相關(guān)關(guān)系,為土壤砷生物有效性風(fēng)險(xiǎn)評(píng)價(jià)法提供理論依據(jù)。植物富集砷濃度與土壤因子回歸方程為表9表達(dá)式(6),定量揭示了土壤砷的植物暴露途徑受土壤砷總濃度、酸堿度、土壤有機(jī)質(zhì)含量、粉粒含量、粘粒含量、沙粒含量和土壤陽(yáng)離子交換量這些土壤性質(zhì)的影響。其中,植物富集砷濃度受土壤中砷總濃度影響最大,受土壤質(zhì)地中砂粒含量影響較大;土壤粉粒、粘粒、有機(jī)質(zhì)含量和陽(yáng)離子交換量對(duì)富集也有一定影響;而土壤酸堿度對(duì)植物富集濃度的影響較小。
[1] Li H S.Modern Plant Physiology.Beijing:Higher Education Press,2002:88-92.
[2] Lei M,Liao B,Qin P.Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation.Ecology and Environment,2007,16(5):1551-1556.
[3] Olajire A A,Ayodele E T,Oyedirdan G O,and Oluyemi E A.Levels and Speciation of Heavy Metals in Soils of Industrial Southern Nigeria.Environmental Monitoring and Assessment,2003,85(2):135-155.
[4] Wei C Y,Chen T B.Hyperaccumulators and phytoremediation of heavy metal contaminated soil:a review of studies in China and abroad.Acta Ecologica Sinica,2001,21(07):1196-1203.
[5] Cai B S.Genotypic Difference In Arsenic-accumulating Ability and Their Reaction To Environmental Factors In Pteris vittata[D].Zhejiang:Zhe Jiang University,2004.
[6] Yang X E,Long X X,Ni W Z.Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants.Plant Nutrition and Fertilizer Science,2002,8(01):8-15.
[7] Luo C L,Shen Z G.The Mechanisms of Heavy Metal Uptake and Accumulation in Plants.Chinese Bulletin of Botany,2003,20(01):59-66.
[8] Chen H M.Environmental Soil Science.Beijing:Science Press,2005.
[9] Li F,Shan X,Zhang T,and Zhang S.Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis.Environmental Pollution,1998,102(2/3):269-277.
[10] Davies B E.Inter-relationships between soil properties and the uptake of cadmium,copper,lead and zinc from contaminated soils by radish(Raphanus sativus L.).Water,Air and Soil Pollution,1992,63(3):331-342.
[11] Perrodin Y,Boillot C,Angerville R,Donguy G,and Emmanuel E.Ecological risk assessment of urban and industrial systems:A review.Science of the Total Environment,2011,409(24):5162-5176.
[12] McBride M B.Cadmium uptake by crops estimated from soil total Cd and pH.Soil science,2002,167(1):62.
[13] Ruby M V,Davis A,Schoof R,Eberle S,and Sellstone CM.Estimation of lead and arsenic bioavailability using a physiologically based extraction test.Environmental Science and Technology,1996,30(2):422-430.
[14] Sauve S,Hendershot W,and Allen H E.Solid-solution partitioning of metals in contaminated soils:dependence on pH,total metal burden,and organic matter.Environmental Science and Technology,2000,34(7):1125-1131.
[15] John M K.Lead availability related to soil properties and extractable lead.J.Environ.Qual,1972,1(3):295-298.
[16] Kuo S,Jellum E,and Baker A.Effects of Soil Type,Liming,and Sludge Application on Zinc and Cadmium Availability To Swiss Chard1.Soil Science,1985,139(2):122.
[17] He Q B and Singh B R.Plant Availability of Cadmium in Soils:Ⅰ.Extractable Cadmium in Newly and Long-Term Cultivated Soils.Acta Agriculturae Scandinavica B-Plant Soil Sciences,1993,43(3):134-141.
[18] He Q B and Singh B R.Plant Availability of Cadmium in Soils:Ⅱ.Factors Related to the Extractability and Plant Uptake of Cadmium in Cultivated Soils.Acta Agriculturae Scandinavica B-Plant Soil Sciences,1993,43(3):142-150.
[19] Chlopecka A and Adriano D C.Mimicked in-situ stabilization of metals in a cropped soil:bioavailability and chemical form of zinc.Environmental Science and Technology,1996,30(11):3294-3303.
[20] Sims JT and Kline JS.Chemical Fractionation and Plant Uptake of Heavy Metals in Soils Amended with Co-Composted Sewage Sludge.Journal of Environmental Quality,1990,20(2):387-395.
[21] Iyengar SS,Martens D C,and Miller W P.Distribution and Plant Availability of Soil Zinc Fractions.Soil Science Society of America Journal,1980,45(4):735-739.
[22] Liao X Y,Xie Q E,Yan X L,and Li X.The Arsenic Hyperaccumulator Fern Pteris vittata L.Environmental Science and Technology,2009,43(22):8488-8495.
[23] Ma L Q,Komar K M,Tu C,Zhang W,Cai Y,and Kennelley E D.A fern that hyperaccumulates arsenic.Nature,2001,409(6820):579-579.
[24] Chen T B,Wei CY,Huang Z C,Huang Q F,Lu Q G,and Fan Z L.Arsenic hyperaccumulator Pteris vittata L.and its arsenic accumulation.Chinese Science Bulletin,2002,47(11):902-905.
[25] Wong M H,Leung H M,Wu F Y,Cheung K C,and Ye Z H.The Effect of Arbuscular Mycorrhizal Fungi and Phosphate Amendement on Arsenic Uptake,Accumulation and Growth of Pteris Vittata in As-Contaminated Soil.International Journal of Phytoremediation,2010,12(4):384-403.
[26] Liu Y,Zhu Y G,Chen B D,Christie P,and Li X L.Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.Mycorrhiza,2005,15(3):187-192.
[27] Chen B D,Zhu Y G,and Smith F A.Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern(Pteris vittata L.)from a uranium mining-impacted soil.Chemosphere,2006,62(9):1464-1473.
[28] Trotta A,F(xiàn)alaschi P,Cornara L,Minganti V,F(xiàn)usconi A,Drava G,and Berta G.Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.Chemosphere,2006,65(1):74-81.
[29] Wu F Y,Ye ZH,and Wong M H.Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pterisvittata L.Chemosphere,2009,76(9):1258-1264.
[30] Fayiga A O,Ma L Q,Cao X D,and Rathinasabapathi B.Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.Environmental Pollution,2004,132(2):289-296.
[31] Chen T B,An Z Z,Huang Z C,Lei M,Liao X Y,and Zheng Y M.Zinc tolerance and accumulation in Pteris vittata L.and its potential for phytoremediation of Zn-and As-contaminated soil.Chemosphere,2006,62(5):796-802.
[32] Wu F Y,Ye Z H,Wu S C,and Wong M H.Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L.and Sedum alfredii Hance.Planta,2007,226(6):1363-1378.
[33] Chen T B,Xiao X Y,An Z Z,Lei M,Huang Z C,Liao X Y,and Liu Y R.Potential of Pteris vittata L.for phytoremediation of sites cocontaminated with cadmium and arsenic:The tolerance and accumulation.Journal of Environmental Sciences-China,2008,20(1):62-67.
[34] Gonzaga M I S,Santos J A G,and Ma L Q.Phytoextraction by arsenic hyperaccumulator Pteris vittata L.from six arsenic-contaminated soils:Repeated harvests and arsenic redistribution.Environmental Pollution,2008,154(2):212-218.
[35] Ma L Q,Srivastava M,Rathinasabapathi B,and Srivastava P.Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L.Bioresource Technology,2009,100(3):1115-1121.
[36] Ye Z H,Wu F Y,Leung H M,Wu SC,and Wong M H.Variation in arsenic,lead and zinc tolerance and accumulation in six populations of Pteris vittata L.from China.Environmental Pollution,2009,157(8/9):2394-2404.
[37] Wang X,Ma L Q,Rathinasabapathi B,Liu Y G,and Zeng G M.Uptake and translocation of arsenite and arsenate by Pteris vittata L.:Effects of silicon,boron and mercury.Environmental and Experimental Botany,2010,68(2):222-229.
[38] Chen T B,Liao X Y,Xiao X Y,Xie H,Yan X L,Zhai L M,and Wu B.Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata:A new approach in phytoremediation.International Journal of Phytoremediation,2007,9(4):269-280.
[39] Chen T B,F(xiàn)an Z L,Lei M,Huang Z C,and Wei CY.Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L.and its implication.Chinese Science Bulletin,2002,47(22):1876-1879.
[40] Ma L Q,Tu C,and Bondada B.Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation.Journal of Environmental Quality,2002,31(5):1671-1675.
[41] Ma L Q,Cao X D,and Shiralipour A.Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator,Pteris vittata L.Environmental Pollution,2003,126(2):157-167.
[42] Ma L Q and Tu C.Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L.Plant and Soil,2003,249(2):373-382.
[43] McGrath SP,Caille N,Swanwick S,and Zhao F J.Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.Environmental Pollution,2004,132(1):113-120.
[44] Cao X D,Ma L Q,and Tu C.Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern(Pteris vittata L.).Environmental Pollution,2004,128(3):317-325.
[45] Ma L Q,Tu C,Zhang WH,Cai Y,and Harris WG.Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake(Pteris vittata L.).Environmental Pollution,2003,124(2):223-230.
[46] Salido A L,Hasty K L,Lim JM,and Butcher D J.Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake Ferns(Pteris vittata)and Indian mustard(Brassica juncea).International Journal of Phytoremediation,2003,5(2):89-103.
[47] Tu C and Ma L Q.Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.Environmental Pollution,2005,135(2):333-340.
[48] Gonzaga M I S,Santos JA G,and Ma L Q.Arsenic chemistry in the rhizosphere of Pteris vittata L.and Nephrolepis exaltata L.Environmental Pollution,2006,143(2):254-260.
[49] Ma L Q and Fayiga A O.Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.Science of the Total Environment,2006,359(1/3):17-25.
[50] Wei C Y,Sun X,Wang C,and Wang W Y.Factors influencing arsenic accumulation by Pteris vittata:A comparative field study at two sites.Environmental Pollution,2006,141(3):488-493.
[51] Young SD,Shelmerdine P A,Black C R,and McGrath SP.Modelling phytoremediation by the hyperaccumulating fern,Pteris vittata,of soils historically contaminated with arsenic.Environmental Pollution,2009,157(5):1589-1596.
[52] Singh B,Xu WH,and Kachenko A G.Effect of Soil Properties on Arsenic Hyperaccumulation in Pterisvittata and Pityrogramma calomelanos var.Austroamericana.International Journal of Phytoremediation,2010,12(2):174-187.
[53] Wenzel W W,F(xiàn)itz W J,Zhang H,Nurmi J,Stipek K,F(xiàn)ischerova Z,Schweiger P,Kollensperger G,Ma L Q,and Stingeder G.Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L.and monitoring of phytoremoval efficiency.Environmental Science and Technology,2003,37(21):5008-5014.
[54] Ma L Q,Santos JA G,and Gonzaga M IS.Optimum P levels for arsenic removal from contaminated groundwater by Pteris vittata L.of different ages.Journal of Hazardous Materials,2010,180(1/3):662-667.
[55] Mathews S,Ma L Q,Rathinasabapathi B,Natarajan S,and Saha U K.Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L.Bioresource Technology,2010,101(21):8024-8030.
[56] Su Y H,McGrath SP,Zhu Y G,and Zhao F J.Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata.New Phytologist,2008,180(2):434-441.
[57] Ma L Q,Kertulis GM,MacDonald GE,Chen R,Chen R,Winefordner JD,and Cai Y.Arsenic speciation and transport in Pteris vittata L.and the effects on phosphorus in the xylem sap.Environmental and Experimental Botany,2005,54(3):239-247.
[58] Zhang W H,Cai Y,Downum K R,and Ma L Q.Thiol synthesis and arsenic hyperaccumulation in Pteris vittata(Chinese brake fern).Environmental Pollution,2004,131(3):337-345.
[59] Caille N,Zhao F J,and McGrath SP.Comparison of root absorption,translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula.New Phytologist,2005,165(3):755-761.
[60] Chen T B,Yan X L,Liao X Y,Xiao X Y,Huang Z C,Xie H,and Zhai L M.Subcellular distribution and compartmentalization of arsenic in Pteris vittata L.Chinese Science Bulletin,2005,50(24):2843-2849.
[61] Singh N and Ma L Q.Arsenic speciation,and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L.and nonhyperaccumulator Pteris ensiformis L.Environmental Pollution,2006,141(2):238-246.
[62] Wei SH,Ma L Q,Saha U,Mathews S,Sundaram S,Rathinasabapathi B,and Zhou QX.Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.Environmental Pollution,2010,158(5):1530-1535.
[63] Xiao X Y.The Study on Some Nutrition Characteristics and As-accumulating Mechanism of Pteris vttataL.[D].Hunan:Hunan Agricultural University,2003.
[64] Ma L Q,F(xiàn)ayiga A O,and Rathinasabapathi B.Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.Environmental and Experimental Botany,2008,62(3):231-237.
[65] Ma L Q and Tu S.Interactive effects of pH,arsenic and phosphorus on uptake of As and Pand growth of the arsenic hyperaccumulator Pterisvittata L.under hydroponic conditions.Environmental and Experimental Botany,2003,50(3):243-251.
[66] Ma L Q,Tu S,F(xiàn)ayiga A O,and Zillioux E J.Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.International Journal of Phytoremediation,2004,6(1):35-47.
[67] Ma L Q,Tu S,MacDonald G E,and Bondada B.Effects of arsenic species and phosphorus on arsenic absorption,arsenate reduction and thiol formation in excised parts of Pteris vittata L.Environmental and Experimental Botany,2004,51(2):121-131.
[68] Stamps R H,Natarajan S,Saha UK,and Ma L Q.Effects of Nitrogen and Phosphorus Levels,and Frond-Harvesting on Absorption,Translocation and Accumulation of Arsenic by Chinese Brake Fern(Pteris Vittata L.).International Journal of Phytoremediation,2009,11(4):313-328.
[69] Stamps R H,Natarajan S,Saha U K,and Ma L Q.Phytofiltration of arsenic-contaminated groundwater using Pteris vittata L.:Effect of plant density and nitrogen and phosphorus levels.International Journal of Phytoremediation,2008,10(3):222-235.
[70] Vetterlein D,Wesenberg D,Nathan P,Brautigam A,Schierhorn A,Mattusch J,and Jahn R.Pteris vittata-Revisited:Uptake of As and its speciation,impact of P,role of phytochelatins and S.Environmental Pollution,2009,157(11):3016-3024.
[71] Bao SD.agrochemical Analysis of soil.Beijing:China Agriculture Press,2000.
[72] Smith E,Naidu R,and Alston A M.Arsenic in the Soil Environment:A Review,in Advances in agronomy.1998,149-195.
[73] Xue Y,Chen L P.Statistical Modeling and R Software.Beijing:Tsinghua University Press,2007:497-519.
[74] Wu J S.Debris Flow and Governance.Beijing:Science Press,1993.
[75] Koo B J,Chen W,Chang A C,Page A L.Granato T C,and Dowdy R H,A root exudates based approach to assess the long-term phytoavailability of metals in biosolids-amended soils.Environmental Pollution,2010,158(8):2582-2588.
[76] Huang J F,Wu H.Plant roots secrete organic acids and their roles.Modern Agricultural Science and Technology,2008,(20):323-324.
[77] Chen T B,Liao X Y,Lei M,Huang Z C,Xiao X Y,and An Z Z.Root distributions and elemental accumulations of Chinese brake(Pterisvittata L.)from As-contaminated soils.Plant and Soil,2004,261(1/2):109-116.
[78] Tu S X,Ma L,and Luongo T.Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata.Plant and Soil,2004,258(1/2):9-19.
參考文獻(xiàn):
[1] 李合生.現(xiàn)代植物生理學(xué).北京:高等教育出版社,2002:88-92.
[2] 雷鳴,廖柏寒,秦普豐.土壤重金屬化學(xué)形態(tài)的生物可利用性評(píng)價(jià).生態(tài)環(huán)境,2007,16(5):1551-1556.
[4] 韋朝陽(yáng),陳同斌.重金屬超富集植物及植物修復(fù)技術(shù)研究進(jìn)展.生態(tài)學(xué)報(bào),2001,21(7):1196-1203.
[5] 蔡保松.蜈蚣草富集砷能力的基因型差異及其對(duì)環(huán)境因子的反應(yīng)[D].浙江:浙江大學(xué),2004.
[6] 楊肖娥,龍新憲,倪吾鐘.超積累植物吸收重金屬的生理及分子機(jī)制.植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2002,8(1):8-15.
[7] 羅春玲,沈振國(guó).植物對(duì)重金屬的吸收和分布.植物學(xué)通報(bào),2003,20(1):59-66.
[8] 陳懷滿.環(huán)境土壤學(xué).北京:科學(xué)出版社,2005.
[63] 肖細(xì)元.蜈蚣草的某些營(yíng)養(yǎng)特性及富砷機(jī)理研究[D].湖南:湖南農(nóng)業(yè)大學(xué),2003.
[71] 鮑士旦.土壤農(nóng)化分析.北京:中國(guó)農(nóng)業(yè)出版社,2000.
[73] 薛毅,陳立萍.統(tǒng)計(jì)建模與 R軟件.北京:清華大學(xué)出版社,2007:497-519.
[74] 吳積善.泥石流及其綜合治理.北京:科學(xué)出版社,1993.
[76] 黃建鳳,吳昊.植物根系分泌的有機(jī)酸及其作用.現(xiàn)代農(nóng)業(yè)科技,2008,(20):323-324.