• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Core-Shell Nanospheres(HP-Fe2O3@TiO2)with Hierarchical Porous Structures and Photocatalytic Properties

    2013-07-25 09:08:52CHENFuXiaoFANWeiQiangZHOUTengYunHUANGWeiHong
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:克儉物理化學(xué)學(xué)報(bào)

    CHEN Fu-Xiao FAN Wei-Qiang ZHOU Teng-Yun HUANG Wei-Hong,*

    (1School of the Environment,Jiangsu University,Zhenjiang 212013,Jiangsu Province,P.R.China;2School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu Province,P.R.China)

    1 lntroduction

    Recently,considerable interest has been focused on strategy for photodegrading environmental organic pollutants and toxics by solar light.1-4As well known,photocatalytic properties of the catalysts could be significantly improved with modification,and the efforts to manipulate the structure and composition would offer new opportunities to create novel materials with superior photocatalytic performance.So various kinds of catalysts based on different matrixes have been reported,such as metal sulfides,metal oxides,and metal organic complexes.5-7Comparatively,metal oxides possess the natures of adjustable band gaps,nontoxicity,and lowcost,which enables them as good candidates in the field of photovoltaic materials,photocatalysts,and water treatments especially when they have hierarchical structures.8-10

    α-Fe2O3,as an important catalyst,has been investigated in-depth for a long time.Moreover,the band gap ofα-Fe2O3is just 2.2 eV,which endows it with responding ability to visible light.However,the poor catalytic activity limits the application ofα-Fe2O3,due to its low electron mobility(generally in the range of 0.01 cm2·V-1·s-4to 0.1 cm2·V-1·s-5),which causes the rapid recombination of electron-hole pairs.11In addition,TiO2has been widely used as a kind of high-efficiency photocatalysts,due to its chemical stability,environmental-friendliness,and higher activity.However,because of its wideband gap energy(Eg=3.2 eV),TiO2can only response to ultraviolet light(less than 387 nm),which makes TiO2take low utilization rate of the solar energy.12Generally,the compatibility of high separation efficiency of photogenerated charge carriers and abundant supply of substrates to the semiconductor surface is a key to achieve efficient photocatalytic reaction systems.Taking into account above reasons,an effective approach to break the limit of above two materials is to establish heterostructure.According to the differences of conduction band potential,the spontaneous migration of photogenerated electrons at the interface results in effective separation of electrons and holes,which improves the quantum efficiency of the photocatalyst.Based on above consideration,corresponding reports have mainly focused on Fe2O3/ZnO,Fe2O3/TiO2,Fe2O3/ZnO/TiO2and others,which show enhanced photocatalytic properties.13-18Therefore,exploring alternative ways to design novel heterogeneous composite materials based onα-Fe2O3may attract more attention in the field of photocatalysis.

    Inorganic materials with porous structures have attracted increasing attention due to their large surfaces and favor for the diffusion of solvent,which takes a key effect on the catalytic efficiency.19For example,Xu and Zhu20recently reported the preparation ofα-Fe2O3mesoporous microspheres with hierarchical nanostructure,and the large specific surface areas greatly promote their catalytic activities.Moreover,Ozin group21also found that the macroporous structure could enhance the photodegrading efficiency of TiO2matrix.Min22and Kang23et al.further showed that porousα-Fe2O3architectures exhibited high photocatalytic performance for methyl orange.Inspired by these,we would speculate that combination of the heterogeneous and porous structures in one single sample might endowα-Fe2O3matrix with interesting properties.

    Therefore,in this paper,we introduce Fe3O4nanoparticles as the template to design novel materials with core-shell heterogeneous structure.Fe3O4nanoparticles were taken as the core and TiO2gel as the shell.The obtained heterogeneous core-shell spheres were changed into HP-Fe2O3@TiO2through calcination.The micro-structure of samples was characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and high-resolution transmission electron microscopy(HRTEM).Furthermore,the visible and ultraviolet photocatalytic properties of all samples based on different quantities of TiO2have been studied in detail.

    2 Experimental

    2.1 Materials

    FeCl3·6H2O and CH3COONa of analytical reagent(AR)grade were supplied by Sinopharm Chemical Reagent Co.,Ltd.Ti(OC4H9)4(TBT)was purchased from Johnson Matthey Company(U.K.).Ethylene glycol,acetic acid(HAc),and ethanol of AR grade were purchased from Beijing Chemical Corp.All chemical reagents were used as received without further purification.

    2.2 Syntheses

    2.2.1 Synthesis of Fe3O4spheres

    Monodisperse Fe3O4spheres were synthesized by solvothermal reaction according to the literature.242.70 g of FeCl3·6H2O and 7.20 g of CH3COONa were dissolved in 100 mL of ethylene glycol under magnetic stirring.The obtained homogeneous solution was transferred to a Teflon-lined stainless-steel autoclave and heated at 200°C for 5 h.The obtained black magnetite particles were washed with ethanol and deionized water respectively,and then dried in vacuum oven.

    2.2.2 Synthesis of Fe3O4@TiO2-gel spheres

    0.1 g Fe3O4spheres were dispersed into solution(ethanol:5.75 mL;acetic acid:0.34 mL;TBT:xmL,x=0,1,2,3,4,5),and then the solution was stirred mechanically for 30 min.The magnetic particles were collected by magnets.Finally,the samples were dried in air for 2 days.

    2.2.3 Synthesis of HP-Fe2O3@TiO2spheres

    The HP-Fe2O3@TiO2spheres were prepared through calcination.Dried Fe3O4@TiO2-gel spheres were put into the crucible and then calcined in a muffle furnace at 450°C for 4 h.The fi-nal samples were yellow-brown.

    李老鬼吃著一顆煙,手里的錘子在木船上敲了幾下。那艘游艇在這兒晃悠了一圈,見你沒來,開到對(duì)面的小島啦,島上有家大飯店,可能是想請(qǐng)你吃海參鮑魚什么的。你想見嗎?

    2.3 Characterization

    X-ray diffraction(XRD)patterns were obtained on a D/MAX-2500 X-ray diffractometer(Rigaku,Japan)using CuKαradiation source(λ=0.154056 nm).Specific surface area and pore size were measured by using a NOVA2000e analytical system made by Quantachrome Corporation(USA),the specific surface area was calculated by the Brunauer-Emmett-Teller(BET)method.SEM images were collected on a JSM-6480 field emission SEM(JEOL,Japan).TEM and HRTEM images were collected on an F20S-TWIN electron microscope(Tecnai G2,FEI Co.),using a 200 kV accelerating voltage.A Thermo ESCALAB 250X-rayphotoelectronspectroscope(XPS)equipped with a standard and monochromatic source(AlK hν1486.6 eV)was employed for surface analysis.UV-Vis diffused reflectance spectra of the samples were obtained from a UV-Vis spectrophotometer (UV2550,Shimadzu,Japan),BaSO4was used as a reflectance standard.

    2.4 Photocatalytic activity measurement

    The photodegradative reaction for methylene blue(MB)was carried out under visible light with a 420 nm cutoff filter and UV light,respectively.The photochemical reactor contained 15 mg samples and 5 mg·L-1of 100 mL MB solution.To determine the initial absorbance of samples,we kept the reactor into darkness for 30 min to reach absorption equilibrium.The photochemical reactor was irradiated with two 150 W tungsten halogen lamps and quartz lamp,which were located with a distance of 8 cm at one side of the containing solution.The sampling analysis was conducted in 10 min interval.The photocatalytic degradation rate(DR)was calculated by the following formula:

    where,A0is the initial absorbency of MB that reaches absorption equilibrium,whileAithe absorbency after the sampling analysis.

    3 Results and discussion

    3.1 Structural characterization

    Theproposed mechanism fortheformation ofHPFe2O3@TiO2spheres is described in Scheme 1.

    Scheme 1 Proposed mechanism for the formation of HP-Fe2O3@TiO2nanospheres with hierarchical porous structure

    Fig.1 XRD patterns of samples

    Fe3O4spheres can be easily and largely obtained by the solvothermal method,so we here introduce Fe3O4spheres as templates for designing core-shell HP-Fe2O3@TiO2spheres.After calcination,Fe3O4phase was transferred intoα-Fe2O3phase as observed in Fig.1(a).Compared with Fig.1(h),the calcined product can be attributed to the pureα-Fe2O3(PDF 33-0664),25when the synthesizing process was operated without TBT.Furthermore,a new diffraction peak at ca 30.8°(121),which could be attributed to TiO2(brookite:PDF 29-1360)as shown in Fig.1(g),26,27gradually appeared,which indicated that TiO2phase was formed in the samples.The phenomenon for the formation of just one diffraction peak at ca 30.8°(121)may be due to the two-dimensional structure of the TiO2film coated on the surface ofα-Fe2O3nanospheres,and the following HRTEM image of HP-Fe2O3@TiO2sample further showed uniform(121)crystalline plane of TiO2film,and the similar phenomenon has been also reported by Kuznetsovaet al.28Moreover,the diffraction peak of TiO2was enhanced with the increasing quantity of TBT,while the relative intensity of peaks fromα-Fe2O3became weaker contrarily.Based on above phenomena,it can be indirectly and preliminary proved that TiO2was coated on the surface ofα-Fe2O3.

    SEM images of the calcined samples at different synthesizing conditions are shown in Fig.2.Without adding TBT,the sample as pureα-Fe2O3retained spherical morphology very well(Fig.2(a)).The size ofα-Fe2O3spheres is about 200 nm,and theα-Fe2O3spheres maintain a good state of monodisperse.After adding TBT,the obtained HP-Fe2O3@TiO2still exhibited as monodisperse(Fig.2(b-e)),and the size of sphere almost unchanged.However,by increasing the quantity of TBT up to 5 mL,a kind of flocculent gel appeared in Fig.2(f),which could be due to the formation of TiO2gel as the second phase.Therefore,according to the SEM images,we can give the following speculation:when the quantity of TBT is lower than 4 mL during the period of synthesis,the products can keep spherical morphology very well(Fig.2(g)),while the sample became significant adhesion phenomenon with the quantity of TBT up to 5 mL(Fig.2(h)).So,at this condition(TBT:0-4 mL),the TBT should have been attached to the surface ofα-Fe2O3sphere as TiO2shell without forming separate TiO2gel,which further confirms that the core-shell structure is composed ofα-Fe2O3and TiO2.

    Fig.2 SEM images of samples

    Element analysis characterization based on SEM was also measured in order to further study the composition of HP-Fe2O3@TiO2.The sample of HP-Fe2O3@TiO2(4 mL TBT)is taken as an example shown in Fig.3.The energy-dispersive X-ray(EDX)analyzer coupled to the SEM(Fig.3(d))suggests that there are mainly Ti and Fe elements in the samples,and the Fe elements take the dominant part of the samples,which is consistent with the amount of raw materials in the synthesis process.Moreover,in Fig.3(b)and Fig.3(c),the elemental analysis of the resulting nanospheres using secondary electrons by SEM reveals that Ti and Fe elements are uniformly distributed in the samples,which provides another strong evidence for the core-shell wrapped structure of samples.

    Fig.3 Element analysis based on SEM images of HP-Fe2O3@TiO2(4 mLTBT)

    Fig.4 TEM(a)and HRTEM(b)images of pure α-Fe2O3,TEM(c-e)and HRTEM(f)images of HP-Fe2O3@TiO2(4 mLTBT)

    The surface electronic states of the HP-Fe2O3@TiO2(4 mL TBT)sample were further confirmed by XPS analysis.Fig.5 shows the high-resolution Fe 2p,O 1s,and Ti 2pXPS spectra.Fig.5(a)reveals that the Fe 2pXPS spectrum possesses the typical 2p1/2(723.7 eV)and 2p3/2(712.3 eV)peaks fromα-Fe2O3.31In Fig.5(b),the sample exhibits a broader O 1speak(531.7 eV),this broad peak can be corresponded to the O 1sof TiO2andα-Fe2O3.Ti 2pXPS spectrum(Fig.5(c))is identical with Ti 2p1/2and Ti 2p3/2peaks centered at binding energies of 465.4 and 459.8 eV,which are consistent with the typical values for TiO2.32Therefore,the XPS spectra can further reveal that the HP-Fe2O3@TiO2(4 mL TBT)sample is composed of TiO2andα-Fe2O3phases.

    3.2 Surface area measurement

    Fig.5 XPS survey of HP-Fe2O3@TiO2(4 mLTBT)

    Fig.6 Nitrogen adsorption-desorption isotherms(a)and pore size distribution curve(b)of HP-Fe2O3@TiO2(4 mLTBT)

    The porous structure of the HP-Fe2O3@TiO2(4 mL TBT)was further confirmed by nitrogen adsorption-desorption isotherms.As shown in the Fig.6(a),the isotherms are of type IV,33with a hysteresis loop range of 0.5-0.9p/p0(relative pressure).The BET surface area of the sample is 26.5 m2·g-1.The relatively large surface area can be due to hierarchical porous structure composed of macroporous structure and mesoporous structure in samples.Moreover,the pore size distribution curves(Fig.6(b))show that the average diameter of the sample is ca 4 nm,which indicates that the HP-Fe2O3@TiO2(4 mL TBT)sample has been endowed with mesoporous structure.

    3.3 UV-Vis absorption spectra

    Fig.7 UV-Vis absorption spectra of samples

    As shown in the UV-Vis absorption spectra(Fig.7),the samples exhibited broad bands from 600 to 250 nm which belonged to the host absorption ofα-Fe2O3.The band gap ofα-Fe2O3is 2.2 eV(563 nm),which nearly matches with the UV-Vis absorption spectra.34The band gap of TiO2is 3.2 eV(387 nm),so the UV-Vis absorption spectra of HP-Fe2O3@TiO2should give a phenomenon of blue shift theoretically.However,when the TiO2shells were coated on the surface ofα-Fe2O3,the absorption spectra of core-shell HP-Fe2O3@TiO2contrarily extended to 750 nm(red shift)as shown in Fig.7(c)and Fig.7(e),we consider that the phenomenon may be caused by the defect absorption.35,36All the absorption spectra reveal that the obtained samples possess the nature of responding to visible light.

    3.4 Catalytic performance

    3.4.1 Photocatalytic activity under visible light

    Based on the high specific surface area and heterogeneous structure,the photocatalytic activity of the HP-Fe2O3@TiO2has been investigated on degradation of the representative MB organic dye in a solution containing the low concentration of H2O2,where Fenton reagent is effectively formed with H2O2and the generated hydroxyl radical together with holes facilitates the photodegradation of MB.37Fig.8 shows the absorption spectra of MB solution after being irradiated under visible light(λ≥420 nm)for 1 h period.The major absorption(ca 665 nm)in the visible regions decreased with increasing irradiation time,which indicated the significant photodegradation of MB by HP-Fe2O3@TiO2.38Fig.9 shows the photocatalytic degradation ratio and photodegradation kinetics of the MB.All the photodegradations of the MB aqueous solution fit first-order reaction on the whole,which can be expressed as:ln(C/C0)=-kt(kis the apparent first-order reaction constant;C0andCare the initial and the reaction concentrations of MB,respectively).39

    In theory,the conduction band ofα-Fe2O3is more negative than TiO2,so the photogenerated electrons can not transfer from the conduction band ofα-Fe2O3to TiO2.However,when the TiO2is formed as the shell on the surface ofα-Fe2O3,theα-Fe2O3/TiO2heterojunction would induce the equilibrium of Fermi levels from TiO2andα-Fe2O3,which makes it possible for immigration from the conduction band ofα-Fe2O3to the conduction band of TiO2.The effective separation of electrons and holes will endow the samples with superiority for suppression of rapid recombination of electron hole pairs,40,41which may be conducive to improving the catalytic activities.However,it is confusing that the catalytic effect reduced with increasing the amount of TiO2(Fig.9),which may be caused by the coverage of TiO2influencing visible light absorption area ofα-Fe2O3in some degree.But,the coverage of TiO2does not affect the contact of internalα-Fe2O3core with the dye solution,because of hierarchical porous structure of the sample.Therefore,a combination of the above two factors would cause the reducing phenomena of the photo-degradation efficiency with increasing the TiO2coverage.Additionally,on the other hand,the catalytic effect is decreased by increasing the amount of TiO2,which provides another evidence for TiO2successfully wrapped on the surface of iron oxide core.

    It is obvious that the photocatalytic activity of HPFe2O3@TiO2(1 mL TBT)took the best performance in the visible light,which might be resulted from the following three reasons:(a)the Fe2O3nanospheres coated with TiO2shell can form a heterojunction structure,which could promote the electron-hole separation to improve the photocatalytic activity;(b)the TiO2shell on the surface would shield the absorption of visible light for Fe2O3nanospheres in a certain extent,and this shielding effect becomes significant with increasing the quantity of TiO2shell,which is not conducive to the improvement of the photocatalytic activity;(c)if the amount of TiO2is too much,for example TBT up to 5 mL,the sample would exhibit adhesion phenomenon that remarkably causes agglomeration and reduce dispersibility of Fe2O3nanospheres,which is also not conducive to the enhancement of photocatalytic activity.Therefore,the trade-offs based on the above three parts,the amount of coated TiO2should not be too large.We found that the HP-Fe2O3@TiO2(1 mL TBT)possessed the best performance under visible light,which shows that the surface-coated TiO2can effectively form a heterojunction structure,while the amount of TiO2does not significantly affect the absorption of visible light of Fe2O3nanospheres under this condition.

    Fig.8 Absorption spectra of MB solution irradiated under visible light

    3.4.2 Photocatalytic activity under ultraviolet light

    Irradiated by visible light,TiO2,as heterogeneous phase,could effectively separate the photogenerated electrons fromα-Fe2O3.However,TiO2could not produce photoelectron(or hole)under visible light.Therefore,we further studied the photocatalytic properties of the samples under ultraviolet light,sinceα-Fe2O3and TiO2can produce photo-induced electron(or hole)by the ultraviolet excitation,which would greatly improve the photocatalytic effect of the sample.As shown in Fig.10,HP-Fe2O3@TiO2(4 mL TBT)exhibited the best photocatalytic property(Fig.10e),it might be due to the increase of TiO2amount on the surface ofα-Fe2O3which could well respond to ultraviolet light.However,the photocatalytic ratio of HP-Fe2O3@TiO2(Fig.10f)decreased when the amount of TiO2up to 5 mL compared with HP-Fe2O3@TiO2(4 mL TBT),because the excessive TiO2led to the emergence of TiO2gel,which caused the adhesion of the nanospheres and reduction of dispersion,thereby affecting the photocatalytic activity of the sample.42-45

    In theory,lights can exciteα-Fe2O3semiconductor to form photoelectron,if the energy is greater than 2.2 eV(wavelengths less than 564 nm).However,due to the certain width of conduction band,photons with large energies may excite photoelectron to the upper edge of the conduction band,these excited state electrons will generally fall to the lower edge of the conduction band through the relaxation process in order to stabilize.During the process of relaxation,some excited state electrons may release their energy in other ways,and eventually return to the ground state of the semiconductor,thereby some excited state electron energy cannot play an effective role in the photocatalytic process.For example,Liet al.46found that:the best photoelectric conversion efficiency ofα-Fe2O3was not in the ultraviolet region,but occurred in the visible light of 400 nm region.Therefore,we consider that this may be one of the reasons for resulting inα-Fe2O3(Fig.10a)with low photocatalytic activity under UV irradiation.

    Fig.9 (A)Photocatalytic degradation ratio and(B)photodegradation kinetics of the MB irradiated under visible light

    Fig.10 (A)Photocatalytic degradation ratio and(B)photodegradation kinetics of the MB irradiated under ultraviolet light

    Furthermore,TiO2can be effectively excited in the ultraviolet lights.Due to the different level structures ofα-Fe2O3and TiO2,it generates heterogeneity structural effects that can effectively enhance electron-hole separation,which may increase the rate of photodegradation.We think that this is the another cause for theα-Fe2O3(under UV irradiation)with lower photocatalytic activity than the HP-Fe2O3@TiO2samples.

    4 Conclusions

    Core-shell functional nanoparticles with hierarchical porous structure(HP-Fe2O3@TiO2)have been successfully prepared.The obtained HP-Fe2O3@TiO2still exhibited as monodisperse nanospheres,HRTEM further provided insight into the microstructural details,which confirms that the shell is TiO2with both macroporous and mesoporous structure.On the basis of the UV-Vis spectra,the samples possess the nature of responding to visible light.The photocatalysis properties of HPFe2O3@TiO2were studied under visible light and ultraviolet light respectively.Taking into account morphology and photocatalytic property,HP-Fe2O3@TiO2(4 mL TBT)showed the optimal morphology and photocatalytic activity among all the samples under ultraviolet light irradiation.

    (1)Zhao,Y.B.;Ma,W.H.;Li,Y.;Ji,H.W.;Chen,C.C.;Zhu,H.Y.;Zhao,J.C.Angew.Chem.Int.Edit.2012,51,3188.doi:10.1002/anie.v51.13

    (2)Cong,Y.;Qin,Y.;Li,X.K.;Dong,Z.J.;Yuan,G.M.;Cui,Z.W.Acta Phys.-Chim.Sin.2011,27,1509.[叢 野,秦 云,李軒科,董志軍,袁觀明,崔正威.物理化學(xué)學(xué)報(bào),2011,27,1509.]doi:10.3866/PKU.WHXB20110624

    (3) Ji,P.L.;Wang,J.G.;Zhu,X.L.;Kong,X.Z.Acta Phys.-Chim.Sin.2012,28,2155.[姬平利,王金剛,朱曉麗,孔祥正.物理化學(xué)學(xué)報(bào),2012,28,2155.]doi:10.3866/PKU.WHXB201206262

    (4)Chen,C.C.;Ma,W.H.;Zhao,J.C.Chem.Soc.Rev.2010,39,4206.doi:10.1039/b921692h

    (5) Zhou,Q.;Yuan,B.L.;Xu,D.X.;Fu,M.L.Chin.J.Catal.2012,33,850.[周 強(qiáng),苑寶玲,許東興,付明來.催化學(xué)報(bào),2012,33,850.]

    (6) Zhao,J.C.;Chen,C.C.;Ma,W.H.Topics in Catalysis2005,35,269.doi:10.1007/s11244-005-3834-0

    (7)Huang,Y.P.;Ma,W.H.;Li,J.;Cheng,M.M.;Zhao,J.C.;Wan,L.J.;Yu,J.C.J.Phys.Chem.B2003,107,9409.

    (8) Tang,J.;Zou,Z.;Ye,J.Angew.Chem.Int.Edit.2004,43,4463.

    (9)Xuan,S.H.;Jiang,W.Q.;Gong,X.L.;Hu,Y.;Chen,Z.Y.J.Phys.Chem.C2009,113,553.doi:10.1021/jp8073859

    (10) Dotan,H.;Sivula,K.;Gr?tzel,M.;Rothschild,A.;Warren,S.C.Energ.Environ.Sci.2011,4,958.doi:10.1039/c0ee00570c

    (11) Mor,G.K.;Prakasam,H.E.;Varghese,O.K.;Shankar,K.;Grimes,C.A.Nano Lett.2007,7,2356.doi:10.1021/nl0710046

    (12)Wang,Q.;Chen,C.C.;Ma,W.H.;Zhu,H.Y.;Zhao,J.C.Chem.-Eur.J.2009,15,4765.doi:10.1002/chem.v15:19

    (13)Zhang,H.T.;Wu,X.B.;Wang,Y.M.;Chen,X.Y.;Li,Z.S.;Yua,T.;Ye,J.H.;Zou,Z.G.J.Phys.Chem.Solids2007,68,280.doi:10.1016/j.jpcs.2006.11.007

    (14)Liu,Y.;Yu,L.;Hu,Y.;Guo,C.F.;Zhang,F.M.;Wen,X.Nanoscale2012,4,183.doi:10.1039/c1nr11114k

    (15)Yang,S.G.;Quan,X.;Li,X.Y.;Liu,Y.;Chen,S.;Chen,G.H.Phys.Chem.Chem.Phys.2004,6,659.

    (16)Yan,W.;Fan,H.Q.;Yang,C.Mater.Lett.2011,65,1595.doi:10.1016/j.matlet.2011.03.026

    (17)Zhao,H.;Fu,W.Y.;Yang,H.B.;Xu,Y.;Zhao,W.Y.;Zhang,Y.Y.;Chen,H.;Jing,Q.;Qi,X.F.;Cao,J.;Zhou,X.M.;Li,Y.X.Appl.Phys.Lett.2011,257,8778.

    (18)Zhu,C.L.;Yu,H.L.;Zhang,Y.;Wang,T.S.;Ouyang,Q.Y.;Qi,L.H.;Chen,Y.J.;Xue,X.Y.ACS Appl.Mater.Inter.2012,4,665.doi:10.1021/am201689x

    (19)Zhong,L.S.;Hu,J.S.;Wan,L.J.;Song,W.G.Chem.Commun.2008,No.10,1184.

    (20)Xu,J.S.;Zhu,Y.J.CrystEngComm.2012,14,2702.doi:10.1039/c2ce06473a

    (21) Chen,J.I.L.;Von Freymann,G.;Choi,S.Y.;Kitaev,V.;Ozin,G.A.Adv.Mater.2006,18,1915.

    (22) Min,Y.L.;Zheng,F C.;Zhao,Y.G.;Chen,Y.C.Solid State Sci.2011,13,976.doi:10.1016/j.solidstatesciences.2011.02.005

    (23) Cha,H.G.;Kim,S.J.;Lee,K.J.;Jung,M.H.;Kang,Y.S.J.Phys.Chem.C2011,115,19129.doi:10.1021/jp206958g

    (24)Deng,Y.H.;Qi,D.W.;Deng,C.H.;Zhang,X.M.;Zhao,D.Y.J.Am.Chem.Soc.2008,130,28.doi:10.1021/ja0777584

    (25)Zhu,L.P.;Bing,N.C.;Wang,L.L.;Jin,H.Y.;Liao,G.H.;Wang,L.J.Dalton Transactions2012,41,2959.doi:10.1039/c2dt11822j

    (26)Mo,S.D.;Ching,W.Y.Phys.Rev.B1995,51,13023.doi:10.1103/PhysRevB.51.13023

    (27) Perego,C.;Wang,Y.H.;Durupthy,O.;Cassaignon,S.;Revel,R.;Jolivet,J.P.ACS Appl.Mater.Inter.2012,4,752.doi:10.1021/am201397n

    (28) Kuznetsova,I.N.;Blaskov,V.;Stambolova,I.;Znaidi,L.;Kanaev,A.Mater.Lett.2005,59,3820.doi:10.1016/j.matlet.2005.07.019

    (29) Yang,P.;Deng,T.;Zhao,D.;Feng,P.;Pine,D.;Chmelka,B.F.;Whitesides,G.M.;Stucky,G.D.Science1998,282,2244.doi:10.1126/science.282.5397.2244

    (30)Yuan,Z.Y.;Su,B.L.J.Mater.Chem.2006,16,663.doi:10.1039/b512304f

    (31) Miao,C.H.;Ji,S.L.;Xu,G.P.;Liu,G.D.;Zhang,L.D.;Ye,C.H.ACS Appl.Mater.Inter.2012,4,4428.doi:10.1021/am3011466

    (32) Lazarus,M.S.;Sham,T.K.Chem.Phys.Lett.1982,92,670.doi:10.1016/0009-2614(82)83672-5

    (33) Kruk,M.;Jaroniec,M.Chem.Mater.2001,13,3169.doi:10.1021/cm0101069

    (34)Zhou,X.M.;Yang,H.C.;Wang,C.X.;Mao,X.B.;Wang,Y.S.;Yang,Y.L.;Liu,G.J.Phys.Chem.C2010,114,17051.

    (35) Yui,Y.;Ito,S.;Mizuguchi,J.;Ishikawa,Y.;Kiyanagi,R.;Noda,Y.Jpn.J.Appl.Phys.2011,50,013003.doi:10.1143/JJAP.50.013003

    (36)Fan,W.Q.;Song,S.Y.;Feng,J.;Lei,Y.Q.;Zheng,G.L.;Zhang,H.J.J.Phys.Chem.C2008,112,19939.doi:10.1021/jp8081062

    (37)Zhang,G.Y.;Feng,Y.;Xu,Y.Y.;Gao,D.Z.;Sun,Y.Q.Mater.Res.Bull.2012,47,625.doi:10.1016/j.materresbull.2011.12.032

    (38) Pradhan,G.K.;Parida,K.M.ACS Appl.Mater.Inter.2011,3,317.doi:10.1021/am100944b

    (39)Tong,G.X.;Guan,J.G.;Xiao,Z.D.;Huang,X.;Guan,Y.J.Nanopart.Res.2010,12,3025.doi:10.1007/s11051-010-9897-2

    (40) Peng,L.L.;Xie,T.F.;Lu,Y.C.;Fan,H.M.;Wang,D.J.Phys.Chem.Chem.Phys.2010,12,8033.

    (41)Wu,Q.;Ouyang,J.J.;Xie,K.P.;Sun,L.;Wang,M.Y.;Lin,C.J.J.Hazard.Mater.2012,410,199.

    (42) Zhu,Y.F.;Piscitelli,F.;Buonocore,G.G.;Lavorgna,M.;Amendola,E.;Ambrosio,L.ACS Appl.Mater.Inter.2012,4,150.doi:10.1021/am201192e

    (43) Pan,X.;Zhao,Y.;Liu,S.;Korzeniewski,C.L.;Wang,S.;Fan,Z.Y.ACS Appl.Mater.Inter.2012,4,3944.doi:10.1021/am300772t

    (44) Xiong,S.L.;Xi,B.J.;Qian,Y.T.J.Phys.Chem.C2010,114,14029.doi:10.1021/jp1049588

    (45)Yang,C.J.;Peng,T.Y.;Deng,K.J.;Zan,L.Progress in Chemistry2011,23,874.[楊昌軍,彭天右,鄧克儉,昝 菱.化學(xué)進(jìn)展,2011,23,874.]

    (46)Ling,Y.C.;Wang,G.M.;Wheeler,D.A.;Zhang,J.Z.;Li,Y.Nano Lett.2011,11,2119.doi:10.1021/nl200708y

    猜你喜歡
    克儉物理化學(xué)學(xué)報(bào)
    山月
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    春花
    致敬學(xué)報(bào)40年
    克勤于邦 克儉于家
    Chemical Concepts from Density Functional Theory
    鄒克儉 典藏欣賞
    寶藏(2017年8期)2017-09-01 04:04:15
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    亚洲av中文字字幕乱码综合| 日韩av在线大香蕉| eeuss影院久久| 亚洲国产高清在线一区二区三| .国产精品久久| 特大巨黑吊av在线直播| 午夜老司机福利剧场| 亚洲欧美清纯卡通| 久久精品影院6| 欧美日本亚洲视频在线播放| 亚洲av二区三区四区| 十八禁国产超污无遮挡网站| 99热6这里只有精品| 丝袜美腿在线中文| 精品久久国产蜜桃| 久久久成人免费电影| 看非洲黑人一级黄片| 久久精品人妻少妇| 国产极品精品免费视频能看的| 亚洲欧美日韩东京热| 免费人成在线观看视频色| 九九爱精品视频在线观看| 韩国高清视频一区二区三区| 禁无遮挡网站| 一区二区三区四区激情视频| 久久精品综合一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线观看免费完整高清在| 欧美+日韩+精品| 成人综合一区亚洲| 99热这里只有是精品50| 色尼玛亚洲综合影院| 亚洲av不卡在线观看| 成人鲁丝片一二三区免费| 麻豆av噜噜一区二区三区| 成人av在线播放网站| 一本一本综合久久| www日本黄色视频网| 夜夜看夜夜爽夜夜摸| 免费无遮挡裸体视频| 国产精品乱码一区二三区的特点| 国产伦在线观看视频一区| 看片在线看免费视频| 又黄又爽又刺激的免费视频.| 高清毛片免费看| 九九爱精品视频在线观看| 如何舔出高潮| 99热这里只有精品一区| 欧美成人免费av一区二区三区| 色视频www国产| 日韩高清综合在线| 国产黄片视频在线免费观看| 亚洲国产欧美人成| 国产精品人妻久久久影院| 中文欧美无线码| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 欧美激情在线99| 18禁在线播放成人免费| 亚洲最大成人av| 国国产精品蜜臀av免费| 色哟哟·www| 青春草亚洲视频在线观看| 国产高清国产精品国产三级 | 亚洲av男天堂| 精品人妻视频免费看| 国产三级中文精品| 男的添女的下面高潮视频| 日本-黄色视频高清免费观看| 国产熟女欧美一区二区| 亚洲色图av天堂| 三级男女做爰猛烈吃奶摸视频| 91狼人影院| 国产亚洲精品av在线| 国产在线男女| 国产亚洲精品av在线| 可以在线观看毛片的网站| 久久久久久久久久久丰满| 欧美成人精品欧美一级黄| 免费在线观看成人毛片| 久久精品国产99精品国产亚洲性色| 少妇熟女欧美另类| 特大巨黑吊av在线直播| 99久久人妻综合| 国产 一区 欧美 日韩| 中文字幕久久专区| 18+在线观看网站| 日日摸夜夜添夜夜添av毛片| 少妇熟女aⅴ在线视频| 欧美人与善性xxx| 亚洲丝袜综合中文字幕| 国产高清三级在线| 日韩欧美国产在线观看| 99热这里只有是精品50| 中文字幕制服av| 老司机福利观看| 1024手机看黄色片| 午夜福利在线观看吧| 一级毛片我不卡| 免费观看的影片在线观看| 亚洲国产最新在线播放| 精品免费久久久久久久清纯| 深爱激情五月婷婷| 色综合站精品国产| 97在线视频观看| or卡值多少钱| 国产欧美另类精品又又久久亚洲欧美| 丰满人妻一区二区三区视频av| 校园人妻丝袜中文字幕| 视频中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 天美传媒精品一区二区| 亚洲av电影在线观看一区二区三区 | 欧美+日韩+精品| 免费看光身美女| .国产精品久久| 人体艺术视频欧美日本| 男的添女的下面高潮视频| 自拍偷自拍亚洲精品老妇| 国产三级在线视频| 少妇丰满av| 国产av不卡久久| 日韩强制内射视频| 热99在线观看视频| 天堂√8在线中文| 我的女老师完整版在线观看| 日韩中字成人| 久久精品国产自在天天线| 最近最新中文字幕免费大全7| 亚洲精品乱久久久久久| 中文精品一卡2卡3卡4更新| 国产高清有码在线观看视频| 亚洲va在线va天堂va国产| 国产精品久久久久久精品电影小说 | 国产高潮美女av| 日本与韩国留学比较| www日本黄色视频网| 亚洲伊人久久精品综合 | 我要看日韩黄色一级片| 成人午夜高清在线视频| 青青草视频在线视频观看| 我要搜黄色片| 美女cb高潮喷水在线观看| 亚洲一区高清亚洲精品| 真实男女啪啪啪动态图| 欧美97在线视频| 天堂av国产一区二区熟女人妻| 欧美日本视频| 插逼视频在线观看| 全区人妻精品视频| 插阴视频在线观看视频| 天堂√8在线中文| 久久午夜福利片| 国产精品国产三级国产专区5o | 永久免费av网站大全| av国产免费在线观看| www.色视频.com| 国产亚洲91精品色在线| 欧美一区二区国产精品久久精品| 天美传媒精品一区二区| 一二三四中文在线观看免费高清| 午夜福利视频1000在线观看| 国产黄色视频一区二区在线观看 | 色网站视频免费| 久久热精品热| 亚洲成人中文字幕在线播放| 高清日韩中文字幕在线| 亚洲精品国产成人久久av| 视频中文字幕在线观看| 能在线免费看毛片的网站| 热99re8久久精品国产| 亚洲国产精品国产精品| av专区在线播放| 99久久九九国产精品国产免费| 国产三级中文精品| 国产高清视频在线观看网站| 久久6这里有精品| 午夜精品在线福利| 日本一本二区三区精品| 美女xxoo啪啪120秒动态图| 听说在线观看完整版免费高清| 一个人观看的视频www高清免费观看| 熟女人妻精品中文字幕| 一级av片app| 黄色欧美视频在线观看| 亚洲最大成人中文| av.在线天堂| 汤姆久久久久久久影院中文字幕 | 老司机福利观看| 国产精品永久免费网站| 精品久久久久久久人妻蜜臀av| 亚洲性久久影院| 少妇高潮的动态图| 天堂中文最新版在线下载 | 久久久久久伊人网av| 长腿黑丝高跟| av在线天堂中文字幕| 91精品伊人久久大香线蕉| 成人无遮挡网站| 国产精品一区www在线观看| 国产乱来视频区| 午夜福利成人在线免费观看| 亚洲精品一区蜜桃| 天堂影院成人在线观看| 丝袜喷水一区| 联通29元200g的流量卡| 欧美日韩国产亚洲二区| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 国产一区二区亚洲精品在线观看| 精品免费久久久久久久清纯| 国产淫片久久久久久久久| 亚洲国产成人一精品久久久| 麻豆一二三区av精品| 精品国产露脸久久av麻豆 | 久久久a久久爽久久v久久| 日韩一区二区视频免费看| 亚洲人成网站在线观看播放| 黄色一级大片看看| av在线蜜桃| 国产三级在线视频| 亚洲一级一片aⅴ在线观看| 舔av片在线| 春色校园在线视频观看| 久久99热6这里只有精品| 国产色爽女视频免费观看| 国产精品国产高清国产av| 免费看a级黄色片| 嫩草影院精品99| 熟女人妻精品中文字幕| 国产乱来视频区| 乱码一卡2卡4卡精品| 在线播放无遮挡| 免费无遮挡裸体视频| 久久久午夜欧美精品| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 天堂√8在线中文| 乱系列少妇在线播放| 级片在线观看| 欧美人与善性xxx| 亚洲精品,欧美精品| 国产精品国产三级国产av玫瑰| av又黄又爽大尺度在线免费看 | 国产精品女同一区二区软件| 男插女下体视频免费在线播放| 精品99又大又爽又粗少妇毛片| 国产精品国产高清国产av| 亚洲怡红院男人天堂| 成人午夜高清在线视频| 晚上一个人看的免费电影| av在线亚洲专区| 欧美日本亚洲视频在线播放| 校园人妻丝袜中文字幕| 一级av片app| 久久亚洲国产成人精品v| 欧美一区二区精品小视频在线| 国产精品三级大全| 在线免费十八禁| 联通29元200g的流量卡| 国产免费一级a男人的天堂| 成年女人永久免费观看视频| 人妻少妇偷人精品九色| 99热精品在线国产| 国产极品精品免费视频能看的| 99热网站在线观看| 美女内射精品一级片tv| 亚洲精品456在线播放app| 亚洲成av人片在线播放无| 中文字幕av成人在线电影| 九色成人免费人妻av| 久久久久网色| 国产探花在线观看一区二区| 在线观看av片永久免费下载| 天堂√8在线中文| 老司机影院成人| 久久久久久久久中文| 婷婷色综合大香蕉| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| 精品国产露脸久久av麻豆 | 亚洲欧美精品自产自拍| 欧美性猛交黑人性爽| 成年免费大片在线观看| 岛国毛片在线播放| 99久久精品热视频| 男女视频在线观看网站免费| 超碰97精品在线观看| 看十八女毛片水多多多| 精品久久久久久电影网 | av.在线天堂| 亚洲内射少妇av| 人妻系列 视频| 亚洲在久久综合| 热99在线观看视频| 国产片特级美女逼逼视频| 久久久久久久久中文| 黄片wwwwww| 最后的刺客免费高清国语| 久久这里有精品视频免费| 美女大奶头视频| 国产精华一区二区三区| 插逼视频在线观看| 亚洲综合精品二区| 一级黄色大片毛片| 能在线免费看毛片的网站| 国产毛片a区久久久久| 久久综合国产亚洲精品| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| 久久久久久国产a免费观看| 国产高清三级在线| 亚洲自偷自拍三级| 国产免费又黄又爽又色| 又粗又硬又长又爽又黄的视频| 国产大屁股一区二区在线视频| 亚洲欧美成人综合另类久久久 | 久久久久久久久久黄片| 久久久久久久久久久丰满| 国产不卡一卡二| 美女高潮的动态| 亚洲精品久久久久久婷婷小说 | 精品熟女少妇av免费看| 国内精品宾馆在线| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| 免费av不卡在线播放| 亚洲国产精品成人综合色| 伊人久久精品亚洲午夜| 亚洲av熟女| 久久精品国产亚洲av涩爱| 嫩草影院精品99| 少妇的逼水好多| 国产黄a三级三级三级人| 欧美一级a爱片免费观看看| 色吧在线观看| 国产免费又黄又爽又色| 床上黄色一级片| 亚洲人成网站高清观看| 国产成年人精品一区二区| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| 天堂√8在线中文| 成人美女网站在线观看视频| 一边亲一边摸免费视频| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 小蜜桃在线观看免费完整版高清| 乱人视频在线观看| av在线亚洲专区| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 看片在线看免费视频| 国产一区二区在线av高清观看| 联通29元200g的流量卡| 一级毛片电影观看 | 美女黄网站色视频| 黄色欧美视频在线观看| 国产精品日韩av在线免费观看| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 亚洲丝袜综合中文字幕| 日韩强制内射视频| 伦精品一区二区三区| 免费观看人在逋| 欧美+日韩+精品| 日本免费a在线| 国产精品99久久久久久久久| 免费观看性生交大片5| 日韩,欧美,国产一区二区三区 | 亚洲电影在线观看av| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 国产午夜福利久久久久久| av在线播放精品| 成人一区二区视频在线观看| 亚洲国产精品sss在线观看| 一级毛片我不卡| 久久这里有精品视频免费| 国产一区二区三区av在线| 我要搜黄色片| 中文字幕久久专区| 精品人妻视频免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| av专区在线播放| 久久亚洲精品不卡| 午夜激情福利司机影院| 黄色日韩在线| 一级毛片久久久久久久久女| 免费观看精品视频网站| 国产一区二区三区av在线| 久久久久网色| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| av播播在线观看一区| 国产v大片淫在线免费观看| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 精品酒店卫生间| 亚洲国产欧美人成| 亚洲国产精品国产精品| 日产精品乱码卡一卡2卡三| 日韩高清综合在线| 一个人看视频在线观看www免费| 国产精品,欧美在线| 超碰97精品在线观看| h日本视频在线播放| 免费不卡的大黄色大毛片视频在线观看 | 一级黄色大片毛片| 亚洲国产欧美在线一区| 久久久国产成人免费| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 国产高清国产精品国产三级 | 中文字幕精品亚洲无线码一区| 日韩成人伦理影院| 国产不卡一卡二| 日本一二三区视频观看| 波多野结衣巨乳人妻| 美女大奶头视频| videossex国产| 啦啦啦韩国在线观看视频| 国产精品国产三级专区第一集| 国产高清有码在线观看视频| 久久久久久久久久久丰满| 国产精品一区二区性色av| av在线天堂中文字幕| 内地一区二区视频在线| 欧美一区二区精品小视频在线| 日本免费a在线| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 男人的好看免费观看在线视频| av在线亚洲专区| 日韩大片免费观看网站 | 观看免费一级毛片| 汤姆久久久久久久影院中文字幕 | 亚洲欧洲国产日韩| 亚洲最大成人手机在线| 国产精品一区二区三区四区免费观看| 国产精品一区二区三区四区久久| 国产单亲对白刺激| 成人毛片a级毛片在线播放| 卡戴珊不雅视频在线播放| 午夜视频国产福利| 高清日韩中文字幕在线| 欧美丝袜亚洲另类| 亚洲经典国产精华液单| 久久久久久大精品| 亚洲不卡免费看| 中文字幕av成人在线电影| 丝袜美腿在线中文| 成人综合一区亚洲| 久久久久久伊人网av| 国产精品久久久久久久久免| 久久精品人妻少妇| 一本久久精品| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影| 蜜桃亚洲精品一区二区三区| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 久久久久久久久大av| 麻豆乱淫一区二区| 免费av不卡在线播放| 一级毛片久久久久久久久女| 久久人妻av系列| 国产真实伦视频高清在线观看| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 欧美一区二区国产精品久久精品| 亚洲天堂国产精品一区在线| 婷婷色综合大香蕉| 少妇人妻精品综合一区二区| 大香蕉久久网| 久久久久久久午夜电影| av黄色大香蕉| 亚洲自拍偷在线| 在线免费十八禁| 国产黄片美女视频| 激情 狠狠 欧美| 日本一本二区三区精品| 91av网一区二区| 成人av在线播放网站| 亚洲自偷自拍三级| 免费观看人在逋| 成人一区二区视频在线观看| 久久久久久久久久黄片| 日韩欧美国产在线观看| 婷婷色综合大香蕉| 99热全是精品| 身体一侧抽搐| 丰满少妇做爰视频| 伊人久久精品亚洲午夜| 国产亚洲最大av| 日本一本二区三区精品| 草草在线视频免费看| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 白带黄色成豆腐渣| 乱人视频在线观看| 久久这里有精品视频免费| 免费av毛片视频| 国产精品伦人一区二区| 国产三级中文精品| 午夜激情福利司机影院| 久久久午夜欧美精品| 国产精品美女特级片免费视频播放器| 日本黄色视频三级网站网址| 欧美激情在线99| av在线亚洲专区| 有码 亚洲区| 观看免费一级毛片| 最新中文字幕久久久久| 免费在线观看成人毛片| 天堂中文最新版在线下载 | 久久久久久久国产电影| 在线观看av片永久免费下载| 日韩亚洲欧美综合| av在线亚洲专区| 久久久久久大精品| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 免费黄网站久久成人精品| 久久精品国产自在天天线| 美女高潮的动态| 欧美又色又爽又黄视频| 水蜜桃什么品种好| 男的添女的下面高潮视频| 中文乱码字字幕精品一区二区三区 | 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看| 丰满乱子伦码专区| 中文字幕人妻熟人妻熟丝袜美| 最新中文字幕久久久久| 国产精品伦人一区二区| 亚洲欧美精品专区久久| 99热这里只有是精品在线观看| 午夜福利在线在线| 男人狂女人下面高潮的视频| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 只有这里有精品99| 国产中年淑女户外野战色| 成人毛片60女人毛片免费| 男人的好看免费观看在线视频| 一个人看的www免费观看视频| 国产黄片视频在线免费观看| 色5月婷婷丁香| or卡值多少钱| 看黄色毛片网站| 欧美精品国产亚洲| 国产亚洲av片在线观看秒播厂 | 搞女人的毛片| 校园人妻丝袜中文字幕| 尾随美女入室| 嫩草影院精品99| 日韩在线高清观看一区二区三区| 久久精品综合一区二区三区| 日韩在线高清观看一区二区三区| 一级毛片久久久久久久久女| 少妇熟女aⅴ在线视频| 天美传媒精品一区二区| 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 尾随美女入室| 青春草亚洲视频在线观看| 亚洲成av人片在线播放无| 国产视频首页在线观看| 久久久欧美国产精品| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 变态另类丝袜制服| 成人一区二区视频在线观看| 天堂√8在线中文| 亚洲三级黄色毛片| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| av又黄又爽大尺度在线免费看 | 国产精品一区二区三区四区免费观看| av卡一久久| 亚洲国产高清在线一区二区三| 国产精华一区二区三区| 午夜福利在线观看免费完整高清在| 免费观看的影片在线观看| 寂寞人妻少妇视频99o| 久久久国产成人免费| 国产爱豆传媒在线观看| 国产人妻一区二区三区在| 国产av在哪里看| 麻豆av噜噜一区二区三区| 深夜a级毛片| 亚洲精品456在线播放app| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看| www日本黄色视频网| 九九爱精品视频在线观看| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 日韩视频在线欧美| 麻豆国产97在线/欧美| 中文资源天堂在线| 国产黄色小视频在线观看|