• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of 4-Hydroxyproline Stereochemistry on α-Conotoxin Solution Conformation

    2013-07-25 09:08:46ZHANGBingBingZHAOCongWANGXueSongHELeiDUWeiHong
    物理化學(xué)學(xué)報(bào) 2013年5期
    關(guān)鍵詞:物理化學(xué)通報(bào)學(xué)報(bào)

    ZHANG Bing-Bing ZHAO Cong WANG Xue-Song HE Lei DU Wei-Hong

    (Department of Chemistry,Renmin University of China,Beijing 100872,P.R.China)

    1 lntroduction

    Conotoxins,commonly extracted from the venom of conus snails,are a rich resource of novel peptides that can specifically target distinct membrane receptors,ion channels,and nervous system transporter.1-5Conotoxins that target neuronal or muscle-type nicotinic acetylcholine receptors(nAChRs)are classified into the α-conotoxin family.6More than half of the known α-conotoxins belong to the α4/7 subfamily,which refers to the number of residues in the two intercysteine loops.Almost all α4/7 conotoxins share a well-defined structural motif in the form of a helical region centered around the third cysteine residue.7

    In α4/7 conotoxins,a vast array of post-translational modifications(PTM),such as C-terminal amidation,4-hydroxyproline(Hyp),gamma carboxylic glutamic acid(Gla),and D-type amino acids,have been discovered,8as in other conotoxin families.Chemical modifications of conotoxins create structural and functional diversity,serving as valuable tools in improving their stability and pharmaceutical properties;such properties make conotoxins attractive leads for biological research and drug discovery and development.9-12Particularly,hydroxylation have been studied in many fields,demonstrating interesting effects on the structural characteristics and biological functions of conotoxins.13,14

    The hydroxyl group appears pervasively throughout organic chemical and biochemical structures.It plays a vital role in maintaining structural stability,protein-ligand interaction,and biological function.15-17An examination of the hydroxylation of proline in thein vitrooxidative folding and biological activity of conotoxins has led to the discovery that the modification of the conserved residue Pro6 to Hyp6 greatly improves the stability of native conotoxins.13α-Conotoxin Vc1.1(i.e.,the socalled[O6P/γ14E]Vc1A,Table 118-24),which contains 16 amino acids with typical α4/7 intercysteine loops,has been discovered from the venom dusts ofConus victoriae.It is almost identical with the native peptide Vc1A and the intermediate analog[P6O]Vc1.1 in three-dimensional(3D)structure due to the similarities in their NMR CαH and CβH shifts.25Scanning mutagenesis,a very powerful technique in identifying notable residues that play a crucial role in the structural and biological characteristics of peptides,has revealed that residues at positions 4 and 9 are crucial in the bioactivity of Vc1.1 at α9α10 nAChR.19,26SrIA and SrIB,Hyp-contained α-conotoxins with 4/7-type intercysteine loops,were first isolated fromConus spuriusand showed comparable biological functions with EI.18Although the[γ15E]Sr1B mutant has demonstrated the slight little difference between the bioactivities of Sr1A and Sr1B,the role of Hyp7 in conotoxin structure and bioactivity is still unknown.In addition,our previous research14revealed that thecis/transisomerization of 4-hydroxyproline has remarkable effects on the conformation of some conopeptides.

    In the current work,we selected three conopeptides containingcis/trans-4-hydroxyproline(Fig.1)and determined their 3D solution structures to investigate the effects of stereochemistry of 4-hydroxyproline on the folding and structure of α-conotoxin.These α-conopeptides were[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A,in which a Glu residue was used instead of Gla,because studies on the impacts of gamma carboxylic glutamic acid on some highlighted conotoxins,such as conantokin-G,RVIIIA,VxXXB,Vc1A,SrIA,and SrIB,indicated that the mutation of Gla to Glu did not affect the structural property and pharmacological activity of those conotoxins.18-21,27-30The results of such chemical modifications may lead to exciting discoveries in research on conformational change and potential bioactivity regulation of α-conotoxins.

    Table 1 Sequences and their receptors of some α4/7-conotoxins showing highly conserved proline residue(P,O or O′)in the first intercysteine loop

    Fig.1 Structures of cis-4-hydroxyproline(A)and trans-4-hydroxyproline(B)

    2 Materials and methods

    2.1 Reagents

    The used acetonitrile-d3(deuterated ratio(D)>99.5%)was from Sigma-Aldrich,USA.D2O(D>99.9%,purity>99.99%)was from Cambridge Isotope Lab,MA,USA.Trifluoroacetic acid-d(TFA,D>99.5%,purity>99.99%)was from Deuterium Laboratory,Peking University,China.All other reagents were of analytical grade.

    2.2 Peptide synthesis

    Two peptides(China-Peptides Co.,Ltd.,Shanghai,China),namely,[γ15E]Sr1B and[O7O′/γ15E]Sr1B,were chemically synthesized and identified in order to obtain enough NMR samples.Another mutant(SBS Co.,Ltd.,Beijing,China),namely,[O6O′/γ14E]Vc1A,was also chemically synthesized.Furthermore,all the peptides were identified by high-performance liquid chromatography(HPLC)and mass spectrometry(MS)with more than 95%certainty.

    2.3 NMR experiments

    The[γ15E]Sr1B and[O7O′/γ15E]Sr1B NMR samples were prepared by dissolving peptides in 400 μL of either 99.99%D2O(Cambridge Isotope Lab,MA,USA)or 9:1(V/V)H2O/D2O with 0.01%trifluoroacetic acid(TFA,St.Louis,USA)at pH 3.0.[O6O′/γ14E]Vc1A were dissolved in 400 μL 3:2(V/V)acetonitrile-d3/H2O or acetonitrile-d3/D2O due to its low solubility in aqueous solution,and the solution was adjusted to pH 3.0.The final peptide concentration was approximately 4.0 mmol·L-1.

    NMR measurements were performed using standard pulse sequences and phase cycling on Bruker Avance 400 and 600 MHz NMR spectrometers at 293 K.Due to the existence of disulfide bonds in conopeptides,the weak effect of temperature and solvent was ignored.The homonuclear double quantum filtered correlation spectroscopy(DQF-COSY),rotating frame nuclear overhauser effect spectroscopy(ROESY),nuclear overhauser effect spectroscopy(NOESY),and total correlation spectroscopy(TOCSY)were obtained in a phase-sensitive mode using time-proportional phase incrementation for quadrature detection in the t1(evolution time)dimension.Presaturation during the relaxation delay period was used to suppress the solvent resonance,unless specified otherwise.All 2D spectra were obtained using a spectral width of 6000.00 Hz(Δδ=10).ROESY and NOESY spectra were obtained with a mixing time of 300 ms.TOCSY spectra were obtained using the MLEV-17 pulse scheme for a spin lock of 120 ms.31NOESY/ROESY experiments were obtained using gradients for water saturation.32Each sample lyophilized from the hydrogen-containing solution was redissolved in a deuterium-containing solution in order to identify the slow exchange of backbone amide protons.1D1H NMR spectra were measured after 3 min and every 10 min thereafter for 3 h.All chemical shifts were referenced to the methyl resonance of 4,4-dimethyl-4-silapentane-1-sulfonic acid used as internal standard.The spectra were processed using Bruker Topspin 2.1 and analyzed by Sparky 3.1.33Final matrix sizes were usually 4096×2048 real points.

    2.4 Distance restraints and structural calculations

    Three sets of distance constraints were derived from the ROESY spectra of[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A,respectively.Distance constraints,representing unambiguously assigned dipolar couplings,were used for structural calculations using Cyana 2.1 software.34Dihedral angle restraints were determined based on the3JHN-Hαcoupling constants derived from the DQF-COSY spectral analysis and 1D H/D exchange experiments if possible.Theφangle constraints for some residues were set to-120°±40°for3JNHα>8.0 Hz and-65°±25°for3JNHα<5.5 Hz.Backbone dihedral constraints were not applied for3JNHαvalues ranging from 5.5 to 8.0 Hz.Based on the slow exchange of amide protons in hydrogen-deuterium exchange experiments,distance constraints of the hydrogen bond were added as target values of 0.22 and 0.32 nm for the NH(i)-O(j)and N(i)-O(j)bonds,respectively.Due to the significant influence of C-terminal amidation on the folding tendency and bioactivity of conotoxin,we reproduced it as a new residue in the Cyana library in order to calculate the structures.According to the primary sequence,100 random structures were generated to fit covalent and spatial requirements.The 20 lowest energy conformers from 100 calculated structures were submitted to a molecular dynamics refinement procedure using the Sander module of the Amber 9 program.The final outcomes were used for structural quality analysis using MolMol software.35The data,including chemical shifts,were submitted to the BMRB database with access codes 18382,18383,and 18384 for[O7O′/γ15E]Sr1B,[γ15E]Sr1B,and[O6O′/063514E]Vc1A,respectively.Further,all the constraints data and coordinates of three structures could be supplied if necessary.

    3 Results and discussion

    3.1 NMR assignments

    In the present work,α-conopeptides containing 4-hydroxyproline were chosen to explore the role of PTM in conotoxin conformational change and potential bioactivity regulation.The solution structures of the three chemically synthesized conopeptides[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A were identified experimentally by 2D NMR method.The respective sequences of[γ15E]Sr1B,[O7O′/γ15E]Sr1B,[O6O?/γ14E]Vc1A,Vc1.1,and some other selected α-conotoxins are shown in Table 1.

    Fig.2 Assignments of residues with unique spin systems in part of TOCSY spectrum for[γ15E]Sr1B

    The sequence-specific resonance assignments were achieved using the traditional visual analysis method.36The spin systems of most amino acids were resolved by TOCSY and DQF-COSY spectra.Fig.2 shows the representative amino acid spin systems of the[γ15E]Sr1B TOCSY spectrum in H2O.A total of 15 expected cross peaks between the amide proton and CαH were observed.Other spin systems were found in the fingerprint region of the TOCSY spectrum,and their assignments were verified in the fingerprint region of the DQF-COSY spectrum.The sequential assignments of amino acids in the primary sequence began with the unique residues Ser5,Tyr13,and Leu16.The NOE sequential walk identified residues from Thr2 to Glu15 and from Leu16 to Gly18 toward the N-terminus and the C-terminus,respectively.Owing to the rapid exchange in water and a missing amide proton,the first N-terminal residue Arg1 was finally assigned based on its spin system.The final chemical shifts of[γ15E]Sr1B were deposited in BMRB(access code 18383).

    Similar to[γ15E]Sr1B,15 of the 18 spin systems were found in the fingerprint region of the 120 ms TOCSY spectrum for[O7O′/γ15E]Sr1B(Fig.S1,see Supporting Information).The sequential assignments of amino acids in the primary sequence started with the unique residues Ser5,Tyr13,and Leu16.Hence,nuclear overhauser effect(NOE)walks toward the N-terminus and the C-terminus were identified.The final chemical shifts of[O7O′/γ15E]Sr1B were deposited in BMRB(access code 18382).

    As for[O6O′/γ14E]Vc1A,multiple components were found in the solution.cis-4-Hydroxy-proline induced the conformational equilibrium to[O6O′/γ14E]Vc1A(Fig.3,in which clearly showing three conformations in solution).Three sets of resonance signals were observed for some residues.The TOCSY spectrum showed the spin systems for the major isomer of[O6O′/γ14E]Vc1A in H2O(Fig.S2,see Supporting Information).A total of 12 expected cross peaks between the amide proton and CαH were observed for the major component.Other spin systems were also found in the fingerprint region of the TOCSY spectrum,and their assignments were verified in the fingerprint region of the DQF-COSY spectrum.The sequential assignments started with the unique residues Ser4,Arg7,and Ile15.NOE walks from residues Cys2 to Asn9 and from Tyr10 to Cys16,except residues CHP6(CHP:cis-4-hydroxyproline)and Pro13,were identified.Given the rapid exchange in water and a missing amide proton,the first N-terminal residue Gly1 was finally assigned based on its spin system.The final chemical shifts of[O6O′/γ14E]Vc1A were deposited in BMRB(access code 18384).

    3.2 Structural calculation and evaluation

    Fig.3 Portion of the TOCSY spectrum of[O6O′/γ14E]Vc1Awith respect to Ile15

    The constraints for determining the three conopeptide-solution structures were obtained from a survey of NMR data.A total of 191 distance constraints were used,and the NOE root mean square violation was no more than 0.02 nm for[γ15E]Sr1B.Moreover,7φangle constraints(i.e.,Ser5,Cys9,Glu12,Tyr13,Leu16,Cys17,and Gly18),5 hydrogen bond restraints(i.e.,carbonyl O atoms of Arg6,Hyp7,Thr8,Tyr13,and Pro14 corresponding to amide protons of Cys9,Arg10,Met11,Leu16 and Cys17 respectively)and 2 pairs of disulfide bonds(i.e.,Cys3-Cys9 and Cys4-Cys17)defining the globular skeleton were inputted for the molecular modeling protocol of the Cyana algorithm.These constraints were sufficient for the structural calculation of such a small-sized peptide.As for[O7O?/γ15E]Sr1B,192 distance constraints,5 dihedral restraints(i.e.,Cys9,Glu12,Tyr13,Cys17,and Gly18),4 hydrogen bond restraints,and 2 pairs of disulfide bonds were used to build up the structures.The H-bond restraints were from the carbonyl O atoms of Arg10,Tyr13 and Pro14 corresponding to amide protons of Tyr13,Leu16 and Cys17 respectively,and from the Oδatomof CHP7 corresponding to the amide proton of Thr8.Furthermore,102 distance constraints,5 dihedral restraints(i.e.,Cys2,Ser4,Cys8,Tyr10,and C16),4 hydrogen bond restraints(i.e.,carbonyl O atoms of Ser4,Arg7,Cys8,and Asn9 corresponding to amide protons of Arg7,Tyr10,Asp11,and His12 respectively),and 2 pairs of disulfide bonds(i.e.,Cys2-Cys8 and Cys3-Cys16)were used to build up the structure for the major conformer of[O6O′/γ14E]Vc1A.

    First,we computed 100 solution structures to evaluate the folding of the peptidic chain using medium-distance constraints with more than 2 bond intervals|i-j|>2.Subsequently,all distance constraints and dihedral restraints were used.H-bond constraints were then introduced into the calculations.The simulated annealing calculations began with 100 random structures.Finally,the ensemble of 20 best resulting models with the lowest residual target function and the minimum root mean square deviation were selected.The resulting conformers contained no significant violation of any constraint.The Ramachandran plots were chosen to represent the 3D folding of[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A in solution(Fig.S3,see Supporting Information).A summary of statistics for the converged structures evaluated in terms of structural parameters for the three conopeptides are listed in Table 2.Compared with[γ15E]Sr1B and[O7O′/γ15E]Sr1B,the mean global RMSD of backbone atoms of[O6O′/γ14E]Vc1A was a bit high.However,the constraints for[O6O′/γ14E]Vc1A was enough to get reasonable structure and the Procheck data was satisfied.

    3.3 Characterization of NMR-derived structures of[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A

    Three ensembles of the 20 best overlay structures calculated using NMR-derived constraints are shown in Fig.4.[γ15E]Sr1B(Fig.4(a))and[O7O′/γ15E]Sr1B(Fig.4(b))belonged to the α4/7 intercysteine spacing subfamily and shared the same disulfide framework of Cys1-Cys3 and Cys2-Cys4.Despite the γ15E mutation,a 310helix between Hyp7 and Arg10 was formed in[γ15E]Sr1B(Fig.5(a)),comprising a conserved“ω”structure as other native α4/7 conotoxin.The helix structure could be evidenced by the H-bond formation from the residue pairs Arg6-Cys9,Hyp7-Arg10,and Thr8-Met11.The NH protons of Cys9,Arg10,and Met11 showed slow exchange rate,which was observed during H/D exchange experiment.In addition,a type I β turn was formed between Pro14 and Cys17.The H-bond was observed between carbonyl O atom of Pro14and amide H atom of Cys17.

    Table 2 Structural statistics for the 20 best structures of[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A

    Fig.4 Overlays of the backbone atoms for the 20 converged structures of conopeptides[γ15E]Sr1B(a),[O7O′/γ15E]Sr1B(b),and[O6O′/γ14E]Vc1A(c)

    Fig.5 Comparison of the backbone structures between[γ15E]Sr1B(a)and[O7O′/γ15E]Sr1B(b)with side chain orientation of residues Hyp7/CHP7 andArg10 shown in stick;surface representations of[γ15E]Sr1B(c)and[O7O′/γ15E]Sr1B(d)shown in front views

    In[O7O′/γ15E]Sr1B,no helix was observed in the center of the peptide.Interestingly,a new 310helix was formed between Pro14 and Leu16 around the C-terminus(Fig.5(b)).The NOE connectivity for the sequence 13-18 was illustrated in Fig.6.Furthermore,a γ turn between Thr2 and Cys4,and a type I β turn between Arg10 and Tyr13 were also observed.Surface representations of[γ15E]Sr1B and[O7O′/γ15E]Sr1B also indicated their distinct structural characteristics in terms of hydrophilicity and hydrophobicity(Fig.5(c,d)).

    In[O6O′/γ14E]Vc1A,the residue 6 was converted fromtrans-4-hydroxyproline tocis-4-hydroxyproline,this disturbed the H-bond network,making the α-helix shrink from residue Pro6-Asp11 in Vc1.1 to a 310helix between residues Cys8 and Asp10 in[O6O′/γ14E]Vc1A.The helix structure was evidenced by the observation of 1D H/D exchange experiment.The 3D structure of[O6O′/γ14E]Vc1A(Fig.7(a)),showed a distorted“ω”structure compared with other typical α-conotoxins.In addition,CHP6 took part in the formation of a γ turn between residues Ser4 and CHP6.In contrast to Vc1.1,the side chain orientations of CHP6 and His12 in[O6O′/γ14E]Vc1A changed from the outside to inside of the backbone plane(Figs.7(a)and 7(b),respectively).Moreover,the surface representations of the two conopeptides were used to indicate the various interesting hydrophilic and hydrophobic characteristics(Fig.7(c,d)).

    Fig.6 Portion of the NOE connectivity for the conopeptide[O7O′/γ15E]Sr1B

    Fig.7 Comparison of the backbone structures between[O6O′/γ14E]Vc1A(a)and Vc1.1(b,PDB 2H8S)with side chain orientation of residues Hyp6/CHP6 and His12 shown in stick;surface representations of[O6O′/γ14E]Vc1A(c)and Vc1.1(d)shown in front views

    3.4 Roles of Hyp/CHP residue in α-conotoxins

    PTMs including C-terminal amidation,D-type amino acids,and hydroxylation are widely found in various conotoxin families.13,37-39Proline residue is hydroxylated in many α-conotoxins.However,the conserved proline behind 2 consecutive cysteines,which represents residue 6 in Vc1A,PnIA,and MII and residue 7 in Sr1B,is thought to play a notable role in structural stability and key hydrophobic binding interaction with the β-subunit of nAChR by docking simulations.22,40Position 7 after two consecutive cysteines also influenced the selectivity for α3β2 and α3β4 over the α7 nAChR subtype as well as the affinity between the conotoxin-receptor complex.25,40The NMR-derived structures of[γ15E]Sr1B and[O7O′/γ15E]Sr1B display remarkable distinctions in secondary structure element,side chain orientations of some key residues,and surface hydrophobic properties(Fig.5).Comparing the residue characteristics of[γ15E]Sr1B and[O7O′/γ15E]Sr1B,the side chain orientations of Hyp7/CHP7 and Arg10 changed remarkably from outside to inside the big inner loop,the helical secondary structure between residues 7 and 10 vanished due to thecis-transfer of Hyp7 hydroxyl group.The original H-bond between carbonyl O of Hyp7 and amide H of Arg10 in[γ15E]Sr1B disappeared,and the distance between carbonyl O of Hyp7 and amide H of Arg10 changed from 0.23 nm in[γ15E]Sr1B to 0.42 nm in[O7O′/γ15E]Sr1B(Fig.8).These results elucidated the vital role of Hyp7 in the secondary structure and peptide folding as well as in potential bioactivity influence.It is reported that[γ15E]Sr1B is not significantly different from Sr1B on the biological function.18However,the further chemically modification of[O7O′/γ15E]Sr1B and its role in nAChR activity need to be further explored,and the work is still under investigation.

    Fig.8 H-bond distance between Hyp7 andArg10 in[γ15E]Sr1B(A)and the change in[O7O′/γ15E]Sr1B(B)

    Vc1.1 presented conserved“ω”structural characteristics of α-conotoxin.The other two post-translationally modified derivatives of Vc1.1,Vc1A,and[P6O]Vc1.1 were structurally analogous to Vc1.1.25Hence,we examined the[P6O′]Vc1.1 structure(same as that of[O6O′/γ14E]Vc1A)and compared it with the former analogue(Vc1.1)to investigate the structural impacts of thetrans-andcis-4-hydroxyproline conformations.The mutation fromtrans-tocis-4-hydroxyproline disrupted the inner hydrogen bond network,thus inducing the conformational change of[O6O′/γ14E]Vc1A and[O6O′/r14E]Vc1A]lost the turn structure around the N-/C-termini;in comparison,the mutation from proline totrans-4-hydroxyproline did not result in any distinct structural change in Vc1.1.The significant changes in the CαH secondary chemical shifts of mutant[P6K]Vc1.1 indicated that the mutation induced the formation of 2 isomers that were different from other mutants or the original conopeptide Vc1.1.19In[O6O′/γ14E]Vc1A,3 isomers were also observed from the separated cross-peaks between the NH and CαH of residue Ile15 in the 2D TOCSY spectrum of[O6O′/γ14E]Vc1A(Fig.3).The differences in the NH chemical shifts of some residues implied various conformations of[O6O′/γ 14E]Vc1Ain the solution(data not shown).

    In addition,the[O6O′]mutation of Vc1A had an indirect influence on the secondary structure around key residue Arg7.An investigation of crystal structures and docking simulations of IMI-AChBP indicated that Arg7 played a critical role in the binding of conotoxins to nAChR.41Four hydrogen bonds were formed on the principal binding side(loop C)of AChBP,3 of which involved the contacts of IMI Arg7 and Tyr91(loop A),Trp145(loop B),and Ile194(loop C),respectively.Furthermore,extensive van der Waals interactions of Ser144,Val146,Tyr147,and Tyr193 with IMI Asp5 were observed by forming an intramolecular salt bridge.Arg7 was also involved in van der Waals interactions with α7-Tyr195.The mutation of IMI Arg7 to Gln broke the charge interactions between α7-Tyr197 and IMI-Asp5,which was consistent with the decrease of experimental affinity.42,43Considering the importance of residue Arg7 in conotoxin interaction with the α7 subunit,the helix shrinking due to O6O′mutation around Arg7(Fig.7)may have prompted the biofunctional differences between Vc1.1 and[O6O′/γ14E]Vc1A.Moreover,the bioactivity of[O6O′/γ14E]Vc1Ais under study.

    4 Conclusions

    In this study,we determined the solution structures of[γ15E]Sr1B,[O7O′/γ15E]Sr1B,and[O6O′/γ14E]Vc1A.The impacts of the chemical modification ofcis/trans-4-hydroxyproline on conopeptide structure were remarkable.The modulation fromtrans-tocis-4-hydroxyproline led to notable conformational changes,including the secondary structure elements,the side chain orientation of key residues,and H-bond formation,which might have affected their pharmacological properties.Furthermore,this work could help deepen our understanding of the chemical modification of conopeptides,which can be useful in elucidating the structure-bioactivity relationships of α-conotoxins and in regulating potential biological activity for better peptide drug design.

    (1) Terlau,H.;Olivera,B.M.Physiol.Rev.2004,84,41.doi:10.1152/physrev.00020.2003

    (2) Halai,R.;Craik,D.J.Nat.Prod.Rep.2009,26,526.doi:10.1039/b819311h

    (3)Azam,L.;McIntosh,J.M.Acta Pharmacol.Sin.2009,30,771.doi:10.1038/aps.2009.47

    (4) Kaas,Q.;Yu,R.;Jin,A.H.;Dutertre,S.;Craik,D.J.Nucleic Acids Res.2012,40,D325.

    (5) Livett,B.G.;Sandall,D.W.;Keays,D.;Down,J.;Gayler,K.R.;Satkunanathan,N.;Khalil,Z.Toxicon2006,48,810.doi:10.1016/j.toxicon.2006.07.023

    (6) Myers,R.A.;Cruz,L.J.;Rivier,J.E.;Olivera,B.M.Chem.Rev.1993,93,1923.doi:10.1021/cr00021a013

    (7) Jin,A.H.;Daly,N.L.;Nevin,S.T.;Wang,C.A.;Dutertre,S.;Lewis,R.J.;Adams,D.J.;Craik,D.J.;Alewood,P.F.J.Med.Chem.2008,51,5575.doi:10.1021/jm800278k

    (8) Buczek,O.;Bulaj,G.;Olivera,B.M.Cell Mol.Life Sci.2005,62,3067.doi:10.1007/s00018-005-5283-0

    (9) Craik,D.J.;Adams,D.J.ACS Chem.Biol.2007,2,457.doi:10.1021/cb700091j

    (10)Armishaw,C.J.Toxins2010,2,1471.doi:10.3390/toxins2061471

    (11) Clark,R.J.;Jensen,J.;Nevin,S.T.;Callaghan,B.P.;Adams,D.J.;Craik,D.J.Angew.Chem.Int.Edit.2010,49,6545.doi:10.1002/anie.201000620

    (12) Muttenthaler,M.;Nevin,S.T.;Grishin,A.A.;Ngo,S.T.;Choy,P.T.;Daly,N.L.;Hu,S.H.;Armishaw,C.J.;Wang,C.I.A.;Lewis,R.J.;Martin,J.L.;Noakes,P.G.;Craik,D.J.;Adams,D.J.;Alewood,P.F.J.Am.Chem.Soc.2010,132,3514.doi:10.1021/ja910602h

    (13) Lopez-Vera,E.;Walewska,A.;Skalicky,J.J.;Olivera,B.M.;Bulaj,G.Biochemistry2008,47,1741.doi:10.1021/bi701934m

    (14)Xu,J.;Wang,Y.L.;Zhang,B.B.;Wang,B.H.;Du,W.H.Chem.Commun.2010,46,5467.doi:10.1039/c0cc00075b

    (15) Calzolari,A.;Cicero,G.;Cavazzoni,C.;Di Felice,R.;Atellani,C.A.;Corni,S.J.Am.Chem.Soc.2010,132,4790.doi:10.1021/ja909823n

    (16)Takeda,M.;Jee,J.;Ono,A.M.;Terauchi,T.;Kainosho,M.J.Am.Chem.Soc.2011,133,17420.doi:10.1021/ja206799v

    (17)Denning,E.J.;MacKerell,A.D.,Jr.J.Am.Chem.Soc.2012,134,2800.doi:10.1021/ja211328g

    (18) López-Vera,E.;Aguilar,M.B.;Schiavon,E.;Marinzi,C.;Ortiz,E.;Cassulini,R.R.;Batista,C.V.F.;Possani,L.D.;de la Cotera,E.P.H.;Peri,F.;Becerril,B.;Wanke,E.FEBS J.2007,274,3972.doi:10.1111/j.1742-4658.2007.05931.x

    (19) Halai,R.;Clark,R.J.;Nevin,S.T.;Jensen,J.E.;Adams,D.J.;Craik,D.J.J.Biol.Chem.2009,284,20275.doi:10.1074/jbc.M109.015339

    (20) Sandall,D.W.;Satkunanathan,N.;Keays,D.A.;Polidano,M.A.;Liping,X.;Pham,V.;Down,J.G.;Khalil,Z.;Livett,B.G.;Gayler,K.R.Biochemistry2003,42,6904.doi:10.1021/bi034043e

    (21)Townsend,A.;Livett,B.G.;Bingham,J.P.;Truong,H.T.;Karas,J.A.;O'Donnell,P.;Williamson,N.A.;Purcell,A.W.;Scanlon,D.Inter.J.Pep.Res.Ther.2009,15,195.doi:10.1007/s10989-009-9173-4

    (22)Armishaw,C.;Jensen,A.A.;Balle,T.;Clark,R.J.;Harps?e,K.;Skonberg,C.;Liljefors,T.;Str?mgaard,K.J.Biol.Chem.2009,284,9498.doi:10.1074/jbc.M806136200

    (23) Luo,S.;Nguyen,T.A.;Cartier,G.E.;Olivera,B.M.;Yoshikami,D.;McIntosh,J.M.Biochemistry1999,38,14542.doi:10.1021/bi991252j

    (24) Park,K.H.;Suk,J.E.;Jacobsen,R.;Gray,W.R.;McIntosh,J.M.;Han,K.H.J.Biol.Chem.2001,276,49028.doi:10.1074/jbc.M107798200

    (25) Clark,R.J.;Fischer,H.;Nevin,S.T.;Adams,D.J.;Craik,D.J.J.Biol.Chem.2006,281,23254.doi:10.1074/jbc.M604550200

    (26) Nevin,S.T.;Clark,R.J.;Klimis,H.;Christie,M.J.;Craik,D.J.;Adams,D.J.Mol.Pharmacol.2007,72,1406.doi:10.1124/mol.107.040568

    (27) Skj?rb?k,N.;Nielsen,K.J.;Lewis,R.J.;Alewood,P.F.;Craik,D.J.J.Biol.Chem.1997,272,2291.doi:10.1074/jbc.272.4.2291

    (28)Teichert,R.W.;Jimenez,E.C.;Olivera,B.M.Biochemistry2005,44,7897.doi:10.1021/bi047274+

    (29) Loughnan,M.;Nicke,A.;Jones,A.;Schroeder,C.I.;Nevin,S.T.;Adams,D.J.;Alewood,P.F.;Lewis,R.J.J.Biol.Chem.2006,281,24745.doi:10.1074/jbc.M603703200

    (30) Jakubowski,J.A.;Keays,D.A.;Kelley,W.P.;Sandall,D.W.;Bingham,J.P.;Livett,B.G.;Gayler,K.R.;Sweedler,J.V.J.Mass Spectrom.2004,39,548.

    (31) Bax,A.;Davis,D.G.J.Magn.Reson.1985,65,355.

    (32) Jeener,J.;Meier,B.H.;Bachmann,P.;Ernst,R.R.J.Chem.Phys.1979,71,4546.doi:10.1063/1.438208

    (33) Goddard,T.D.;Kneller,D.G.Sparky 3;University of California,San Francisco,CA,2007.

    (34) Güntert,P.;Mumenthaler,C.;Wüthrich,K.J.Mol.Biol.1997,273,283.doi:10.1006/jmbi.1997.1284

    (35) Koradi,R.;Billeter,M.;Wüthrich,K.J.Mol.Graph.1996,14,51.doi:10.1016/0263-7855(96)00009-4

    (36)Wüthrich,K.NMR of Proteins and Nucleic Acids;Wiley:New York,1986.

    (37)Huang,F.J.;Du,W.H.;Wang,B.B.Acta Phys.-Chim.Sin.2008,24,1558.[黃飛娟,杜為紅,王保懷.物理化學(xué)學(xué)報(bào),2008,24,1558.]doi:10.1016/S1872-1508(08)60064-9

    (38) Zhang,B.B.;Huang,F.J.;Du,W.H.Amino Acids2012,43,389.doi:10.1007/s00726-011-1093-x

    (39) Chi,C.W.Chin.Sci.Bull.2009,54,2734.[戚正武.科學(xué)通報(bào),2009,54,2734.]doi:10.1360/972009-1582

    (40) Dutertre,S.;Nicke,A.;Lewis,R.J.J.Biol.Chem.2005,280,30460.doi:10.1074/jbc.M504229200

    (41) Ulens,C.;Hogg,R.C.;Celie,P.H.;Bertrand,D.;Tsetlin,V.;Smit,A.B.;Sixma,T.K.Proc.Natl.Acad.Sci.U.S.A.2006,103,3615.doi:10.1073/pnas.0507889103

    (42) Quiram,P.A.;Sine,S.M.J.Biol.Chem.1998,273,11007.doi:10.1074/jbc.273.18.11007

    (43)Yu,R.;Craik,D.J.;Kaas,Q.PLoS Comput.Biol.2011,7,e1002011.

    猜你喜歡
    物理化學(xué)通報(bào)學(xué)報(bào)
    WTO/TBT 通報(bào)
    WTO/TBT 通報(bào)
    WTO/TBT 通報(bào)
    WTO/TBT 通報(bào)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    极品教师在线视频| 欧美最新免费一区二区三区| 国产av码专区亚洲av| 亚洲欧美精品专区久久| 免费大片18禁| a级毛色黄片| 成人欧美大片| 国产午夜福利久久久久久| 男女边摸边吃奶| 日韩精品有码人妻一区| 69av精品久久久久久| 少妇 在线观看| 欧美97在线视频| 精品国产露脸久久av麻豆| 亚洲欧洲国产日韩| 久久97久久精品| 亚洲人与动物交配视频| 欧美97在线视频| 午夜福利在线观看免费完整高清在| 亚洲自拍偷在线| 2018国产大陆天天弄谢| 国产黄色视频一区二区在线观看| 成人欧美大片| 日产精品乱码卡一卡2卡三| 精品久久久久久久久av| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 久久精品国产亚洲av涩爱| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 午夜爱爱视频在线播放| 人妻 亚洲 视频| 在线看a的网站| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩一区二区三区在线 | 精品久久久久久久末码| 国产爽快片一区二区三区| 一个人看视频在线观看www免费| 免费高清在线观看视频在线观看| 舔av片在线| 最近的中文字幕免费完整| 男人添女人高潮全过程视频| 日韩一本色道免费dvd| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 成人综合一区亚洲| av在线蜜桃| 各种免费的搞黄视频| 一区二区三区乱码不卡18| av线在线观看网站| 国产熟女欧美一区二区| 国产av不卡久久| 久久久色成人| 又爽又黄a免费视频| 可以在线观看毛片的网站| 18+在线观看网站| 大陆偷拍与自拍| 婷婷色麻豆天堂久久| 乱码一卡2卡4卡精品| 天美传媒精品一区二区| 综合色丁香网| 亚洲色图综合在线观看| 国产黄色视频一区二区在线观看| 午夜精品国产一区二区电影 | 看免费成人av毛片| 十八禁网站网址无遮挡 | 女人久久www免费人成看片| 成年版毛片免费区| 成人一区二区视频在线观看| 精品亚洲乱码少妇综合久久| 丝瓜视频免费看黄片| 真实男女啪啪啪动态图| 黄色欧美视频在线观看| 亚洲国产日韩一区二区| 国产女主播在线喷水免费视频网站| 亚洲成人av在线免费| 国产亚洲5aaaaa淫片| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| 激情 狠狠 欧美| 一区二区三区四区激情视频| 亚洲欧美一区二区三区国产| 美女视频免费永久观看网站| 日本三级黄在线观看| 国产久久久一区二区三区| 一级爰片在线观看| 亚洲av中文字字幕乱码综合| 99久久九九国产精品国产免费| 国产永久视频网站| 欧美日韩在线观看h| 亚洲av一区综合| 干丝袜人妻中文字幕| 午夜免费男女啪啪视频观看| 国产精品久久久久久久电影| 国内揄拍国产精品人妻在线| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 久久久久久久久久久丰满| 国产又色又爽无遮挡免| 中文天堂在线官网| 亚洲精品色激情综合| 一区二区三区免费毛片| 91精品国产九色| 老女人水多毛片| 午夜免费观看性视频| 亚洲经典国产精华液单| 国产av码专区亚洲av| 亚洲成人精品中文字幕电影| 一本色道久久久久久精品综合| 搡老乐熟女国产| 欧美成人a在线观看| 熟女人妻精品中文字幕| 亚洲国产成人一精品久久久| 亚洲av中文字字幕乱码综合| 人人妻人人澡人人爽人人夜夜| 午夜福利在线在线| 中国三级夫妇交换| 国产精品女同一区二区软件| 精品人妻熟女av久视频| 亚洲人成网站在线观看播放| 国产一区二区在线观看日韩| 少妇猛男粗大的猛烈进出视频 | 自拍欧美九色日韩亚洲蝌蚪91 | 五月天丁香电影| av在线老鸭窝| 国产精品偷伦视频观看了| av在线播放精品| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 有码 亚洲区| 免费黄色在线免费观看| 久久女婷五月综合色啪小说 | 中文字幕免费在线视频6| 久久久精品免费免费高清| av在线蜜桃| 国产男人的电影天堂91| 最近手机中文字幕大全| 精品一区二区三卡| 精品国产乱码久久久久久小说| 久久午夜福利片| 成人美女网站在线观看视频| 欧美日韩在线观看h| 六月丁香七月| 免费人成在线观看视频色| 午夜日本视频在线| av卡一久久| 欧美一级a爱片免费观看看| 男女边摸边吃奶| 亚洲色图综合在线观看| 久热这里只有精品99| 欧美日韩在线观看h| 一区二区三区免费毛片| 亚洲国产精品999| 在线观看一区二区三区| 久久久色成人| 国产欧美亚洲国产| 国产成人福利小说| 免费黄网站久久成人精品| 熟女电影av网| 亚洲精品久久午夜乱码| 国产色婷婷99| eeuss影院久久| 丰满少妇做爰视频| 高清视频免费观看一区二区| 高清日韩中文字幕在线| 99热全是精品| 夜夜看夜夜爽夜夜摸| 久久久久久久午夜电影| 涩涩av久久男人的天堂| 亚洲精品,欧美精品| 亚洲国产精品成人综合色| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线| 18禁裸乳无遮挡免费网站照片| 联通29元200g的流量卡| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| 久久女婷五月综合色啪小说 | 99热这里只有是精品50| 免费观看a级毛片全部| 97热精品久久久久久| 一级毛片aaaaaa免费看小| 中文欧美无线码| 亚洲va在线va天堂va国产| 精品久久久久久久人妻蜜臀av| 免费观看a级毛片全部| 禁无遮挡网站| 天天一区二区日本电影三级| 爱豆传媒免费全集在线观看| 免费看av在线观看网站| 欧美xxⅹ黑人| 欧美一区二区亚洲| 欧美激情在线99| 日本三级黄在线观看| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频 | 69人妻影院| 老师上课跳d突然被开到最大视频| 国产老妇女一区| 男女国产视频网站| 国产成人精品一,二区| 2021天堂中文幕一二区在线观| 国产免费一区二区三区四区乱码| 成人一区二区视频在线观看| 国产精品一及| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 男男h啪啪无遮挡| 欧美潮喷喷水| 精品国产三级普通话版| 三级国产精品片| 精品国产一区二区三区久久久樱花 | 亚洲人成网站在线播| 精品国产一区二区三区久久久樱花 | 国产 一区精品| 久久国内精品自在自线图片| 人妻制服诱惑在线中文字幕| 97在线视频观看| 成年av动漫网址| 成人毛片60女人毛片免费| 黄色怎么调成土黄色| 99热这里只有是精品50| 99久久精品热视频| 一级av片app| 亚洲电影在线观看av| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 深夜a级毛片| 好男人在线观看高清免费视频| 亚洲在久久综合| 一边亲一边摸免费视频| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| 亚洲成人久久爱视频| 国产黄片美女视频| 亚洲av一区综合| 天堂网av新在线| av免费观看日本| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 免费观看无遮挡的男女| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 2022亚洲国产成人精品| 精品一区二区三区视频在线| 最近中文字幕2019免费版| 在线观看国产h片| 在线观看一区二区三区激情| 少妇被粗大猛烈的视频| 国产视频内射| 欧美精品人与动牲交sv欧美| 午夜福利视频1000在线观看| av福利片在线观看| av在线天堂中文字幕| 又黄又爽又刺激的免费视频.| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 久久久欧美国产精品| 中国三级夫妇交换| 精品人妻一区二区三区麻豆| 久久精品国产自在天天线| 久久久久国产精品人妻一区二区| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放| 国产午夜精品一二区理论片| 少妇的逼好多水| av线在线观看网站| 久久国产乱子免费精品| 国产精品一区www在线观看| .国产精品久久| av在线天堂中文字幕| 联通29元200g的流量卡| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 嘟嘟电影网在线观看| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 国产成人精品福利久久| 午夜免费鲁丝| 熟女av电影| 最近最新中文字幕免费大全7| 男人狂女人下面高潮的视频| 日韩av在线免费看完整版不卡| 插阴视频在线观看视频| .国产精品久久| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| a级毛片免费高清观看在线播放| 最近最新中文字幕大全电影3| 亚洲天堂av无毛| 欧美xxxx性猛交bbbb| 老司机影院毛片| 亚洲,一卡二卡三卡| 国产精品国产av在线观看| 精品午夜福利在线看| 直男gayav资源| 亚洲自拍偷在线| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 在现免费观看毛片| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 在线a可以看的网站| 久久精品久久精品一区二区三区| 熟女av电影| 久久久精品94久久精品| 男女无遮挡免费网站观看| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 国产精品偷伦视频观看了| 国产人妻一区二区三区在| 久久女婷五月综合色啪小说 | 中文资源天堂在线| 亚洲精品国产成人久久av| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 夜夜爽夜夜爽视频| 黑人高潮一二区| 久久精品国产a三级三级三级| 黄片wwwwww| 免费看日本二区| 国产精品成人在线| 亚洲精品456在线播放app| 亚洲精品,欧美精品| 少妇人妻精品综合一区二区| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 亚洲精品自拍成人| 免费黄色在线免费观看| 午夜日本视频在线| 国产视频内射| 亚洲一区二区三区欧美精品 | 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频 | 日韩国内少妇激情av| 成人漫画全彩无遮挡| 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| 精品人妻一区二区三区麻豆| 最近最新中文字幕免费大全7| 精品亚洲乱码少妇综合久久| 成人国产av品久久久| 我的女老师完整版在线观看| 新久久久久国产一级毛片| 日韩精品有码人妻一区| 久久精品国产a三级三级三级| 又大又黄又爽视频免费| 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 极品教师在线视频| 成人国产麻豆网| 国产视频内射| 91aial.com中文字幕在线观看| 久久99热6这里只有精品| 亚洲一区二区三区欧美精品 | 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 亚洲成人中文字幕在线播放| 久久久久久久大尺度免费视频| 亚洲天堂av无毛| 香蕉精品网在线| 少妇人妻一区二区三区视频| 中文字幕制服av| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| av播播在线观看一区| 热re99久久精品国产66热6| 91aial.com中文字幕在线观看| 午夜爱爱视频在线播放| 欧美区成人在线视频| 嫩草影院精品99| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 色吧在线观看| 国产精品蜜桃在线观看| 成年女人看的毛片在线观看| 久久6这里有精品| 午夜视频国产福利| 高清午夜精品一区二区三区| 纵有疾风起免费观看全集完整版| 色哟哟·www| 极品少妇高潮喷水抽搐| 亚洲天堂av无毛| 少妇人妻精品综合一区二区| 欧美三级亚洲精品| 免费观看无遮挡的男女| 久久久久久久久久成人| 久久99热这里只有精品18| 热re99久久精品国产66热6| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 精品一区二区三区视频在线| 午夜视频国产福利| 亚洲精品乱久久久久久| 亚洲精品456在线播放app| av在线观看视频网站免费| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆| 18禁在线无遮挡免费观看视频| 欧美激情国产日韩精品一区| 激情五月婷婷亚洲| 又黄又爽又刺激的免费视频.| 少妇人妻久久综合中文| 欧美 日韩 精品 国产| 日日啪夜夜撸| 老司机影院成人| 免费观看在线日韩| 色播亚洲综合网| 中文资源天堂在线| 嫩草影院精品99| 免费av观看视频| a级毛片免费高清观看在线播放| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 国产一级毛片在线| 亚洲精品乱码久久久久久按摩| 国产亚洲av嫩草精品影院| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 美女被艹到高潮喷水动态| eeuss影院久久| 又爽又黄无遮挡网站| 亚洲av日韩在线播放| 丝袜美腿在线中文| 91精品一卡2卡3卡4卡| eeuss影院久久| 少妇人妻精品综合一区二区| 看十八女毛片水多多多| 欧美国产精品一级二级三级 | 免费av毛片视频| 欧美丝袜亚洲另类| 天堂中文最新版在线下载 | 一级黄片播放器| 大香蕉久久网| 超碰av人人做人人爽久久| 成年女人在线观看亚洲视频 | 欧美丝袜亚洲另类| 两个人的视频大全免费| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 亚洲精品乱久久久久久| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 国产美女午夜福利| 国产精品一区二区性色av| 久久韩国三级中文字幕| 日韩在线高清观看一区二区三区| 久久久国产一区二区| 国产日韩欧美亚洲二区| 亚洲av国产av综合av卡| 18禁在线播放成人免费| 一级二级三级毛片免费看| 国产大屁股一区二区在线视频| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 欧美精品一区二区大全| 亚洲欧美中文字幕日韩二区| 色综合色国产| 卡戴珊不雅视频在线播放| 伦理电影大哥的女人| 欧美日韩视频高清一区二区三区二| 看黄色毛片网站| 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 欧美日韩精品成人综合77777| 在线亚洲精品国产二区图片欧美 | 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品| 大片电影免费在线观看免费| 男女无遮挡免费网站观看| 亚洲国产欧美人成| 欧美日韩亚洲高清精品| 97人妻精品一区二区三区麻豆| 久久精品夜色国产| 日本与韩国留学比较| 久久久色成人| 在线a可以看的网站| 91精品伊人久久大香线蕉| 99久久九九国产精品国产免费| 听说在线观看完整版免费高清| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 日本一本二区三区精品| 黑人高潮一二区| tube8黄色片| 3wmmmm亚洲av在线观看| 在线亚洲精品国产二区图片欧美 | 一级毛片电影观看| 久久久精品免费免费高清| 夫妻午夜视频| 国产在线男女| 欧美国产精品一级二级三级 | 18禁裸乳无遮挡免费网站照片| 青春草视频在线免费观看| 黑人高潮一二区| 黄色欧美视频在线观看| 国产男人的电影天堂91| 97在线人人人人妻| 免费电影在线观看免费观看| 久久久a久久爽久久v久久| 各种免费的搞黄视频| 亚洲人成网站高清观看| 亚洲精品乱久久久久久| 成年av动漫网址| 26uuu在线亚洲综合色| 97在线人人人人妻| 久久久精品欧美日韩精品| 免费av不卡在线播放| 国产免费一区二区三区四区乱码| 亚洲精品自拍成人| 伊人久久国产一区二区| 激情 狠狠 欧美| 久久久久久久久久人人人人人人| 一级黄片播放器| www.色视频.com| 人人妻人人看人人澡| 亚洲高清免费不卡视频| 中文字幕av成人在线电影| 特大巨黑吊av在线直播| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看| 成人无遮挡网站| 亚洲精品乱码久久久久久按摩| 欧美成人午夜免费资源| 精品一区在线观看国产| 久久女婷五月综合色啪小说 | 我的老师免费观看完整版| 欧美xxxx性猛交bbbb| 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 日韩欧美精品免费久久| 国产精品偷伦视频观看了| 观看免费一级毛片| 久久综合国产亚洲精品| 永久网站在线| 男人狂女人下面高潮的视频| 国产成人精品婷婷| 女人久久www免费人成看片| 精品人妻熟女av久视频| 精品久久久久久电影网| 日韩成人伦理影院| 99久国产av精品国产电影| 亚洲精品成人久久久久久| 免费人成在线观看视频色| 国产免费视频播放在线视频| 男人舔奶头视频| 熟妇人妻不卡中文字幕| 麻豆国产97在线/欧美| 少妇高潮的动态图| 国产精品99久久99久久久不卡 | 91精品一卡2卡3卡4卡| 一本久久精品| 国产精品偷伦视频观看了| 国产一区有黄有色的免费视频| 嫩草影院新地址| 三级国产精品欧美在线观看| 精品99又大又爽又粗少妇毛片| 欧美少妇被猛烈插入视频| 色网站视频免费| 青春草国产在线视频| 最近最新中文字幕免费大全7| 亚洲在久久综合| 久久久久精品性色| 久久99热这里只有精品18| av在线亚洲专区| 好男人在线观看高清免费视频| 少妇丰满av| 午夜视频国产福利| 一本久久精品| 欧美日韩精品成人综合77777| 日韩欧美一区视频在线观看 | 亚洲,一卡二卡三卡| 日韩一本色道免费dvd| 涩涩av久久男人的天堂| 精品少妇久久久久久888优播| 国产高潮美女av| 久久精品国产鲁丝片午夜精品| 美女xxoo啪啪120秒动态图| 午夜福利在线观看免费完整高清在| 晚上一个人看的免费电影| 欧美少妇被猛烈插入视频| 在线天堂最新版资源| 如何舔出高潮| 精品一区在线观看国产| 免费观看在线日韩| 国产爽快片一区二区三区| 激情五月婷婷亚洲| av.在线天堂| 国产爽快片一区二区三区| 青春草亚洲视频在线观看| 麻豆久久精品国产亚洲av| 日本三级黄在线观看| 超碰av人人做人人爽久久| 中文天堂在线官网| 97在线人人人人妻| 91在线精品国自产拍蜜月| 在线观看av片永久免费下载| 国产日韩欧美亚洲二区| 久久99热这里只频精品6学生| 国产爱豆传媒在线观看| 成人亚洲精品av一区二区| 嫩草影院精品99| 身体一侧抽搐| 国产乱人偷精品视频| 69人妻影院| 蜜臀久久99精品久久宅男|