• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pull-in Instability Analysis of Nanoelectromechanical Rectangular Plates Including the Intermolecular, Hydrostatic, and Thermal Actuations Using an Analytical Solution Methodology

    2019-03-12 02:41:50SamadaniAnsariHosseiniandZabihi
    Communications in Theoretical Physics 2019年3期

    F.Samadani, R.Ansari,K.Hosseini, and A.Zabihi

    1Department of Mechanical Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran

    2Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

    3Department of Mechanical Engineering, Ahrar Institute of Technology & Higher Education, Rasht, Iran

    (Received May 10, 2018; revised manuscript received August 21, 2018)

    Abstract The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations.Based on the Kirchhoff theory along with Eringen’s nonlocal elasticity theory, a nonclassical model is developed.Using the Galerkin method (GM), the governing equation which is a nonlinear partial differential equation (NLPDE)of the fourth order is converted to a nonlinear ordinary differential equation (NLODE)in the time domain.Then, the reduced NLODE is solved analytically by means of the homotopy analysis method.At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.

    Key words: Nanoelectromechanical rectangular plates,Pull-in instability,Kirchhoff theory,Eringen’s nonlocal elasticity theory, Homotopy analysis method

    1 Introduction

    Numerous applications of micro- and nano-electromechanical systems (MEMS/NEMS)have motivated researchers to study their performance in various situations.Because the classical continuum theories cannot consider the size effects in the mechanical analysis of nanostructures,[1?4]some size-dependent continuum theories like Eringen’s nonlocal elasticity theory,[5]the couple stress elasticity theory,[6]the Gurtin-Murdoch continuum elasticity theory,[7?11]the strain gradient elasticity theory,[12]and the stress-driven nonlocal model[13]were proposed to consider the size effects.In the classical theories, the stress state at a given point is determined only by the strain state at that point, but in Eringen’s nonlocal elasticity theory, the stress state at a given point is determined by the strain states of all points in the body.The first use of Eringen’s nonlocal elasticity theory to nanotechnology was proposed by Peddiesonet al.,[14]followed by many other researchers.[15?19]One of the important designing considerations in MEMS/NEMS is the pull-in instability.[20]The pull-in instability happens when the internal and applied external forces surpass the elastic restoring force of the nanostructures, leading to contact between the movable and substrate electrodes.When the rate of applied voltage variation is significant,the effect of inertia is considered.In this case, the pull-in instability is referred to as the dynamic pull-in instability.

    Once the space of movable and bottom electrodes is less than the plasma wavelength or the absorption wavelength of the ingredient material of surfaces, the intermolecular force is considered as the van der Waals (vdW)attraction.In this situation, there is a small separation regime such that the vdW force is the dominant attraction and it is proportional to the inverse cube of the separation.Nevertheless, when the separation is adequately large (typically above 20 nm)the intermolecular interaction is referred to as the Casimir force.[21]In this case,there is a large separation regime in which the Casimir force is dominant(typically above several tens of nanometers)and it is proportional to the inverse fourth power of the separationπ2hc/240g4, in whichh=1.055×10?34is Planck’s constant divided by 2πandc=2.998×108m/s is the speed of light.[21]The reader is referred to Refs.[22–30]as some important papers and books about the Casimir effect.One of the most remarkable predictions of quantum electrodynamics (QED), obtained by Casimir in 1948, is that two parallel, closely spaced, conducting plates will be mutually attracted.[31]This measurement, as reported by Sparnaay in 1958, confirmed the formula.[32]A closely related effect, the attraction of a neutral atom to a conducting plate, has been also measured.[33]

    In the past few years, many researchers have focused on the pull-in instability of nanoplates.For instance, based on a modified continuum model, Ansariet al.[34]studied the size-dependent pull-in behavior of electrostatically and hydrostatically actuated rectangular nanoplates considering the surface stress effects.Ebrahimi and Hosseini[35]investigated the effect of temperature on pull-in voltage and nonlinear vibration of nanoplatebased NEMS under hydrostatic and electrostatic actuations.Mirkalantariet al.[36]studied the pull-in instability of rectangular nanoplates based on the strain gradient theory taking the surface stress effects into account.Shokravi[37]analyzed the dynamic pull-in of viscoelastic nanoplates under the electrostatic and Casimir forces.The interested reader is referred to Refs.[38–44].

    Moreover,different methods have been used for the vibration analysis of rectangular nanoplates.For example,Aghababaei and Reddy[45]presented the Navier solutions for the vibrations of rectangular plates based on the nonlocal third-order shear deformation plate theory.Also,Pradhan and Phadikar[46]used the same solution technique for addressing the vibration problem of rectangular plates with simply-supported boundary conditions in the context of Eringen’s nonlocal model,the classical and firstorder shear deformation plate theories.Another application of the Navier-type method to the vibration problem of nonlocal plates can be found in Ref.[47].Aksencer and Aydogdu[48]employed the Levy-type solution method for the vibration analysis of nanoplates based on the nonlocal elasticity theory.Ansariet al.[49?50]used the generalized differential quadrature method to numerically solve the free vibration problem of rectangular Mindlin-type plates with various boundary conditions.The Galerkin method was applied by Shakouriet al.[51]for the vibrational analysis of nonlocal Kirchhoff plates with different edge supports.

    The classical analytical methods cannot handle the strongly nonlinear differential equations.In this regard,Liao[52]developed an efficient technique called the homotopy analysis method (HAM), which can be adopted for solving ordinary and partial differential equations with different nonlinearities.For example, Samadaniet al.[53]applied HAM for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler-Bernoulli beam model.Moghimi Zand and Ahmadian[54]used HAM in studying the dynamic pull-in instability of microsystems.Also, Miandoabet al.[55]utilized this method for the forced vibration analysis of a nano-resonator with cubic nonlinearities.

    In the present paper, HAM is used to study the static and dynamic pull-in instabilities of rectangular nanoplates using the nonlocal Kirchhoff plate theory.The rest of paper is organized as follows: In Sec.2,using Eringen’s nonlocal elasticity and the Kirchhoff plate theory, the nonlinear equation of motion subjected to fully clamped boundary condition (CCCC)is derived.In Secs.3 and 4, the governing equation of motion is reduced to an NLODE in the time domain by the Galerkin method.Then, HAM is adopted to solve the obtained nonlinear equation.The effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameter on the deflection,nonlinear frequency, and the critical voltage of dynamic pull-in instability (Vpdyn)are investigated in Sec.5.At the end, the main findings of the paper is given in Sec.6.

    2 Problem Formulation

    2.1 Nonlocal Elasticity Theory

    Based on Eringen’s nonlocal elasticity theory,[3]the stress at a reference point depends on the strain at all points in the body.The constitutive equation of the nonlocal elasticity can be written as

    whereσij,tij,e0,andaare the nonlocal stress tensor,the classical stress tensor, nonlocal elasticity constant appropriate to each material and internal characteristic length scale (e.g.atomistic distance), respectively.e0can be obtained from experiments or through comparisons between the results of nonlocal continuum model and the ones from lattice dynamics.Eringen[3]estimated the value ofe0equal to 0.31 based on the comparison of Rayleigh surface wave using the nonlocal theory and lattice dynamics.Whene0is zero,the constitutive relations of the local theories are obtained.Also,?2is the Laplacian operator which in the Cartesian coordinate can be expressed as

    2.2 Kirchhoff Thin Plate Theory

    Based on the Kirchhoff thin plate theory, the strains in the plate are

    wherewis the transverse deflection of plate, respectively.The relations of bending moment are given by

    wherehis the thickness of plate.

    Under plane stress conditions, one has

    where?andEare Poisson’s ratio and Young’s modulus of the plate.By substituting Eqs.(3)and(5)into Eq.(4),one obtains

    whereD=Eh3/12(1??2)is the classical bending stiffness of the plate.By inserting Eqs.(1)and (4), one can arrive at

    Hamilton’s principle is given in the following form

    whereK,U, andWdenote the kinetic energy, strain energy and work of external forces and thermal actuation,respectively.The first variation of strain energy is presented as

    in whichSsignifies the area of plate.The first variation of the work of the external forces and thermal actuation is expressed as

    where the termsNxx,Nyy,Nxy,andqare determined by the thermal and external forces.It should be mentioned that the thermal force caused by the uniform temperature variation,θ=T ?T0, is described by[56]

    where the termαindicates the coefficient of thermal expansion.

    The first variation of kinetic energy is

    in whichρshows the density of plate.

    By inserting Eqs.(9)–(12)in Eq.(8), then integrating by parts and setting the coefficientδwto zero, one can reach the governing equation as

    Now, by means of the nonlocal bending moment equations given in Eq.(7)and expanding Eq.(13), one will arrive at the governing equation of motion in the following form

    Note that the governing equation of local model is obtained by settinge0a=0.

    3 Mathematical Modeling of the Problem

    A schematic of nanoelectromechanical rectangular plate with lengthlaand widthlb, including a pair of parallel electrodes with the distancegis given in Fig.1.The upper movable electrode is assumed to be under the influence of intermolecular, hydrostatic, and thermal actuations.

    It is noted that the movable electrode pulls down the fixed electrode by applying the DC voltage between two electrodes.Once the applied voltage approaches the critical point (pull-in voltage), the structure becomes unstable.[57]

    The electrostatic force per unit area of nanoplate can be described as[39]

    whereε0=8.854×10?12C2N?1·m?2is the vacuum permittivity,gis the air initial gap of nanoplates, andVdcis the direct current voltage as illistrated in Fig.1.The van dar Waals effect per unit area of nanoplate can be written as[39]

    whereAhis the Hamaker constant in the range of [0.4?4]×10?19.

    Fig.1 Schematic of fully clamped nanoelectromechanical rectangular plates under intermolecular, hydrostatic and thermal actuations.

    In the following analyses, it is assumed that

    whereFhstands for the hydrostatic actuation.By substituting Eqs.(15)and (16)into Eq.(17)and then inserting the resulting equation in Eq.(14),the following governing equation of motion is obtained

    with the following fully clamped boundary conditions

    By considering the following nondimensional variables

    and using the Taylor expansion(see Appendix),the nondimensional form of governing equation can be derived as

    with the following boundary conditions

    Here,GM is utilized to reduce Eq.(21)to an NLODE.To this end, it is considered that

    whereφ1(X,Y)= sin2(πX)sin2(πY)is the first eigenmode of fully clamped nanoplate andW1(X,Y,T)=u(T)sin2(πX)sin2(πY).[58]

    By insertingW1(X,Y,T)in Eq.(21),multiplying it byφ1(X,Y)and then integrating twice from zero to one, the following NLODE is obtained

    where the parametersa0,a1,a2,a3,a4, andMare given in Appendix.

    4 Implementation of the HAM to the Reduced Equation

    Now, using the transformationτ= ?pT, the existing reduced problem

    is changed into

    where the oscillation nonlinear frequency ?pis expressed as

    In a manner similar to that performed in Ref.[53],one can obtain ? andu(T)for vibrating actuated fully clamped nanoplate as below

    5 Results and Discussion

    The current section provides numerical results to show the effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameterμon the deflection, nonlinear frequency, andVpdyn.For producing the results, the following parameters are selected:h=21 nm,la=lb=30h,g=1.2h,?=0.35, andE=68.5 GPa (Al alloy).

    In Fig.2,the nondimensional center point deflection of nanoplate obtained using HAM is compared to that calculated using the Runge-Kutta method.It is seen that there is an excellent agreement between the results of two methods.

    Fig.2 HAM results versus those of the Runge-Kutta method.

    Figure 3 shows the change in amplitude of vibration against the nondimensional time.In this case, the dynamic pull-in voltage is 22.540.TheVpdynobtained in the absence of the intermolecular and thermal parameters agrees well with those reported in Refs.[34, 59] (in Ref.[34]Vpdyn= 22.5 and in Ref.[59]Vpdyn= 22.38).The amplitude enhances with the increase of time and the nanoplate experiences a harmonic motion.Also, the nanoplate collapses onto the bottom, when the pull-in happens.

    Fig.3 Centerpoint deflection of a fully clamped nanoplate at Nthermal=R3=0.

    Figure 4 presents the normalized fundamental frequency of nanoplate with respect to the electrostatic parameterβ.It is observed that the normalized fundamental frequency becomes zero when the applied voltage reachesVpdyn.

    Figure 5 indicates that the pull-in time decreases (11 percent)by increasingμ(0.01 per unit).By decreasingμ,the pull-in phenomenon occurs later in this model.

    Fig.4 Relation between the normalized fundamental frequency and the electrostatic force parameter.

    Fig.5 Effect of the parameter μ on the pull-in and deflection time.

    Fig.6 Effect of the parameters μ and Vpdyn on the fundamental frequency.

    The variations of fundamental frequencies againstVpdynare illustrated in Fig.6 for different values of nonlocal parameter.It is observed that by increasingμ(0.02 per unit), the fundamental frequency decreases (2 percent).For example,whenμis considered to be 0.06,Vpdynoccurs at 21.

    Figure 7 demonstrates the variations of fundamental frequencies against the hydrostatic pressure parameter for different values of nonlocal parameter.The increase ofNhydroleads to the decrease of fundamental frequency.

    Fig.7 Effect of the nondimensional hydrostatic pressure on the fundamental frequency.

    Fig.8 Effect of the nondimensional thermal actuation on the pull-in frequency.

    Fig.9 Effect of the intermolecular actuation on the pull-in frequency.

    The variations of fundamental frequencies against the nondimensional thermal parameter are illustrated in Fig.8 for various values ofμ.One can find that via increasingNthermal, the fundamental frequency gets larger.

    Figure 9 shows the variations of fundamental natural frequency versusAfor a number of vdW parameters.It is seen that by increasingA, the nonlinear frequency of vibration diminishes.For instance, whenR3is equal to 5,the pull-in phenomenon happens atA=1.

    Fig.10 Variations of static pull-in deflection of the nanoplate versus the μ.

    Fig.11 Comparison of the static and dynamic pullvoltage parameter versus g in μ=0.01.

    Fig.12 Evaluation of the static and dynamic pullvoltage against Nthermal in μ=0.01.

    The influence ofla/lbon the static nondimensional deflection versus the nonlocal parameter is highlighted in Fig.10.According to this figure, the pull-in instability is suspended asλincreases.The influences of distance of parallel electrodes, thermal and nonlocal parameters on the static and dynamic pull-in voltage parameter are compared in Figs.11–13, respectively.Based on Fig.11,the pull-in voltage is postponed as the distance increases.Also, Fig.12 indicates that as the thermal parameter increases, the pull-in voltage is delayed.Finally, Fig.13 shows that by increasing the nonlocal parameter,the pullin voltage decreases.

    Fig.13 Comparision of dynamic and static pull-in voltage parameter of the nanoplate versus the μ.

    6 Conclusion

    In the present research, the dynamic pull-in of CCCC plate-type nanosensor, subjected to electrostatic, intermolecular, hydrostatic and thermal actuations was analyzed based on the nonlocal theory.GM was utilized for reducing the governing NLPDE to an NLODE in the time domain.HAM was also applied for solving the NLODE.The outcomes reveal that:

    (i)By increasingA,Vpdyndecreases.

    (ii)With the increase ofμ, vdW, andβ, the fundamental frequency diminishes.

    (iii)Vpdyndecreases as the vdW,μ, andAincrease;also, it increases as the thermal and hydrostatic parameters increase.

    (iv)? decreases as the pull-in voltage,R3,hydrostatic,nonlocal parameters, andAincrease; but, it increases as the thermal parameter rises.

    (v)The softening effect detected qualitatively is in agreement with that in the bending and vibrations of the nonlocal Kirchhoff model.

    Appendix

    直男gayav资源| 99热只有精品国产| a级毛片a级免费在线| 一区二区三区四区激情视频 | 男的添女的下面高潮视频| 日韩欧美一区二区三区在线观看| 天美传媒精品一区二区| 韩国av在线不卡| 啦啦啦韩国在线观看视频| 欧美区成人在线视频| 黄片wwwwww| 黄色视频,在线免费观看| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 少妇高潮的动态图| 日韩制服骚丝袜av| 在线观看午夜福利视频| 日韩欧美国产在线观看| 亚洲人成网站在线播放欧美日韩| 久久99热这里只有精品18| 国产黄色小视频在线观看| 三级毛片av免费| 极品教师在线视频| 少妇熟女aⅴ在线视频| 亚洲精品久久久久久婷婷小说 | 色综合站精品国产| 非洲黑人性xxxx精品又粗又长| av在线老鸭窝| 寂寞人妻少妇视频99o| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 韩国av在线不卡| 看片在线看免费视频| 网址你懂的国产日韩在线| 欧美最新免费一区二区三区| 久久久久久久久大av| 亚洲精品影视一区二区三区av| 极品教师在线视频| 亚洲色图av天堂| 91av网一区二区| 成人漫画全彩无遮挡| 国产亚洲精品久久久com| 免费在线观看成人毛片| 日韩成人伦理影院| 亚洲真实伦在线观看| 一级毛片电影观看 | 中文字幕精品亚洲无线码一区| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 在线免费观看的www视频| 中国美女看黄片| 晚上一个人看的免费电影| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 午夜福利在线观看吧| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看| 久久人人精品亚洲av| 亚洲最大成人av| 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看| www日本黄色视频网| 天美传媒精品一区二区| 蜜桃亚洲精品一区二区三区| av天堂中文字幕网| av又黄又爽大尺度在线免费看 | 欧美xxxx性猛交bbbb| 欧美潮喷喷水| 欧美又色又爽又黄视频| 91在线精品国自产拍蜜月| 国产精品伦人一区二区| 黄色一级大片看看| 国产不卡一卡二| av视频在线观看入口| 亚洲人成网站在线播| 国产精品一区二区三区四区免费观看| 高清日韩中文字幕在线| 在线免费十八禁| 成人一区二区视频在线观看| 男人舔奶头视频| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜爱| 日韩一区二区视频免费看| 熟女电影av网| 精品人妻偷拍中文字幕| 成人国产麻豆网| 成年女人永久免费观看视频| 性色avwww在线观看| 干丝袜人妻中文字幕| 国产69精品久久久久777片| 亚洲国产精品久久男人天堂| 波多野结衣巨乳人妻| 天堂中文最新版在线下载 | 神马国产精品三级电影在线观看| 中文字幕熟女人妻在线| 国产69精品久久久久777片| 欧美日韩国产亚洲二区| 国产免费一级a男人的天堂| 日韩制服骚丝袜av| 我要搜黄色片| 在线观看午夜福利视频| 久久九九热精品免费| 国产黄色视频一区二区在线观看 | 欧美成人免费av一区二区三区| 日韩,欧美,国产一区二区三区 | 嫩草影院入口| 亚洲第一电影网av| 91久久精品电影网| 日本免费a在线| 成熟少妇高潮喷水视频| 天堂中文最新版在线下载 | 99热这里只有是精品50| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 桃色一区二区三区在线观看| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 嘟嘟电影网在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品色激情综合| 欧美色视频一区免费| 人人妻人人看人人澡| 国产三级在线视频| 性色avwww在线观看| 国产在线精品亚洲第一网站| 欧美又色又爽又黄视频| 美女内射精品一级片tv| 看片在线看免费视频| 国产午夜精品久久久久久一区二区三区| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 亚洲精品久久久久久婷婷小说 | 老司机影院成人| 午夜视频国产福利| avwww免费| 在线观看午夜福利视频| 亚洲成av人片在线播放无| 亚洲成人中文字幕在线播放| 男人的好看免费观看在线视频| 精品国内亚洲2022精品成人| 五月伊人婷婷丁香| 99久久精品国产国产毛片| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 久久久久九九精品影院| 尾随美女入室| 美女黄网站色视频| 亚洲一区高清亚洲精品| 你懂的网址亚洲精品在线观看 | 国产精品久久久久久精品电影小说 | 国产在线精品亚洲第一网站| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 永久网站在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 特级一级黄色大片| 国产成人精品婷婷| 国产视频内射| 你懂的网址亚洲精品在线观看 | 99热全是精品| 九九在线视频观看精品| 一边亲一边摸免费视频| 免费黄网站久久成人精品| 免费观看在线日韩| 91在线精品国自产拍蜜月| 级片在线观看| 亚洲乱码一区二区免费版| 免费人成视频x8x8入口观看| 在线国产一区二区在线| 欧美bdsm另类| 国产黄色视频一区二区在线观看 | 亚洲国产精品sss在线观看| 精品久久国产蜜桃| 青春草国产在线视频 | 热99在线观看视频| videossex国产| 99热精品在线国产| 精华霜和精华液先用哪个| 亚洲va在线va天堂va国产| 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 国产精品嫩草影院av在线观看| 国产精品人妻久久久久久| 黄片wwwwww| 毛片女人毛片| 黄色配什么色好看| a级毛片免费高清观看在线播放| 老司机福利观看| 你懂的网址亚洲精品在线观看 | 色视频www国产| 人人妻人人澡人人爽人人夜夜 | 男的添女的下面高潮视频| 日本av手机在线免费观看| 又爽又黄a免费视频| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产国拍精品亚洲av在线观看| 欧美色欧美亚洲另类二区| 成年版毛片免费区| 国产视频首页在线观看| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 99riav亚洲国产免费| 18+在线观看网站| 亚洲美女视频黄频| 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 直男gayav资源| 日韩av不卡免费在线播放| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 久久99蜜桃精品久久| 色播亚洲综合网| 日韩大尺度精品在线看网址| 菩萨蛮人人尽说江南好唐韦庄 | 免费黄网站久久成人精品| 日韩欧美 国产精品| а√天堂www在线а√下载| 精品久久久久久久久久免费视频| 深夜a级毛片| 免费看美女性在线毛片视频| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 最近中文字幕高清免费大全6| 一级黄片播放器| 精品人妻一区二区三区麻豆| 看免费成人av毛片| 中文字幕av成人在线电影| 日韩制服骚丝袜av| 欧美成人一区二区免费高清观看| 日韩欧美在线乱码| 亚洲av成人av| 乱码一卡2卡4卡精品| 22中文网久久字幕| 长腿黑丝高跟| 最近2019中文字幕mv第一页| 亚洲在线自拍视频| 免费av不卡在线播放| 少妇人妻一区二区三区视频| 亚洲欧洲日产国产| 日韩亚洲欧美综合| 嘟嘟电影网在线观看| 一级二级三级毛片免费看| 春色校园在线视频观看| 一级av片app| 国产在视频线在精品| 成人永久免费在线观看视频| ponron亚洲| 欧美一区二区国产精品久久精品| 最近最新中文字幕大全电影3| 哪个播放器可以免费观看大片| 高清毛片免费观看视频网站| 九草在线视频观看| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 亚洲精品日韩av片在线观看| 午夜激情福利司机影院| 国产极品精品免费视频能看的| 一个人免费在线观看电影| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲网站| 欧美三级亚洲精品| 精品久久久久久久末码| 亚洲最大成人中文| 听说在线观看完整版免费高清| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 成人亚洲欧美一区二区av| 黄色视频,在线免费观看| 久久久久久久亚洲中文字幕| 国内揄拍国产精品人妻在线| 性欧美人与动物交配| 国内少妇人妻偷人精品xxx网站| 国产精品久久视频播放| 大香蕉久久网| 免费观看人在逋| 成人一区二区视频在线观看| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂 | 青春草视频在线免费观看| 精品一区二区免费观看| 亚洲不卡免费看| 亚洲欧美精品专区久久| a级毛色黄片| 人妻夜夜爽99麻豆av| 在线观看午夜福利视频| 黄色日韩在线| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 啦啦啦观看免费观看视频高清| 亚洲美女视频黄频| 亚洲精品乱码久久久v下载方式| 国产三级在线视频| 成人性生交大片免费视频hd| 九草在线视频观看| 久久精品影院6| 久久九九热精品免费| 国产黄片视频在线免费观看| 久久午夜亚洲精品久久| 国产又黄又爽又无遮挡在线| 亚洲欧美精品自产自拍| 噜噜噜噜噜久久久久久91| 嘟嘟电影网在线观看| 国产精品国产高清国产av| 久久中文看片网| 热99re8久久精品国产| 国产精品不卡视频一区二区| 午夜福利在线在线| 最近视频中文字幕2019在线8| 国产精品伦人一区二区| 欧美激情久久久久久爽电影| avwww免费| 亚洲国产精品成人久久小说 | 九色成人免费人妻av| 久久久久久久久久久丰满| 看非洲黑人一级黄片| 性欧美人与动物交配| 波多野结衣高清无吗| 午夜爱爱视频在线播放| 久久久久久九九精品二区国产| 免费观看的影片在线观看| 大香蕉久久网| 亚洲精品影视一区二区三区av| 看免费成人av毛片| 久久韩国三级中文字幕| 黄色日韩在线| 日韩欧美精品免费久久| 日本黄色视频三级网站网址| 日本一二三区视频观看| 国产老妇女一区| 好男人视频免费观看在线| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 色播亚洲综合网| 黄色配什么色好看| 六月丁香七月| 插逼视频在线观看| 国产精华一区二区三区| 国产探花极品一区二区| 日韩三级伦理在线观看| 免费电影在线观看免费观看| 深夜精品福利| 免费黄网站久久成人精品| 波多野结衣高清无吗| 老司机影院成人| 国产精品一区二区在线观看99 | 直男gayav资源| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 亚洲中文字幕一区二区三区有码在线看| 久久韩国三级中文字幕| 人人妻人人看人人澡| 菩萨蛮人人尽说江南好唐韦庄 | 一本久久中文字幕| 搞女人的毛片| 久久人人爽人人爽人人片va| 一级黄片播放器| 三级经典国产精品| www.色视频.com| 少妇人妻精品综合一区二区 | 久久精品国产亚洲av香蕉五月| 好男人视频免费观看在线| 99热这里只有是精品50| 日本与韩国留学比较| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜添av毛片| a级毛片a级免费在线| 免费av观看视频| 嫩草影院精品99| 国产伦理片在线播放av一区 | 精品久久久久久久人妻蜜臀av| 97在线视频观看| 国产午夜精品一二区理论片| 超碰av人人做人人爽久久| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 小说图片视频综合网站| 亚洲欧美日韩高清专用| 99久久久亚洲精品蜜臀av| 99在线视频只有这里精品首页| 国产精品一区二区性色av| 国产在视频线在精品| 男人舔奶头视频| 一级毛片电影观看 | 成人三级黄色视频| 日本黄大片高清| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 成年免费大片在线观看| 婷婷色综合大香蕉| 成人二区视频| 一区福利在线观看| 国产精品久久久久久久久免| 日本与韩国留学比较| 国产一级毛片在线| 国产精品无大码| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 午夜精品一区二区三区免费看| 久久久成人免费电影| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 久久久色成人| 亚洲精品乱码久久久v下载方式| 国语自产精品视频在线第100页| 国产成人精品婷婷| 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看| 日韩中字成人| 观看美女的网站| 国产久久久一区二区三区| 午夜福利高清视频| 一级黄片播放器| 亚洲精品自拍成人| 特大巨黑吊av在线直播| 欧美bdsm另类| 久久久久久久亚洲中文字幕| 丰满的人妻完整版| 啦啦啦观看免费观看视频高清| 国产伦精品一区二区三区视频9| 一卡2卡三卡四卡精品乱码亚洲| 久久久成人免费电影| 国内久久婷婷六月综合欲色啪| 亚洲一级一片aⅴ在线观看| 亚洲天堂国产精品一区在线| 国产成人精品婷婷| 精品久久久久久久人妻蜜臀av| 深爱激情五月婷婷| 日韩国内少妇激情av| 欧美成人a在线观看| 99久久九九国产精品国产免费| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 国产中年淑女户外野战色| 少妇人妻一区二区三区视频| 级片在线观看| 精品久久久久久久久av| 日韩欧美在线乱码| 一区二区三区四区激情视频 | 日本成人三级电影网站| 91久久精品国产一区二区三区| 色5月婷婷丁香| 青青草视频在线视频观看| 久久人妻av系列| 日韩欧美三级三区| 99久久精品一区二区三区| 久久精品综合一区二区三区| 99热这里只有是精品50| 黑人高潮一二区| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| 欧美不卡视频在线免费观看| 精品久久久久久久末码| 久久热精品热| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 久久久久久伊人网av| 久久草成人影院| 久久久久久久久大av| 免费黄网站久久成人精品| www.色视频.com| 日韩一区二区视频免费看| 久久久久久大精品| 久久久久国产网址| 嫩草影院入口| 国产爱豆传媒在线观看| 久久久国产成人免费| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 日韩精品青青久久久久久| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 51国产日韩欧美| 天天躁夜夜躁狠狠久久av| 女的被弄到高潮叫床怎么办| 黄片wwwwww| 成人美女网站在线观看视频| 深爱激情五月婷婷| 国产精品国产高清国产av| 在现免费观看毛片| 寂寞人妻少妇视频99o| 成年免费大片在线观看| 久久久久久伊人网av| 亚洲欧美日韩高清在线视频| 精品少妇久久久久久888优播| 国产精品一区二区三区四区免费观看| 久久久久网色| 亚洲一区二区三区欧美精品| 亚洲不卡免费看| 国产精品免费大片| 日日摸夜夜添夜夜添av毛片| videossex国产| 制服丝袜香蕉在线| 嘟嘟电影网在线观看| 久久久久精品久久久久真实原创| 精品一品国产午夜福利视频| 日本爱情动作片www.在线观看| 国产男女超爽视频在线观看| 亚洲欧美日韩另类电影网站| 免费观看a级毛片全部| 国产高清三级在线| 亚洲欧洲精品一区二区精品久久久 | 免费观看a级毛片全部| 午夜福利视频在线观看免费| 一级a做视频免费观看| 免费看光身美女| 高清欧美精品videossex| 日韩人妻高清精品专区| 丝瓜视频免费看黄片| 爱豆传媒免费全集在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| 22中文网久久字幕| 国产深夜福利视频在线观看| 3wmmmm亚洲av在线观看| 在线观看免费视频网站a站| 亚洲,一卡二卡三卡| 国产av精品麻豆| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| av专区在线播放| 免费观看无遮挡的男女| 狠狠婷婷综合久久久久久88av| 国产69精品久久久久777片| 日韩不卡一区二区三区视频在线| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 国产成人精品福利久久| 最近2019中文字幕mv第一页| 成人黄色视频免费在线看| 国产日韩欧美在线精品| 国产黄片视频在线免费观看| 欧美激情国产日韩精品一区| 热re99久久国产66热| 永久网站在线| 少妇熟女欧美另类| 中国三级夫妇交换| 国产在线视频一区二区| 性色avwww在线观看| 超色免费av| 国产色爽女视频免费观看| 草草在线视频免费看| 极品少妇高潮喷水抽搐| 激情五月婷婷亚洲| 精品人妻熟女毛片av久久网站| 成人无遮挡网站| 欧美精品一区二区大全| 99久久人妻综合| 日韩强制内射视频| 色94色欧美一区二区| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 永久网站在线| 亚洲成人手机| 成人午夜精彩视频在线观看| 丰满乱子伦码专区| 国产色爽女视频免费观看| av播播在线观看一区| 一边摸一边做爽爽视频免费| 久久热精品热| 人妻少妇偷人精品九色| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 久久久亚洲精品成人影院| 男女边摸边吃奶| 最近中文字幕高清免费大全6| 九草在线视频观看| 卡戴珊不雅视频在线播放| 欧美三级亚洲精品| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 日日爽夜夜爽网站| 永久网站在线| 51国产日韩欧美| 国产欧美日韩综合在线一区二区| 欧美亚洲日本最大视频资源| 爱豆传媒免费全集在线观看| 午夜视频国产福利| 亚洲国产精品一区三区| 国产探花极品一区二区| 美女内射精品一级片tv| 满18在线观看网站| 国产在视频线精品| 亚洲一区二区三区欧美精品| 久热久热在线精品观看| 97超视频在线观看视频| 成人综合一区亚洲| 精品一区在线观看国产| 另类亚洲欧美激情| xxx大片免费视频| 91精品三级在线观看| 一二三四中文在线观看免费高清| 久久国产精品大桥未久av| 欧美 亚洲 国产 日韩一| 永久网站在线| 国产精品一区www在线观看| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 国产片内射在线|