• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion and Reaction Model of Catalyst Pellets for Fischer-Tropsch Synthesis

    2013-07-31 23:13:35WuJianminSunQiwenZhangZongsenPangLifeng
    中國煉油與石油化工 2013年4期

    Wu Jianmin; Sun Qiwen; Zhang Zongsen; Pang Lifeng

    (Yankuang Energy R&D Co., Ltd., State Key Laboratory of Coal Liquefaction and Coal Chemical Technology, Shanghai 201203)

    Diffusion and Reaction Model of Catalyst Pellets for Fischer-Tropsch Synthesis

    Wu Jianmin; Sun Qiwen; Zhang Zongsen; Pang Lifeng

    (Yankuang Energy R&D Co., Ltd., State Key Laboratory of Coal Liquefaction and Coal Chemical Technology, Shanghai 201203)

    The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthesis conditions. The reactants diffused from the bulk gas phase to the external surface of the pellet, and then the reactants diffused through the wax inside the pellet and reacted on the internal surface formed along the pore passages of the pellet. On the basis of reaction kinetics and doubleα-ASF product distribution model, a diffusion and reaction model of catalyst pellet was established. The effects of diffusion and reaction interaction in a catalyst pellet, the bulk temperature, the reaction pressure and the pellet size on the reactivity were further investigated. The relationship between the internal diffusion effectiveness factor of spherical catalyst pellet and the Thiele modulus were also discussed. The bulk temperature and pellet size have significant effects on the reactivity, while the pressure shows only a slight influence on the reactivity. The internal diffusion effectiveness factor decreases with an increasing Thiele modulus.

    Fischer-Tropsch synthesis; diffusion and reaction; catalyst pellet; internal diffusion effectiveness factor

    1 Introduction

    The Fischer-Tropsch synthesis (FTS) process, which converts syngas to paraffins, olefins and oxygenates, is believed to be one of the most important options for the production of clean transportation fuels and chemical feedstocks amid the circumstances of depleting crude oil resources today[1–4]. The FTS products consist of a complex multicomponent mixture of linear and branched hydrocarbons and oxygenated products, the majority of which are linear hydrocarbons[5].

    Although a lot of researches have been conducted in the course of the development of Fischer-Tropsch technology, information concerning detailed descriptions of the diffusion and reaction behaviors at the pellet level, which is of great importance for reactor scale-up and catalyst development, is relatively few in the literature so far, because of the inherent complexity of FTS system. Intra-pellet diffusion and reaction interaction behavior have a great effect on heterogeneous catalytic reaction characteristics, catalyst performance execution and reactor capability. Elucidating catalytic reaction behavior of internal particle and realizing the effect of transfer and reaction factors on the reaction outcome will provide theoretical basis for catalyst design and reactor scale-up. Hence, with respect to the complex Fischer-Tropsch synthesis reaction system, the study on pellet level model is of great significance.

    In order to describe the diffusion and reaction behavior and its effect on reactivity, it is of paramount importance to combine a FTS kinetics model and carbon chain growth probability model with the diffusion-reaction model for catalyst pellets. The FTS kinetics has extensively been studied, and many attempts have been made on the rate equations describing the FTS reactions[6]. Meanwhile, the hydrocarbon products were lumped according to the carbon number of hydrocarbon molecules with an ideal Anderson-Schulz-Flory (ASF) distribution (a single parameter,α) other than twoαvalues of chain growth probability distribution. Hence, twoαvalues of chain growth probability based on double active sites theory over the Fe-based catalyst will be worth further applying in the pellet model established in this study.

    More recently, Madon, et al.[7]have put forward a comprehensive study on the diffusion and reaction process in Co and Ru-based catalyst pellets, leading to an olefin re-adsorption model. Yang, et al.[8]have investigated the mass transfer limitations on fixed-bed Fischer-Tropsch synthesis. Wang, et al.[9]also have established a comprehensive millimeter level catalyst pellet model with detailed mechanistic kinetics in FTS. However, all of these studies on pellet models were focused on the millimeter level catalyst pellet, and seldom models dealt with detailed description of the diffusion and reaction behaviors at the micron level pellets in the literature.

    Therefore, the main objective of this work is to establish a comprehensive micron level catalyst pellet model for the complex Fischer-Tropsch synthesis system, into which the mechanistic kinetics model and the two α values of chain growth probability (doubleα-ASF distribution model) based on the Fe-based catalyst in FTS are imbedded. The multicomponent diffusion-reaction model is then applied to analyze the interaction between diffusion and reaction theoretically and to simultaneously discuss the influence of bulk temperature, reaction pressure and pellet size on reaction outcome for Fischer-Tropsch synthesis at the micron level pellets.

    2 Establishment of Catalyst Pellet Model

    2.1 Fe-based Fischer-Tropsch synthesis catalyst

    Precipitated Fe-based catalysts (Fe-Cu-K2O) were developed by Yankuang Energy R&D Co., Ltd. Characteristic parameters of the Fe-based catalyst are listed in Table 1.

    Table 1 Characteristic parameters of Fe-based catalyst for Fischer-Tropsch synthesis

    2.2 Fischer-Tropsch synthesis reaction

    In the Fischer-Tropsch synthesis system there exist CO, H2, CH4, lower hydrocarbons, oil, wax, H2O, CO2, and oxygenated compounds due to the high complexity of synthesis reaction. To simplify the process, it is not necessary to take into account non-dominant products. Water gas shift reaction is indispensable for the iron based catalyst. According to the lumped thought, CH4, C3H8, C10H22, C20H42, CO2and H2O are regarded as main products in this study[11]. Hence, the following reactions are deemed to be independent reactions by lumped thought. CO is chosen as the key component.

    2.3 Mathematical description of pellet diffusion and reaction model

    For a spherical catalyst pellet in which multiple reactions occur, the dimensionless forms (r=R/Rp) of mass and energy balances at steady state can be expressed by the following differential equations[12]:

    with the corresponding boundary conditions shown below:

    It should be noted that, for the catalyst pellet simulation, the internal diffusion effectiveness factor on the basis of component can be calculated from:

    3 Kinetics and Physicochemical Properties

    3.1 Reaction kinetics equations and product distribution model

    The reaction rate of CO was approximately expressed as the sum of hydrocarbon formation rate and CO2formation rate (WGS reaction rate). Hence, the reaction rate of CO based on precipitated Fe-based catalyst used in this study can be written as[13-14]:

    In this work the carbon number distribution of Fischer-Tropsch products on Fe-based catalyst was studied by a modified Anderson Schulz Flory distribution with twoαvalues of chain growth probabilitiy[5]. Then the twoα-ASF distribution expression becomes:

    The expressions forα1,α2andβbased on hydrocarbons with carbon numbersn>2 can be found in the literature[15-16]. C1and C2products do not obey the doubleα-ASF distribution. So W1and W2can be calculated from the literature[16]. All of the parameters in the kinetics model and the twoα-ASF distribution model are derived from the low temperature Fischer-Tropsch synthesis research report of Yankuang Energy R&D Co., Ltd.

    3.2 Physical and chemical properties

    3.2.1 Effective diffusivity prediction

    The diffusivities of CO, H2and CO2in the liquid solvent, wax, can be calculated from the following correlations[17]:

    Because the direct experimental data are not available for the other relevant components, their molecular diffusivities in the liquid wax are, by means of diffusivity correlations in infinitely dilute solutions, estimated according to the following equation[18]:

    The mole volumeVi,mcan be calculated by the Tyn-Calus method[18]. The corresponding effective diffusivity of componentiin the catalyst pores is calculated by correcting the molecular diffusivity with the porosity and tortuosity.

    The tortuosity can be estimated according to the Hugo correlation[19]:

    where parametermis 1.0 generally.

    3.2.2 Effective thermal conductivity prediction

    The effective thermal conductivity of catalyst pellet can be estimated according to the Woodside random distribution heat transfer model[20]:

    in which the thermal conductivity of liquid (λL) is calculated by the Latini method[21]. The thermal conductivity of catalyst (λS) may refer to the thermal conductivity of Fe3C based on the cognition and study of iron carbide activity phase for Fischer-Tropsch synthesis[10].

    3.2.3 Enthalpy difference

    By neglecting that the enthalpy variation effect of the reactant solubility balances with that of product evaporation, the overall enthalpy difference can then be approximated by the formula[18,22]:

    4 Simulation and Discussion

    The model Equations (6—8) together with the boundary conditions given by Equations (9—11) lead to a twopoint boundary-value problem (BVP). The solution of the boundary value problem by applying standard orthogonalcollocation method[23]can be transformed into the solution of a set of nonlinear algebraic equations realized by employing the Broyden method[24].

    4.1 Intrapellet concentration and temperature profiles

    It is of significance to investigate the interaction between diffusion and reaction in a Fischer-Tropsch synthesis catalyst pellet, which is rather complex compared to cases related with simple reactions. Simulation was carried out for the Fischer-Tropsch synthesis under the condition ofP=2.1 MPa,T=513 K, and H2/CO (mole ratio)=1.65 with the initial concentration of the key components equating toyCO=0.3738,yH2=0.6168,yCO2=0.0037,yH2O=0, andyCH4=0.0005, respectively. Figures 1 and 2 show the concentration profiles of key components and temperature profile in wax-filled catalyst pores under the Fischer-Tropsch synthesis condition. As shown in Figures 1 and 2, the Fischer-Tropsch synthesis reaction mainly occurred at the external shell of catalyst pellet according to the concentration gradients of CO and H2. At the reaction sites, the concentrations of CO and H2decreased quickly, while the concentrations of hydrocarbons increased remarkably.

    Figure 1 Concentration profiles of key components in catalyst pellet

    Figure 2 Concentration profiles of hydrocarbons and temperature profile in catalyst pellet

    The reason is that CO is consumed not only by the FTS reaction, but also by the WGS reaction, leading to the rap-id consumption of CO. Because the hydrocarbon-forming reactions generally prevail in the Fischer-Tropsch synthesis system, it is not surprising that the concentration of the accompanying product, H2O, exhibits a steadily increasing trend along the whole pellet dimension. The relatively high liquid concentration of H2O means that the WGS reaction will emerge gradually from a startup state to a fully developed state.

    Judging from the concentration profiles of components, it can be concluded that the concentrations of methane and C10H22were higher than C3H8in the catalyst pellet based on chain growth characteristic of FTS because of the high H2concentration. Meanwhile, the trend of increase in CO2concentration proceeds relatively slowly at this site because of the reversible WGS reaction. The molecules of relatively higher hydrocarbons (C5+) tended to form in the low temperature FTS catalyst pellet. The temperature difference between the center of pellet and the pellet surface was equal to 0.012 ℃ due to high exothermic reaction and extremely small pellet diameter.

    Based on the analysis of the concentration profiles, there is almost no intra-pellet diffusion restriction in the catalyst pellet, especially pertaining to the reactant CO. As it is described in the reference[13], the phase equilibrium ensures that liquid phase fugacities of CO and H2throughout the pellet are equal to their corresponding gas pressure outside the pellet. As a result, the surface fugacities are constant throughout the pellet partial pressures of CO and H2, and under these conditions synthesis reactions are unaffected by the presence of intra-pellet liquids.

    The internal diffusion effectiveness factors (ζ) of CO and H2are 0.999 05 and 0.999 66, respectively, which are nearly equal to 1. Hence, the CO concentration rarely influences diffusion rates and in this case the Fischer-Tropsch synthesis reaction is controlled by dynamics.

    4.2 Temperature effect on reactivity

    The temperature effect on the concentration profiles of components and the temperature difference between the external surface and the center of the pellet are shown in Figures 3 and 4.

    It can be seen from these figures that, with the bulk temperature increasing from 503 K to 523 K, the decrease in CO and H2concentrations becomes faster, because the diffusion rates of reactants gradually decreases to a small extend. A slight trend of increase in CH4, C3H8and C10H22concentrations appears with an increasing temperature, while the CH4concentration increases to a greater extent. These changes indicate that the increase of bulk temperature suppresses the chain growth probability of hydrocarbons, while the CH4selectivity increases. The reason is that WGS reaction enhances the involvement of carbon source of converted CO with an increasing temperature and, accordingly, decreases the carbon source of hydrocarbon-forming reaction. On the other word, it is not good for carbon chain growth with an increasing bulk temperature. The temperature difference between the external surface and the center of the pellet is small and keeps a slowly increasing trend with an increasing bulk temperature. This phenomenon originates not only from small reaction rate at relatively low temperature but is also caused by the micron level pellet diameter.

    Figure 3 Temperature effect on the concentration profiles of key components in catalyst pellet (P=2.1 MPa, H2/CO=1.65, Rp=60μm)

    It can be found from these results that low temperature is more favorable for suppressing the selectivity of the undesired products (CH4and CO2). In addition, an optimalselectivity of C2+ products can be achieved by properly selecting the operating temperature.

    Figure 4 Temperature effect on the concentration profiles of hydrocarbons and temperature difference in catalyst pellet (P=2.1 MPa, H2/CO=1.65, Rp=60μm)

    4.3 Pressure effect on reactivity

    The pressure effect on the concentration profiles of components and the temperature difference between the external surface and the center of the pellet are shown in Figures 5 and 6. Figures 5 and 6 indicate that the reaction pressure imposes only a slight influence on the reactivity, mainly because of the small effect of pressure on the diffusivities of the reactants in the waxy products. The variation of the temperature difference between the external surface and the center of the pellet with the pressure shows a corresponding trend in the case of the temperature difference variation with the bulk temperature.

    Figure 5 Pressure effect on the concentration profiles of key components in catalyst pellet (T=513 K, H2/CO=1.65, Rp=60μm)

    Figure 6 Pressure effect on the concentration profiles of hydrocarbons and temperature difference in catalyst pellet

    4.4 Pellet size effect on reactivity

    The pellet size effect on the concentration profiles of components and the temperature difference between the external surface and the center of the pellet are shown in Figures 7 and 8.

    It can clearly be seen that for a very small catalyst pellet the internal temperature of pellet increases and concentrations of CO and H2decrease with an increasing pellet size owing to the increase in diffusion resistance. It can be seen from the hydrocarbon concentration profiles that the magnitude of increase in concentration of the undesired products in the catalyst pore, CH4, is greater than the increase of C2+ products concentrations with an increasing pellet size, which shows that smaller catalyst pellet is desirable for decreasing the diffusion resistance of reactants and products through the catalyst. The temperature difference between the external surface and the center of the pellet increases with an increasing pellet size because of the increase of reaction heat amount. According to the reactivity analysis, it can be deduced that the large catalystpellet size plays a negative role in improving the reactivity of desired products because of strong diffusion effects. To enhance the reactivity, small catalyst pellets are preferred. For the micron level catalyst pellet, the internal diffusion effectiveness factor always stays at a high level, so the reaction environments of the internal region and the surface of pellet are almost the same. However, for the millimeter level catalyst pellet with diameter ranging from around 2 mm to 4 mm, the internal diffusion effectiveness factor is within a range of 0.14—0.28[15], which corresponds to a condition of severe diffusion restriction. Hence, very small catalyst particles should be used in FTS intrinsic kinetic experiments if liquid wax is present in the pellet pores.

    Figure 7 Pellet size effect on the concentration profiles of key components in catalyst pellet (T=513 K, P=2.1 MPa, H2/CO=1.65)

    Figure 8 Pellet size effect on the concentration profiles of key components in catalyst pellet (T=513 K, P=2.1 MPa, H2/CO=1.65)

    In a word, it is clear that small diameter catalyst pellet should be applied in the slurry Fischer-Tropsch synthesis reactor. For the fixed-bed Fischer-Tropsch synthesis reactor, a proper pellet size (at millimeter level) can maintain a low pressure drop in the reactor and provide effective heat removal.

    4.5 Internal diffusion effectiveness factors of spherical catalyst pellet

    According to Equation (12), the relationship between the internal diffusion effectiveness factor (ζ) of spherical catalyst pellet and the Thiele modulusis shown in Figure 9.

    Figure 9 Relationship between the internal diffusion effectiveness factor of spherical catalyst pellet and Thiele modulus

    The criterion for assessing the transport restriction is shown below[25]:

    It can be seen that the internal diffusion effectiveness factor approximates to 1 when the Thiele modulus is lower than 0.4, which indicates that diffusion in spherical pelletmoves quickly and the effect of internal diffusion can be ignored. When the Thiele modulus is lower than 2 and greater than 0.5, the internal diffusion effectiveness factor is between 0.4 and 0.9, which shows that the effect of internal diffusion is obvious. When the Thiele modulus is greater than 2, the internal diffusion effectiveness factor is very small, which corresponds to a condition of severe diffusion restriction. The trend of the internal diffusion effectiveness factor decreases with a slow increase in the Thiele modulus.

    5 Conclusions

    On the basis of reaction kinetics and doubleα-ASF product distribution model, a catalyst pellet model is developed and shown to be a reasonable description of diffusion and reaction phenomena in a Fe-based Fischer-Tropsch synthesis catalyst pellet. Orthogonal collocation and the Broyden method are used to solve the pellet model equations. The concentration profiles of key components and hydrocarbons and temperature profile in the pellet pores are obtained. The simulation results show that intra-pellet diffusion restrictions almost do not exist in the pellet pore and the internal diffusion effectiveness factors (ζ) of CO and H2are 0.999 05 and 0.999 66, nearly equal to 1, respectively.

    The effects of bulk temperature, reaction pressure and pellet size on reactivity in the catalyst pellet are also simulated. The study results show that the hydrocarbons chain growth probabilities are suppressed with an increasing bulk temperature, while the CH4concentration increases to a greater extent. The rate of decrease in CO and H2concentrations becomes faster because the diffusion resistance of reactants gradually increases to a smaller extent. Furthermore, the temperature difference between the external surface and the center of the pellet is small, and, however, still maintains a trend of slow increase. The effect of pressure on reactivity is not remarkable. With an increasing pellet size, the internal temperature of pellet increases coupled with a decrease in the concentration of CO and H2. The increase of CH4concentration is much greater than the concentration of C2+ hydrocarbon products. The temperature difference between the external surface and the center of the pellet increases with an increasing pellet size. Small catalyst pellets are responsible for the enhanced reactivity. The internal diffusion effectiveness factor decreases with an increasing Thiele modulus. Acknowledgement: Financial support from the National Basic Research Program of China (973 Program, 2010CB736203) is gratefully acknowledged.

    Nomenclature

    dR—cell shell thickness, μm

    m—correlation parameter

    n—amount of substance, mol

    P—pressure, MPa

    R—the distance from the centre in the catalyst, μm

    ν—reaction rate, mol/(g·s)

    T—temperature, K

    V—gas volume, m3

    y—mole fraction

    Z—compressibility factor

    Greek Symbols

    β—mole fraction of organic product synthesized on site 1

    Subscripts

    g—gas

    i, j—component

    L—liquid

    n—number of carbon

    [1] Sie S T, Senden M M G, Van Wechem H M H. Conversion of natural gas to transportation fuels via the Shell middle distillate synthesis process [J]. Catalysis Today, 1991, 8(3): 371-394

    [2] Dry M E. Present and future applications of the Fischer-Tropsch process [J]. Applied Catalysis A: General, 2004, 276(1/2): 1-3

    [3] Dry M E. The Fischer-Tropsch process—Commercial aspects [J]. Catalysis Today, 1990, 6 (3): 183-206

    [4] Schulz H. Short history and present trends of Fischer-Tropsch synthesis [J]. Applied Catalysis A: General, 1999, 186(1/2): 3-12

    [5] Dry M E. High quality diesel via the Fischer-Tropsch process—A review [J]. Journal of Chemical Technology and Biotechnology, 2001, 77(1): 43-50

    [6] Van der Laan G P, Beenackers A A C M. Kinetics and selectivity of the Fischer–Tropsch synthesis: A literature review [J]. Catalysis Reviews-Science Engineering, 1999, 41(3/4): 255-318

    [7] Madon R J, Iglesia E. Hydrogen and CO intrapellet diffusion effects in ruthenium-catalyzed hydrocarbon synthesis [J]. Journal of Catalysis, 1994, 149(2): 428-437

    [8] Yang J H, Kim H J, Chun D H, et al. Mass transfer limitations on fixed-bed reactor for Fischer-Tropsch synthesis [J]. Fuel Processing Technology, 2010, 91(3): 285-289

    [9] Wang Y N, Xu Y Y, Xiang H W, et al. Modeling of catalyst pellets for Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4324-4335

    [10] Ma Q F. Practical Thermophysical Properties Manual [M]. Beijing: Agriculture and Mechanical Press of China, 1986 (in Chinese)

    [11] Wu J M, Zhang H T, Ying W Y, et al. Simulation and analysis of a tubular fixed-bed Fischer-Tropsch synthesis reactor with Co-based catalyst [J]. Chemical Engineering & Technology, 2010, 33(7): 1083-1092

    [12] Zhu B C. Chemical Reaction Engineering, [M]. 4th ed. Beijing: Chemical Industry Press, 2006 (in Chinese)

    [13] Van der Laan G P, Beenackers A A C M. Intrinsic kinetics of the gas-solid Fisher-Tropsch and water gas shift reactions over a precipitated iron catalyst [J]. Applied Catalysis A: General, 2000, 193(1/2): 39-53

    [14] Lox E S, Froment G F. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling [J]. Industrial & Engineering Chemistry Research, 1993, 32(1): 71-82

    [15] Huff Jr G A, Satterfield C N. Evidence for two chain growth probabilities on iron catalysts in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1984, 85(2): 370-379

    [16] Kuipers E W, Vinkenburg I H, Oosterbeek H. Chain length dependence ofα-olefin readsorption in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1995, 152(1): 137-146

    [17] Wang Y N. Modelization and simulation of fixed-bed Fischer-Tropsch synthesis: Kinetics, pellet and reactor [D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2001 (in Chinese)

    [18] Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids [M]. 5th ed. New York : McGraw-Hill, 2005

    [19] Hugo P. Der Einflu? der Porenvernetzung auf den Labyrinth-Faktor von Pre?lingen und Sinterk?rpern [J]. Chemie Ingenieur Technik, 1974, 46(15): 645-646

    [20] Woodside W, Messmer J H. Thermal conductivity of porous media.Ⅰ. Unconsolidated sands [J]. Journal of Applied Physics, 1962, 32(9): 1688-1699

    [21] Latini G, Passerini G, Polonara F. A Prediction method for thermal conductivity of alternative refrigerants in the liquid phase [J]. International Journal of Thermophysics, 1996, 17(1): 85-98

    [22] Wu J M, Sun Q W, Gao T F, et al. Thermodynamic calculation and analysis of Fischer-Tropsch synthesis system [J]. Chemical Engineering, 2012, 40(3): 30-34 (in Chinese)

    [23] Finlayson B A. Nonlinear Analysis in Chemical Engineering [M]. New York: McGraw-Hill, 1980

    [24] Broyden C G. A class of methods for solving nonlinear simultaneous equations [J]. Mathematics of Computation, 1965, 19(92): 577-593

    [25] Gonoz E E, Gottifredi J C. Rational approximations of effectiveness factor and general diagnostic criteria for heat and mass transport limitations [J]. Catalysis Reviews-Science Engineering, 1983, 25 (1): 119-140

    Recieved date: 2013-06-17; Accepted date: 2013-07-18.

    Sun Qiwen, E-mail: yetech@ye-tech. com.

    欧美极品一区二区三区四区| 女人久久www免费人成看片| 欧美日韩一区二区视频在线观看视频在线 | 国产v大片淫在线免费观看| 日韩伦理黄色片| 一级a做视频免费观看| 久久国内精品自在自线图片| 中文在线观看免费www的网站| 伦精品一区二区三区| 成人毛片a级毛片在线播放| 99久久中文字幕三级久久日本| 嫩草影院新地址| 国产视频内射| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 久久久国产一区二区| 婷婷色综合www| 别揉我奶头 嗯啊视频| 99re6热这里在线精品视频| 91午夜精品亚洲一区二区三区| 高清av免费在线| 日本一二三区视频观看| 国产 一区 欧美 日韩| 免费无遮挡裸体视频| 亚洲成人中文字幕在线播放| 久久韩国三级中文字幕| 尤物成人国产欧美一区二区三区| av天堂中文字幕网| 99久久中文字幕三级久久日本| 精品久久久久久久末码| 高清在线视频一区二区三区| 日本免费在线观看一区| 国产精品久久久久久精品电影| 免费观看无遮挡的男女| av线在线观看网站| h日本视频在线播放| 3wmmmm亚洲av在线观看| 欧美成人a在线观看| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看| 亚洲国产av新网站| 一区二区三区免费毛片| 国产日韩欧美在线精品| 午夜福利高清视频| 成人高潮视频无遮挡免费网站| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影| av国产久精品久网站免费入址| 国产91av在线免费观看| www.av在线官网国产| 欧美日韩精品成人综合77777| 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| 亚洲国产日韩欧美精品在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产欧美人成| 欧美丝袜亚洲另类| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 99久久精品一区二区三区| 身体一侧抽搐| 色综合站精品国产| 国产单亲对白刺激| 波野结衣二区三区在线| 国产欧美另类精品又又久久亚洲欧美| 久99久视频精品免费| 日韩电影二区| 亚洲真实伦在线观看| 18禁在线播放成人免费| 男人狂女人下面高潮的视频| 日韩国内少妇激情av| 亚洲熟女精品中文字幕| 亚洲aⅴ乱码一区二区在线播放| 亚洲久久久久久中文字幕| 白带黄色成豆腐渣| 国产欧美另类精品又又久久亚洲欧美| 久久精品夜色国产| www.av在线官网国产| 婷婷六月久久综合丁香| 在现免费观看毛片| 亚洲精品一二三| 国产黄频视频在线观看| 99九九线精品视频在线观看视频| 国产单亲对白刺激| 精品国产一区二区三区久久久樱花 | 老女人水多毛片| 99视频精品全部免费 在线| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 欧美潮喷喷水| 日韩欧美精品v在线| 亚洲精品久久午夜乱码| 乱码一卡2卡4卡精品| 欧美日韩一区二区视频在线观看视频在线 | 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 十八禁国产超污无遮挡网站| 人妻夜夜爽99麻豆av| 亚洲内射少妇av| 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| 免费播放大片免费观看视频在线观看| 国产亚洲精品久久久com| 亚洲在线观看片| 男的添女的下面高潮视频| 综合色av麻豆| 国产精品熟女久久久久浪| 国产乱来视频区| 国产乱来视频区| 三级毛片av免费| 亚洲美女搞黄在线观看| 午夜久久久久精精品| 精品国内亚洲2022精品成人| 国产精品99久久久久久久久| 九九在线视频观看精品| 男的添女的下面高潮视频| 日韩中字成人| 亚洲精品乱久久久久久| 亚洲内射少妇av| 性插视频无遮挡在线免费观看| 99久国产av精品国产电影| 国产一级毛片在线| 成人亚洲精品一区在线观看 | 成人亚洲欧美一区二区av| 在线免费观看的www视频| 在线 av 中文字幕| 九草在线视频观看| 久久久国产一区二区| 少妇熟女欧美另类| av天堂中文字幕网| 国产一区二区亚洲精品在线观看| 麻豆av噜噜一区二区三区| 岛国毛片在线播放| xxx大片免费视频| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 又大又黄又爽视频免费| 乱系列少妇在线播放| 久久久久免费精品人妻一区二区| 亚洲av成人精品一二三区| 午夜精品在线福利| 黄色一级大片看看| 亚洲国产欧美人成| 亚洲精品一区蜜桃| 神马国产精品三级电影在线观看| 欧美xxxx黑人xx丫x性爽| 国产色婷婷99| 国产一区二区在线观看日韩| 亚洲综合精品二区| 国产伦在线观看视频一区| 国产精品av视频在线免费观看| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 哪个播放器可以免费观看大片| 丰满少妇做爰视频| 国产在线男女| 国产精品久久久久久精品电影| 亚洲国产精品成人久久小说| 99久久九九国产精品国产免费| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久久久免| 1000部很黄的大片| 亚洲av一区综合| 99久久人妻综合| 纵有疾风起免费观看全集完整版 | 免费人成在线观看视频色| 亚洲精品,欧美精品| 91久久精品国产一区二区成人| 久久久a久久爽久久v久久| 神马国产精品三级电影在线观看| 春色校园在线视频观看| 熟妇人妻久久中文字幕3abv| 欧美精品国产亚洲| 欧美极品一区二区三区四区| 国产黄色免费在线视频| 毛片女人毛片| 亚洲色图av天堂| 国产亚洲91精品色在线| 成人亚洲精品av一区二区| 亚洲第一区二区三区不卡| or卡值多少钱| 又黄又爽又刺激的免费视频.| 亚洲av国产av综合av卡| 99久久精品国产国产毛片| 免费看不卡的av| 搡女人真爽免费视频火全软件| 精品欧美国产一区二区三| 中国美白少妇内射xxxbb| 婷婷六月久久综合丁香| 啦啦啦啦在线视频资源| 1000部很黄的大片| 成人无遮挡网站| 少妇的逼水好多| 亚洲欧美成人综合另类久久久| 久久久色成人| 人妻制服诱惑在线中文字幕| 成人特级av手机在线观看| 成年av动漫网址| 国产精品综合久久久久久久免费| 69人妻影院| 久久久久久久亚洲中文字幕| 国产不卡一卡二| 国产人妻一区二区三区在| 黄色配什么色好看| 国产高清国产精品国产三级 | 18禁动态无遮挡网站| 人妻夜夜爽99麻豆av| av在线播放精品| 精品一区二区三卡| 亚洲av男天堂| 亚洲av不卡在线观看| 一区二区三区高清视频在线| 免费观看性生交大片5| 一级爰片在线观看| 精品久久久久久电影网| 免费看日本二区| 国产免费福利视频在线观看| 美女内射精品一级片tv| 亚洲在久久综合| 亚州av有码| 91精品国产九色| 寂寞人妻少妇视频99o| 午夜亚洲福利在线播放| 久久久久久久久中文| 亚洲av男天堂| 婷婷色av中文字幕| 国产黄色免费在线视频| 久久久久网色| 插逼视频在线观看| 成人午夜高清在线视频| 国产伦一二天堂av在线观看| av一本久久久久| 精品久久久久久久久久久久久| 国产极品天堂在线| 成年人午夜在线观看视频 | 欧美性猛交╳xxx乱大交人| 国产91av在线免费观看| 亚洲精品日韩在线中文字幕| 成人性生交大片免费视频hd| 久久久久久久久久人人人人人人| 日本av手机在线免费观看| 中文字幕久久专区| 日韩欧美三级三区| 日日啪夜夜爽| 少妇丰满av| 99热全是精品| 日韩人妻高清精品专区| 国内精品宾馆在线| 国产高清不卡午夜福利| 69人妻影院| 国产在线男女| 有码 亚洲区| 又爽又黄a免费视频| 国产一区二区三区av在线| 成人av在线播放网站| 亚洲经典国产精华液单| 日日干狠狠操夜夜爽| 青春草视频在线免费观看| 22中文网久久字幕| 激情 狠狠 欧美| 2021少妇久久久久久久久久久| 亚洲久久久久久中文字幕| 亚洲在久久综合| 男女啪啪激烈高潮av片| 又粗又硬又长又爽又黄的视频| 性插视频无遮挡在线免费观看| 亚洲国产成人一精品久久久| 白带黄色成豆腐渣| 日韩av免费高清视频| 欧美日韩国产mv在线观看视频 | 成人特级av手机在线观看| 大香蕉97超碰在线| 国产综合懂色| 岛国毛片在线播放| 亚洲av.av天堂| 国产精品美女特级片免费视频播放器| 国产成人精品久久久久久| av卡一久久| 亚洲国产日韩欧美精品在线观看| 国产国拍精品亚洲av在线观看| 尤物成人国产欧美一区二区三区| 婷婷六月久久综合丁香| 久久久久久国产a免费观看| 日日啪夜夜爽| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 在线观看一区二区三区| 欧美3d第一页| 免费看a级黄色片| 简卡轻食公司| 91久久精品电影网| 午夜精品在线福利| 国产午夜福利久久久久久| 在线观看免费高清a一片| 99久久精品一区二区三区| 爱豆传媒免费全集在线观看| videos熟女内射| 最新中文字幕久久久久| 中文字幕亚洲精品专区| 日韩欧美精品v在线| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 午夜福利视频1000在线观看| 大陆偷拍与自拍| 嫩草影院新地址| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 国产色婷婷99| 国产av不卡久久| 中文在线观看免费www的网站| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 中文欧美无线码| 亚洲精品成人av观看孕妇| 亚洲av日韩在线播放| 亚洲综合精品二区| 亚洲国产高清在线一区二区三| 亚洲精品影视一区二区三区av| 免费看光身美女| 一级二级三级毛片免费看| 天堂av国产一区二区熟女人妻| 亚州av有码| 午夜久久久久精精品| 亚洲欧洲国产日韩| 男人狂女人下面高潮的视频| av国产免费在线观看| 韩国高清视频一区二区三区| 免费看a级黄色片| 在线免费观看不下载黄p国产| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 久久久久久九九精品二区国产| 99久国产av精品国产电影| 欧美最新免费一区二区三区| av卡一久久| 岛国毛片在线播放| 在线观看免费高清a一片| 久久久久国产网址| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 一级二级三级毛片免费看| 国产精品人妻久久久久久| 久久久久久久午夜电影| 免费av观看视频| 国产精品爽爽va在线观看网站| 久久久精品免费免费高清| 国产男人的电影天堂91| 精品一区二区三卡| 一级a做视频免费观看| 国产探花在线观看一区二区| 国产精品日韩av在线免费观看| 联通29元200g的流量卡| 欧美另类一区| 中文资源天堂在线| 综合色丁香网| 日本熟妇午夜| 丝袜美腿在线中文| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 国产av码专区亚洲av| 亚洲精品影视一区二区三区av| 国产黄片美女视频| 久久午夜福利片| 欧美最新免费一区二区三区| 最近手机中文字幕大全| 精品一区二区三区人妻视频| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 久久久久性生活片| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 日韩中字成人| 亚洲av在线观看美女高潮| 搡女人真爽免费视频火全软件| 日本三级黄在线观看| 亚洲怡红院男人天堂| 熟妇人妻不卡中文字幕| 亚洲综合色惰| 国产精品麻豆人妻色哟哟久久 | 尾随美女入室| 国产黄色小视频在线观看| 搞女人的毛片| 99九九线精品视频在线观看视频| 天天一区二区日本电影三级| 欧美zozozo另类| 国产伦一二天堂av在线观看| 免费观看无遮挡的男女| 欧美区成人在线视频| 最近手机中文字幕大全| 边亲边吃奶的免费视频| 51国产日韩欧美| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区国产| 亚洲乱码一区二区免费版| 国产乱来视频区| 91aial.com中文字幕在线观看| 久久草成人影院| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 丰满人妻一区二区三区视频av| 最近最新中文字幕大全电影3| 高清日韩中文字幕在线| 大又大粗又爽又黄少妇毛片口| 国产av不卡久久| 少妇的逼水好多| 偷拍熟女少妇极品色| 日韩国内少妇激情av| 国产免费视频播放在线视频 | 乱系列少妇在线播放| 日韩av不卡免费在线播放| 99热6这里只有精品| 国产av在哪里看| 男人狂女人下面高潮的视频| 精品久久久久久电影网| 中文字幕久久专区| 亚洲av电影在线观看一区二区三区 | 熟妇人妻久久中文字幕3abv| 欧美成人a在线观看| 色网站视频免费| 一本久久精品| 91久久精品电影网| 麻豆乱淫一区二区| 亚洲成人中文字幕在线播放| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| 欧美一级a爱片免费观看看| 麻豆国产97在线/欧美| 少妇的逼水好多| 观看美女的网站| 成人高潮视频无遮挡免费网站| 一个人观看的视频www高清免费观看| av福利片在线观看| 亚洲国产色片| 只有这里有精品99| 女人被狂操c到高潮| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 国产成年人精品一区二区| 大又大粗又爽又黄少妇毛片口| 国产亚洲最大av| 欧美+日韩+精品| 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 99久国产av精品国产电影| 全区人妻精品视频| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 亚洲久久久久久中文字幕| 只有这里有精品99| av女优亚洲男人天堂| av福利片在线观看| 校园人妻丝袜中文字幕| 久久久久久久久中文| 亚洲精品色激情综合| 中文字幕制服av| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 高清午夜精品一区二区三区| 久久99热这里只频精品6学生| 免费av观看视频| 2018国产大陆天天弄谢| 久久久久久久国产电影| 国产极品天堂在线| 99久国产av精品国产电影| 夫妻性生交免费视频一级片| 91久久精品国产一区二区成人| 日日啪夜夜撸| 少妇熟女欧美另类| 热99在线观看视频| 精品一区二区三卡| 日本免费a在线| 伦理电影大哥的女人| 婷婷色综合www| 男人舔奶头视频| 国产精品伦人一区二区| av免费在线看不卡| 久久久久久久久中文| 成人午夜高清在线视频| 成年女人看的毛片在线观看| 韩国av在线不卡| 日韩中字成人| 日韩视频在线欧美| 一夜夜www| 国产精品久久久久久久电影| 免费黄色在线免费观看| av免费观看日本| 最近最新中文字幕大全电影3| 精品久久国产蜜桃| 国产毛片a区久久久久| 天天躁日日操中文字幕| 99视频精品全部免费 在线| 国产黄色视频一区二区在线观看| 日本午夜av视频| 丝袜喷水一区| 中国国产av一级| av福利片在线观看| 97精品久久久久久久久久精品| 26uuu在线亚洲综合色| 黄色欧美视频在线观看| 男女国产视频网站| 人人妻人人澡人人爽人人夜夜 | 国产高清不卡午夜福利| 免费黄色在线免费观看| 国产伦精品一区二区三区视频9| 欧美一级a爱片免费观看看| 一级毛片久久久久久久久女| 你懂的网址亚洲精品在线观看| 国产中年淑女户外野战色| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| av卡一久久| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 激情五月婷婷亚洲| 免费无遮挡裸体视频| 亚洲欧美中文字幕日韩二区| 26uuu在线亚洲综合色| 国产探花在线观看一区二区| 成人午夜高清在线视频| 91久久精品电影网| 亚洲精品国产av蜜桃| 亚洲内射少妇av| 黄色配什么色好看| 午夜爱爱视频在线播放| 成人国产麻豆网| 欧美潮喷喷水| 色播亚洲综合网| 寂寞人妻少妇视频99o| 国产单亲对白刺激| 国产精品一及| 国产伦一二天堂av在线观看| 2021少妇久久久久久久久久久| 国产精品无大码| 成人美女网站在线观看视频| 国产黄片视频在线免费观看| 亚洲精品aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 国产成年人精品一区二区| 亚洲在久久综合| 亚洲精品日本国产第一区| 精品久久久久久久久亚洲| 日韩电影二区| 一个人观看的视频www高清免费观看| 国内少妇人妻偷人精品xxx网站| 99热这里只有精品一区| 男女国产视频网站| 最近中文字幕2019免费版| 99热这里只有是精品在线观看| 国产 亚洲一区二区三区 | 亚洲av中文字字幕乱码综合| 好男人视频免费观看在线| 免费高清在线观看视频在线观看| 国产色爽女视频免费观看| 天美传媒精品一区二区| 午夜福利网站1000一区二区三区| 国产91av在线免费观看| 亚洲精品国产成人久久av| 最近中文字幕2019免费版| 久久精品久久久久久久性| 97超视频在线观看视频| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 男女下面进入的视频免费午夜| 日韩一区二区视频免费看| 亚洲婷婷狠狠爱综合网| 国产黄频视频在线观看| 黄色欧美视频在线观看| 在线观看免费高清a一片| 亚洲精品日韩在线中文字幕| 免费黄频网站在线观看国产| 一个人免费在线观看电影| 亚洲精品aⅴ在线观看| 欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 亚洲国产高清在线一区二区三| 99久国产av精品| 国国产精品蜜臀av免费| 亚洲成人av在线免费| a级毛色黄片| 亚洲国产欧美在线一区| 久久久久国产网址| 最近的中文字幕免费完整| 日韩大片免费观看网站| 亚洲最大成人中文| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av福利一区| 免费大片黄手机在线观看| 少妇人妻精品综合一区二区| 最近最新中文字幕免费大全7| 国产一区二区三区综合在线观看 | 青春草亚洲视频在线观看| 亚洲色图av天堂| 99热这里只有是精品在线观看| 精品午夜福利在线看| 色5月婷婷丁香| 国模一区二区三区四区视频| 精品人妻偷拍中文字幕| 老师上课跳d突然被开到最大视频| 超碰av人人做人人爽久久| 永久免费av网站大全| 伊人久久国产一区二区| 国产黄色小视频在线观看| 久久久亚洲精品成人影院| 国产色爽女视频免费观看| 日日摸夜夜添夜夜爱| 人人妻人人澡欧美一区二区| 联通29元200g的流量卡| 日韩欧美精品免费久久| 亚洲精品成人久久久久久|