• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    lmproving Photocatalytic Performance for Hydrogen Generation over Co-Doped Znln2S4under Visible Light

    2013-07-25 09:09:52YUANWenHuiLIUXiaoChenLILi
    物理化學(xué)學(xué)報 2013年1期
    關(guān)鍵詞:新法物理化學(xué)學(xué)報

    YUAN Wen-Hui LIU Xiao-Chen LI Li

    (1School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,P.R.China;2College of Environmental Science and Engineering,South China University of Technology,Guangzhou 510640,P.R.China)

    1 lntroduction

    Photocatalytic hydrogen production from water splitting utilizing solar energy has drawn increasing attention due to its possibility to solve serious problems of energy crisis and environmental pollution.Many effective photocatalysts have been reported,including NaTaO3,1La2Ti2O7,2and K2La2Ti3O10.3However,these photocatalysts can only take advantage of ultraviolet irradiation,which occupies only 5%of the solar energy.Therefore,exploring novel visible-light-driven photocatalysts is quite desired in current photocatalysis research.Recently,various types of visible-light-driven photocatalysts have been reported for hydrogen generation.4-8However,the number of photocatalysts working in the visible light region is limited,and a higher efficiency photocatalyst is needed to be developed.

    Compared to other photocatalysts,many kinds of metal sulfides have narrow band gaps that correspond to visible light ab-sorption,implying that they are good candidates for the photoproduction of hydrogen from water.However,binary sulphide photocatalysts such as CdS are known for their instability in the photocatalytic reaction,9and the photocatalytic efficiency is still low.Recently,several multicomponent sulfides have been reported to show high photocatalytic efficiency for hydrogen evolution under visible-light irradiation,10-12informing that multicomponent sulfides may be a new class of efficient visible-light-driven photocatalysts.

    Ternary sulfides ZnIn2S4,which belongs to the family of AB2X4semiconductor,has attracted wide interest because of its potential applications in different fields such as charge storage,13thermoelectricity,14photoconduction15and so on.Leiet al.16synthesized ZnIn2S4by hydrothermal method and firstly treated ZnIn2S4as an efficient visible-light-driven photocatalyst for hydrogen evolution in 2003.Guo's group17-19has synthesized ZnIn2S4microspheresviahydrothermal/solvothermal processes and explored their visible-light-driven photocatalytic hydrogen production performance.The results showed that ZnIn2S4turned to be a good candidate for photocatalytic hydrogen production from water under visible light irradiation.It is well known that the doping metal is often indispensable for achieving efficient hydrogen evolution.Luet al.20reported that photocatalytic activity can be effectively improved by doping ZnO with Co2+.

    In the present study,we synthesized a series of ZnIn2S4doped with different amounts of Coviaa solvothermal method.Herein,Co-doped ZnIn2S4showed significant improvement of photocatalytic activity compared to pure ZnIn2S4.The effects of Co2+doping on the crystal structure,morphology,optical property,and photocatalytic activity of ZnIn2S4products were discussed in detail.The possible mechanism related to the photocatalytic process was proposed.

    2 Experimental

    2.1 Chemicals

    ZnCl2(AR,≥98.0%,Shanghai Shun Qiang Chemical Reagent Co.Ltd.,China);In(NO3)3·4.5H2O(AR,≥99.5%,Sinopharm Chemical reagent Co.Ltd.,China);CH3CSNH2(AR,≥99.0%,Tianjin Damao Chemical Reagent Factory,China);CoCl2·6H2O(AR,≥99.0%),Na2SO3(AR,≥97.0%),(Tianjin Kemiou Chemical Reagent Co.Ltd.,China);C2H5OH(AR,≥99.7%,Nanjing Chemical Reagent Co.Ltd.,China);Na2S·9H2O(AR,≥99.0%,Guangzhou Chemical Reagent Factory,China).

    2.2 Preparation of photocatalysts

    All chemicals are analytical grade and used without further purification.The doped ZnIn2S4products were prepared by a solvothermal synthetic method.In a typical procedure,the stoichiometric amounts of ZnCl2(2 mmol),In(NO3)3·4.5H2O(4 mmol),a double excess of thioacetamide,and calculated amount of CoCl2·6H2O were dissolved in 50 mL of absolute ethanol.The mixed solution was then transferred into an autoclave and sealed.The autoclave was maintained at 160°C for 6 h and then cooled down to room temperature naturally.A yellow precipitate was obtained,which was then filtered and washed with absolute ethanol and distilled water for several times.The final product was obtained after dried in a vacuum oven at 60°C for 4 h.

    2.3 Characterization

    Phase structure of prepared photocatalysts was confirmed by X-ray diffraction(XRD)on a Bruker D8 Advance powder diffractometer(Germany)using CuKαradiation operating at 40 kV and 40 mA.The morphology of ZnIn2S4products was characterized by scanning electron microscopy(SEM,1530 VP,LEO,Germany).The X-ray photoelectron spectroscopy(XPS)measurement was conducted on an Axis Ultra DLD photoelectron spectrometer(Kratos,Britain)using AlKα(1486.6 eV)radiation.The diffuse reflection spectroscopy of the samples was determined by a Hitachi U-3010 UV-Vis-near-IR spectrophotometer(Japan)with BaSO4as the reference.

    2.4 Evaluation of photocatalytic activity

    Photocatalytic hydrogen evolution reaction was performed in a closed gas-circulating system.The powder of photocatalyst(0.2 g)was dispersed by a magnetic stirrer in an aqueous solution(300 mL)containing Na2SO3(0.25 mol·L-1)and Na2S(0.35 mol·L-1)as electron donors in the cell.A 500 W Xe lamp was used as the light source.Nitrogen was purged through the cell before the reaction to remove oxygen.The temperature for all photocatalytic reactions was kept at(25.0±0.5)°C.The evolved amounts of H2were analyzed by a gas chromatography(thermal conductivity detector(TCD),molecular sieve 0.5 nm column andAr carrier).

    In the experiment under visible light,1 mol·L-1NaNO2solution was introduced as the internal circulation condensate agent to remove light with wavelengths shorter than 400 nm.The UV-Vis spectrum of the NaNO2solution showed that it could absorb light effectively with wavelengths below 400 nm and thus act as a cut off filter.

    3 Results and discussion

    3.1 Structure characterization

    Fig.1A gives out the XRD patterns of ZnIn2S4samples with various Co2+doping prepared by solvothermal method.All of these ZnIn2S4samples have almost the same XRD pattern in which all the characteristic peaks can be indexed as hexagonal ZnIn2S4(ICSD-JCPDS card No.01-072-0773,a=0.385 nm,c=2.468 nm).No other impurities such as ZnS,In2S3,oxides or organic compounds related to reactants were detected,indicating that the phase of ZnIn2S4has a high purity.It is noted that the position of peak(006)is shifted slightly to lower angle with increasing Co doping compared to pure ZnIn2S4,as shown in Fig.1B,which results in the increase ofd(006)space.This means that Co2+is incorporated into the lattice of ZnIn2S4,because the ionic radius of Co2+(0.072 nm)is similar to radius of Zn2+(0.074 nm).Furthermore,Co2+may occupy the Zn2+site,since charge compensation was very easy in this case.0.3%(w)doping may be the upper limit of Co2+doping for its substitution for Zn2+.Higher doping with concentrations more than 0.3%(w)can not obviously affect the position of ZnIn2S4diffraction peaks anymore.

    Fig.1 (A)XRD patterns of ZnIn2S4samples with various Co2+doping concentrations;(B)the enlarged diffraction peak at the position of(006)in(A)

    3.2 Morphology

    The morphology of as-synthesized ZnIn2S4samples was characterized by SEM,which is shown in Fig.2.Under the solvothermal synthetic condition,the ZnIn2S4crystallites self-organize into the microsphere morphology,with an average diameter of about 1-4μm,and have a marigold-like spherical superstructure which is made up of numerous nanosheets,but the microspheres tend to aggregate together.This growth tendency of lamellar structures can be explained by the layered feature of hexagonal ZnIn2S4.21It can be found that different photocatalysts have the similar morphology,when doping amount ranges from 0.0%to 0.7%.When the amount of Co-doping is 1.0%,the shape of microspheres for Co-doped ZnIn2S4could be destructed partially and even thoroughly.This means that the higher amount of Co doping will hinder the assembly of ZnIn2S4microspheres.It is found that the amount of Co doping has an important influence on the morphology of ZnIn2S4.

    3.3 Compositional analysis

    To investigate the surface compositions and chemical state,the ZnIn2S4sample was also characterized by XPS,as shown in Fig.3.The binding energy in the XPS analysis was corrected for specimen charging by referencing carbon 1sto 284.6 eV.The peaks around 443.3 and 450.8 eV correspond to the binding energy of In 3d5/2and In 3d3/2of ZnIn2S4(Fig.3b),which is in agreement with the value for In3+.22Zn 2pshows two peaks at 1019.9 and 1043.2 eV,which is consistent with a valence of Zn2+(Fig.3c).22The S 2ppeak of ZnIn2S4at 160.0 eV(Fig.3d)can be assigned to S2-.17The Co 2pcore(Fig.3e)splits into 2p3/2(781.0 eV)and 2p1/2(795.3 eV)peaks which confirms that Co is present as Co2+.20It should be mentioned that,owing to the low concentration and high dispersion of Co2+ions,the XPS data of sample show a high noise.All these results indicate that the chemical states of the sample are In3+,Zn2+,S2-,and Co2+.The molar ratio is observed to be 1:2.16:4.09(Zn:In:S)which is very closely matching with the theoretical one.C and O in the sample may come from the reference and adsorbed gaseous molecules,respectively.23

    Fig.2 SEM images of ZnIn2S4prepared with various Co2+doping concentrations

    Fig.3 XPS spectra of 0.3%(w)Co doped ZnIn2S4

    3.4 Optical properties

    Fig.4 shows diffuse reflectance spectra of various Co-doped ZnIn2S4samples.It can be seen that the absorption edges shift to the lower energy region with the increase in the concentration of Co,corresponding to longer wavelength of the spectra in the visible region.There is an almost monotonous enhancement of absorption in visible light region(>500 nm)with the increment of Co concentration.Additionally,Co2+is a colored ion,which acts as a chromophore and can easily absorb light in the visible region.24Co-doped ZnIn2S4may enhance the light absorption and lead to the high light harvesting efficiency in the visible range.Furthermore,the absorption band in the visible light region 650-800 nm can be ascribed tod→dtransition of Co2+.Such kind of transition cannot be used for photocatalytic reactions.20

    Fig.4 UV-Vis spectra of ZnIn2S4with various Co2+doping concentrations

    3.5 Evaluation of photocatalytic activity

    Fig.5 Hydrogen evolution over ZnIn2S4photocatalysts with various Co2+doping concentrations

    Photocatalytic H2production with various Co2+doping was evaluated.As shown in Fig.5,all the samples are active and stable for hydrogen productionviawater splitting.With increasing concentration of doped Co,the photocatalyst shows higher photocatalytic activity.ZnIn2S4with 0.3%(w)Co doping displays the highest activity and the hydrogen production rate can reach as high as 200.5 μmol·h-1.These observations indicate that Co2+doping can improve the photocatalytic activity of the ZnIn2S4photocatalyst.From the XRD results,we can observe that substitution of Zn2+by Co2+results in the increase ofd(006)space,which promotes the photogenerated charge sepa-ration in ZnIn2S4photocatalysts.18It was also found that the upper limit of Co2+doping is 0.3%(w),which is in line with hydrogen production results,showing that 0.3%(w)Co2+doping exhibits the highest hydrogen production.As the concentration of Co doping was above 0.3%(w),the photocatalytic activity was decreased,though the visible-light absorption band grew further.Such a similar dependence of photocatalytic H2evolution upon the amount of dopant has been observed for several other photocatalysts.20,25,26These observations indicate that the photocatalytic activites are dependent upon not only the visible-light absorption but also some other factors.One of the reasons for the decrease in photocatalytic activity may be due to the excess of Co doping.Higher Co2+doping can hardly dope into the ZnIn2S4lattice and might just stay at its surface.25The excessive Co may result in the increase of the induced surface defects where the recombination of photogenerated electrons and holes take place,leading to the decreased activity.Another possible inactivation factor for the ZnIn2S4doped with excessive Co is that the microspheres could be destructed gradually with the amount of Co increasing further,as revealed by SEM images.However,the forming of microspheres would facilitate photocatalytic hydrogen production performance of photocatalysts.27

    3.6 Mechanism

    Based on the experimental results,the possible reaction mechanism can be discussed as follows(shown in Fig.6).The incorporation of Co extends photoresponse region.Such red shift in the absorption edge can be attributed to the formation of localized state dopant energy levels of Co in the band gap of ZnIn2S4.A negative and a positive correction,respectively,to the conduction band(CB)and the valence band(VB)edges result in the band gap narrowing,28which leads to the high light harvesting efficiency.For the ZnIn2S4sample,the photogenerated electrons(e-)can easily transfer from the VB of ZnIn2S4to the localized state dopant energy level.It is reasonable to deduce that there exist strong electronic interactions between Co and ZnIn2S4.For the localized state dopant energy levels of Co with split impurity band states,theelevels of Co are fully occupied,and thet2levels are unoccupied.Consequently,the electrons(e-)inelevels can be excited tot2levels by absorption of visible light.20The incorporation of Co should be beneficial for the effective separation and transport of photogenerated electron-hole pairs in ZnIn2S4and inhibit their recombination,resulting in a superior visible light photocatalytic activity.However,at a high dopant concentration,one charge carrier may be trapped more than once and may recombine with the charge carrier generated by next photo.So the net result is that the dopant again becomes recombination center for photogenerated e-/h+pairs.29This certifies the existence of an optimal Co concentration for highest activity for the doped photocatalyst.

    Fig.6 Schematic illustration of the mechanism of photocatalytic hydrogen evolution over Co-doped ZnIn2S4

    4 Conclusions

    Co doped ZnIn2S4microsphere with flower-like nanoscale petals were synthesizedviaa solvothermal synthesis method.Co2+doping results in the increasing ofd(006)space,which can promote the photogenerated charge separation.Additionally,the light absorption can be enhanced by doping Co2+into crystalline photocatalysts.The incorporation of Co results in the band gap narrowing,which leads to the high light harvesting efficiency.There is an optimal Co doping content of 0.3%(w),which displays the highest activity,with the rate of hydrogen evolution to be 200.5 μmol·h-1.The excessive Co doping works as recombination sites between photogenerated electrons and holes,leading to the decreased activity.

    (1)Kato,H.;Asakura,K.;Kudo,A.J.Am.Chem.Soc.2003,125(10),3082.doi:10.1021/ja027751g

    (2)Kim,H.G.;Hwang,D.W.;Bae,S.W.;Jung,J.H.;Lee,J.S.Catal.Lett.2003,91(3-4),193.

    (3)Chen,W.;Dong,X.F.;Chen,Z.S.;Chen,S.Z.;Lin,W.M.Acta Phys.-Chim.Sin.2009,25(6),1107.[陳 威,董新法,陳之善,陳勝洲,林維明.物理化學(xué)學(xué)報,2009,25(6),1107.]doi:10.3866/PKU.WHXB20090624

    (4)Huang,L.H.;Chan,Q.Z.;Zhang,B.;Wu,X.J.;Gao,P.;Jiao,Z.B.;Liu,Y.L.Chin.J.Catal.2011,32(11-12),1822.doi:10.1016/S1872-2067(10)60286-0

    (5) Zou,Z.;Ye,J.;Arakawa,H.;Sayama,K.Nature2001,414(6864),625.doi:10.1038/414625a

    (6)Kim,H.G.;Hwang,D.W.;Lee,J.S.J.Am.Chem.Soc.2004,126(29),8912.doi:10.1021/ja049676a

    (7) Maeda,K.;Teramura,K.;Lu,D.L.;Takata,T.;Saito,N.;Inoue,Y.;Domen,K.Nature2006,440(7082),295.doi:10.1038/440295a

    (8)Ritterskamp,P.;Kuklya,A.;Wustkamp,M.A.;Kerpen,K.;Weidenthaler,C.;Demuth,M.Angew.Chem.Int.Edit.2007,46(41),7770.

    (9) Chaudhari,N.S.;Bhirud,A.P.;Sonawane,R.S.;Nikam,L.K.;Warule,S.S.;Rane,V.H.;Kale,B.B.Green Chem.2011,13(9),2500.doi:10.1039/c1gc15515f

    (10) Tsuji,I.;Kato,H.;Kobayashi,H.;Kudo,A.J.Phys.Chem.B2005,109(15),7323.doi:10.1021/jp044722e

    (11) Tsuji,I.;Kato,H.;Kobayashi,H.;Kudo,A.J.Am.Chem.Soc.2004,126(41),13406.doi:10.1021/ja048296m

    (12) Tsuji,I.;Kato,H.;Kudo,A.Chem.Mater.2006,18(7),1969.doi:10.1021/cm0527017

    (13) Romeo,N.;Dallaturca,A.;Braglia,R.;Sberveglieri,G.Appl.Phys.Lett.1973,22(1),21.doi:10.1063/1.1654457

    (14) Castro,S.L.;Bailey,S.G.;Raffaelle,R.P.;Banger,K.K.;Hepp,A.F.Chem.Mater.2003,15(16),3142.doi:10.1021/cm034161o

    (15)Seo,W.S.;Otsuka,R.;Okuno,H.;Ohta,M.;Koumoto,K.J.Mater.Res.1999,14(11),4176.doi:10.1557/JMR.1999.0565

    (16) Lei,Z.;You,W.;Liu,M.;Zhou,G.;Takata,T.;Hara,M.;Domen,K.;Li,C.Chem.Commun.2003,2142.

    (17) Shen,S.H.;Zhao,L.;Guo,L.J.J.Phys.Chem.Solids2008,69(10),2426.doi:10.1016/j.jpcs.2008.04.035

    (18) Shen,S.H.;Zhao,L.;Guo,L.J.Int.J.Hydrog.Energy2008,33(17),4501.doi:10.1016/j.ijhydene.2008.05.043

    (19) Shen,S.H.;Zhao,L.;Guo,L.J.Mater.Res.Bull.2009,44(1),100.doi:10.1016/j.materresbull.2008.03.027

    (20) Lu,Y.C.;Lin,Y.H.;Wang,D.J.;Wang,L.L.;Xie,T.F.;Jiang,T.F.Nano Res.2011,4(11),1144.doi:10.1007/s12274-011-0163-4

    (21) Bai,X.F.;Li,J.S.Mater.Res.Bull.2011,46(7),1028.doi:10.1016/j.materresbull.2011.03.012

    (22) Peng,S.J.;Zhu,P.N.;Thavasi,V.;Mhaisalkar,S.G.;Ramakrishna,S.Nanoscale2011,3,2602.doi:10.1039/c0nr00955e

    (23) Cai,W.;Zhao,Y.S.;Hu,J.;Zhong,J.S.;Xiang,W.D.J.Mater.Sci.Technol.2011,27(6),559.doi:10.1016/S1005-0302(11)60108-4

    (24) Dubey,N.;Labhsetwar,K.;Devotta,S.;Rayalu,S.Catal.Today2007,129(3-4),428.doi:10.1016/j.cattod.2006.09.041

    (25) Jing,D.W.;Liu,M.C.;Guo,L.J.Catal.Lett.2010,140(3-4),167.doi:10.1007/s10562-010-0442-9

    (26) Shen,S.H.;Zhao,L.;Guo,L.J.J.Phys.Chem.C2008,112(41),16148.doi:10.1021/jp804525q

    (27)Zhang,X.;Jing,D.;Liu,M.;Guo,L.J.Catal.Commun.2008,9(8),1720.doi:10.1016/j.catcom.2008.01.032

    (28) Wang,B.Q.;Xia,C.H.;Iqbal,J.;Tang,N.J.;Sun,Z.R.;Lv,Y.;Wu,L.Solid State Sci.2009,11(8),1419.doi:10.1016/j.solidstatesciences.2009.04.024

    (29) Jing,D.W.;Zhang,Y.;Guo,L.J.Chem.Phys.Lett.2005,415(1-3),74.doi:10.1016/j.cplett.2005.08.080

    猜你喜歡
    新法物理化學(xué)學(xué)報
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    雙回單訓(xùn)釋教學(xué)新法的學(xué)理依據(jù)
    學(xué)報簡介
    學(xué)報簡介
    無痛肌肉注射新法
    Performance of Ni/Nano-ZrO2Catalysts for CO Preferential Methanation*
    新法點(diǎn)擊
    浙江人大(2014年6期)2014-03-20 16:20:41
    精品久久蜜臀av无| 51国产日韩欧美| 国产深夜福利视频在线观看| 90打野战视频偷拍视频| 久久久久精品久久久久真实原创| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 成人影院久久| 国产黄色视频一区二区在线观看| 另类亚洲欧美激情| 久久久亚洲精品成人影院| 女人精品久久久久毛片| videossex国产| 午夜精品国产一区二区电影| 久久精品人人爽人人爽视色| 一区二区三区精品91| www.熟女人妻精品国产 | 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 国产激情久久老熟女| 高清欧美精品videossex| 国产在线一区二区三区精| 岛国毛片在线播放| 亚洲国产av影院在线观看| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 美女大奶头黄色视频| 五月玫瑰六月丁香| 午夜激情av网站| 亚洲精品色激情综合| 一二三四中文在线观看免费高清| 国产成人欧美| 久久久久久久久久久免费av| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 国产亚洲精品第一综合不卡 | 日本欧美国产在线视频| 精品一区二区三卡| a级毛片在线看网站| 九色成人免费人妻av| 亚洲av免费高清在线观看| 国产亚洲精品第一综合不卡 | 中文乱码字字幕精品一区二区三区| 一个人免费看片子| a级毛片在线看网站| 夫妻午夜视频| 激情视频va一区二区三区| 蜜桃在线观看..| 亚洲av国产av综合av卡| 综合色丁香网| 老熟女久久久| 满18在线观看网站| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 亚洲人成网站在线观看播放| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 久久久精品区二区三区| 九草在线视频观看| 亚洲av.av天堂| 99久久综合免费| 九九爱精品视频在线观看| 久久久国产精品麻豆| 少妇人妻 视频| 少妇猛男粗大的猛烈进出视频| 久久久久久人人人人人| 最近中文字幕2019免费版| 国产一区二区在线观看av| 久久精品国产综合久久久 | 一级a做视频免费观看| 狂野欧美激情性bbbbbb| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 欧美精品av麻豆av| 激情视频va一区二区三区| 亚洲精品美女久久久久99蜜臀 | av在线老鸭窝| av网站免费在线观看视频| 国产精品三级大全| 蜜桃国产av成人99| 夫妻性生交免费视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 精品一区二区三卡| 亚洲美女黄色视频免费看| 国产成人av激情在线播放| 晚上一个人看的免费电影| 国产精品.久久久| 日本wwww免费看| 王馨瑶露胸无遮挡在线观看| 一个人免费看片子| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 国产男女内射视频| 国产成人欧美| 亚洲第一区二区三区不卡| 亚洲av福利一区| 国产成人aa在线观看| 久久亚洲国产成人精品v| 一区在线观看完整版| 亚洲欧美日韩卡通动漫| videos熟女内射| 亚洲欧美精品自产自拍| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 免费日韩欧美在线观看| 国产伦理片在线播放av一区| 日韩不卡一区二区三区视频在线| 丝袜脚勾引网站| 国产午夜精品一二区理论片| 国产欧美日韩综合在线一区二区| 99久国产av精品国产电影| 国产淫语在线视频| 国产熟女午夜一区二区三区| 中文字幕精品免费在线观看视频 | 国产成人av激情在线播放| 纯流量卡能插随身wifi吗| 亚洲经典国产精华液单| 免费久久久久久久精品成人欧美视频 | 免费黄网站久久成人精品| 99国产综合亚洲精品| 国产国拍精品亚洲av在线观看| 狂野欧美激情性bbbbbb| 色94色欧美一区二区| 桃花免费在线播放| 亚洲国产精品成人久久小说| 国产在线视频一区二区| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 亚洲欧洲精品一区二区精品久久久 | 国产欧美日韩综合在线一区二区| 高清欧美精品videossex| 两个人免费观看高清视频| 免费高清在线观看视频在线观看| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 亚洲熟女精品中文字幕| av不卡在线播放| 考比视频在线观看| 制服诱惑二区| 美女国产高潮福利片在线看| 岛国毛片在线播放| 欧美国产精品一级二级三级| 自线自在国产av| 天堂中文最新版在线下载| 欧美国产精品一级二级三级| 亚洲国产精品国产精品| 国产黄色免费在线视频| 亚洲婷婷狠狠爱综合网| 日韩精品免费视频一区二区三区 | 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免| 极品人妻少妇av视频| 在现免费观看毛片| 亚洲国产日韩一区二区| 日本猛色少妇xxxxx猛交久久| 国产无遮挡羞羞视频在线观看| 国产免费现黄频在线看| 大码成人一级视频| 国产精品一二三区在线看| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 久久久久久人妻| 国产有黄有色有爽视频| 9色porny在线观看| tube8黄色片| 最新的欧美精品一区二区| 亚洲欧美日韩卡通动漫| 久久精品aⅴ一区二区三区四区 | av免费在线看不卡| 美女福利国产在线| 精品99又大又爽又粗少妇毛片| 日韩在线高清观看一区二区三区| 国产精品 国内视频| 中国三级夫妇交换| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 日韩熟女老妇一区二区性免费视频| 亚洲精品,欧美精品| 亚洲欧洲精品一区二区精品久久久 | 亚洲图色成人| 伦理电影大哥的女人| av免费观看日本| 视频中文字幕在线观看| 天堂俺去俺来也www色官网| 日韩一区二区视频免费看| 永久免费av网站大全| 精品久久蜜臀av无| 国产精品久久久久成人av| 丝袜喷水一区| 午夜日本视频在线| 卡戴珊不雅视频在线播放| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 超碰97精品在线观看| 精品国产露脸久久av麻豆| 久久影院123| 极品少妇高潮喷水抽搐| 国产 一区精品| 2021少妇久久久久久久久久久| 久热这里只有精品99| 国产一区二区在线观看日韩| 曰老女人黄片| 国产在线免费精品| 9色porny在线观看| 久久国产精品男人的天堂亚洲 | 国产亚洲精品第一综合不卡 | 极品少妇高潮喷水抽搐| 91aial.com中文字幕在线观看| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 日本午夜av视频| 在线 av 中文字幕| 老司机影院毛片| 国产亚洲最大av| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 9191精品国产免费久久| 免费大片黄手机在线观看| 大片电影免费在线观看免费| 91成人精品电影| 国产精品国产三级专区第一集| 一级毛片我不卡| 99国产精品免费福利视频| 黑人高潮一二区| 蜜桃国产av成人99| av在线观看视频网站免费| 精品久久久精品久久久| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 欧美亚洲日本最大视频资源| 国产女主播在线喷水免费视频网站| 久久97久久精品| 两个人免费观看高清视频| 少妇人妻久久综合中文| 天天躁夜夜躁狠狠躁躁| 日本av免费视频播放| 曰老女人黄片| 国产免费福利视频在线观看| 国产av国产精品国产| 成年动漫av网址| 亚洲av成人精品一二三区| 99热6这里只有精品| 精品国产一区二区三区久久久樱花| 久久影院123| 日韩视频在线欧美| 日韩三级伦理在线观看| 亚洲av在线观看美女高潮| 蜜臀久久99精品久久宅男| 中文字幕精品免费在线观看视频 | 日本欧美国产在线视频| 女人久久www免费人成看片| 国产高清国产精品国产三级| 日韩视频在线欧美| 国产欧美另类精品又又久久亚洲欧美| 亚洲av在线观看美女高潮| 如日韩欧美国产精品一区二区三区| 下体分泌物呈黄色| 亚洲一码二码三码区别大吗| 99久国产av精品国产电影| 伦理电影大哥的女人| 欧美性感艳星| 日韩视频在线欧美| 精品午夜福利在线看| 久久久久久久国产电影| av免费观看日本| 亚洲精品第二区| 寂寞人妻少妇视频99o| 91精品国产国语对白视频| 免费看不卡的av| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成a人片在线观看| 日韩中字成人| 青春草国产在线视频| 国产福利在线免费观看视频| 美女内射精品一级片tv| 色94色欧美一区二区| 综合色丁香网| 99re6热这里在线精品视频| 午夜久久久在线观看| 丁香六月天网| 菩萨蛮人人尽说江南好唐韦庄| 欧美丝袜亚洲另类| av播播在线观看一区| 日韩 亚洲 欧美在线| av.在线天堂| 嫩草影院入口| 伦理电影大哥的女人| 午夜免费鲁丝| 国产在线视频一区二区| 久久午夜综合久久蜜桃| 国产精品不卡视频一区二区| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲 | 国产成人午夜福利电影在线观看| 国产激情久久老熟女| 欧美精品高潮呻吟av久久| 极品人妻少妇av视频| 久久久久久人人人人人| 26uuu在线亚洲综合色| 国产亚洲一区二区精品| 日本与韩国留学比较| 老司机亚洲免费影院| 熟女电影av网| 午夜91福利影院| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 欧美日本中文国产一区发布| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 国产av国产精品国产| 亚洲在久久综合| 91久久精品国产一区二区三区| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 搡老乐熟女国产| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 国产在线一区二区三区精| 天堂中文最新版在线下载| 欧美性感艳星| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 午夜老司机福利剧场| 青春草视频在线免费观看| 午夜日本视频在线| 好男人视频免费观看在线| 日韩电影二区| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| 日韩成人av中文字幕在线观看| 免费黄频网站在线观看国产| 视频在线观看一区二区三区| av卡一久久| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区国产| 国产成人精品在线电影| 久久ye,这里只有精品| 成年动漫av网址| 午夜激情久久久久久久| 久热久热在线精品观看| 在线看a的网站| 一区二区三区四区激情视频| 免费观看无遮挡的男女| 新久久久久国产一级毛片| 大香蕉久久成人网| 9热在线视频观看99| 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图| 精品一品国产午夜福利视频| 少妇人妻 视频| 久久久精品区二区三区| 永久网站在线| 亚洲精品av麻豆狂野| 国产又爽黄色视频| 午夜av观看不卡| 国语对白做爰xxxⅹ性视频网站| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 少妇熟女欧美另类| 日本黄大片高清| 丰满迷人的少妇在线观看| 成年动漫av网址| av播播在线观看一区| 少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放| 国产极品天堂在线| 亚洲精品国产av成人精品| 少妇高潮的动态图| 国产一区亚洲一区在线观看| 99热6这里只有精品| 欧美老熟妇乱子伦牲交| av播播在线观看一区| 美国免费a级毛片| 色5月婷婷丁香| 少妇的丰满在线观看| 国产精品久久久久久精品古装| 免费观看在线日韩| 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 亚洲av男天堂| 另类精品久久| 亚洲av欧美aⅴ国产| 成人无遮挡网站| 欧美+日韩+精品| 少妇的逼好多水| 久久精品国产鲁丝片午夜精品| 欧美亚洲 丝袜 人妻 在线| 日韩免费高清中文字幕av| 不卡视频在线观看欧美| 亚洲内射少妇av| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 精品少妇黑人巨大在线播放| 精品卡一卡二卡四卡免费| 99视频精品全部免费 在线| 亚洲四区av| 一级片免费观看大全| 亚洲精品成人av观看孕妇| 两性夫妻黄色片 | 少妇高潮的动态图| 亚洲精品国产av成人精品| 国产福利在线免费观看视频| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到 | 最近2019中文字幕mv第一页| 免费人妻精品一区二区三区视频| 国产欧美日韩一区二区三区在线| 色婷婷av一区二区三区视频| 国产色婷婷99| av天堂久久9| 国产在线视频一区二区| 国语对白做爰xxxⅹ性视频网站| 高清黄色对白视频在线免费看| 久久久久国产精品人妻一区二区| 哪个播放器可以免费观看大片| 亚洲精品国产av蜜桃| 精品一区二区三区四区五区乱码 | 纯流量卡能插随身wifi吗| 国产色婷婷99| 国产熟女午夜一区二区三区| 三级国产精品片| 91aial.com中文字幕在线观看| 久久99热6这里只有精品| 亚洲精品自拍成人| 两个人看的免费小视频| av在线app专区| 又大又黄又爽视频免费| 中文字幕制服av| 国产精品偷伦视频观看了| 在线免费观看不下载黄p国产| 免费观看在线日韩| 国产高清国产精品国产三级| 亚洲国产精品成人久久小说| 免费日韩欧美在线观看| 成年人免费黄色播放视频| 成人影院久久| 秋霞伦理黄片| 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| av福利片在线| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕| 国产 精品1| 国产免费福利视频在线观看| 精品久久久精品久久久| 成人亚洲欧美一区二区av| 一区二区三区四区激情视频| 欧美+日韩+精品| 精品第一国产精品| 日韩在线高清观看一区二区三区| 国产精品免费大片| 夜夜爽夜夜爽视频| 国产精品人妻久久久影院| 高清毛片免费看| 日日撸夜夜添| 赤兔流量卡办理| 日日摸夜夜添夜夜爱| 永久网站在线| 免费看av在线观看网站| 美女国产视频在线观看| 久热这里只有精品99| 综合色丁香网| 日本av免费视频播放| 欧美成人午夜免费资源| 精品久久国产蜜桃| 久久久久国产网址| av不卡在线播放| 亚洲精品乱码久久久久久按摩| 18禁动态无遮挡网站| 七月丁香在线播放| 国产成人午夜福利电影在线观看| 丝袜美足系列| 91午夜精品亚洲一区二区三区| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆| 国产av国产精品国产| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 日韩一区二区视频免费看| 国产男女内射视频| 精品一区二区三卡| 国产男人的电影天堂91| 一级爰片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| 国产精品成人在线| 欧美3d第一页| 成人黄色视频免费在线看| 国产无遮挡羞羞视频在线观看| 国产极品天堂在线| 欧美日韩av久久| 日韩人妻精品一区2区三区| 97人妻天天添夜夜摸| 日韩人妻精品一区2区三区| 亚洲人与动物交配视频| 亚洲av中文av极速乱| 国产精品一区www在线观看| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 久久久亚洲精品成人影院| 亚洲五月色婷婷综合| 欧美日韩成人在线一区二区| 99热这里只有是精品在线观看| 2022亚洲国产成人精品| 欧美成人午夜精品| 亚洲美女黄色视频免费看| 999精品在线视频| 久久久久久伊人网av| 日韩在线高清观看一区二区三区| 亚洲国产最新在线播放| 亚洲精品日韩在线中文字幕| 高清毛片免费看| 久久久精品94久久精品| 国产高清不卡午夜福利| 人妻系列 视频| 精品一区二区三区四区五区乱码 | 热99久久久久精品小说推荐| 欧美日韩国产mv在线观看视频| 久久免费观看电影| 精品亚洲乱码少妇综合久久| 制服人妻中文乱码| 中文字幕人妻丝袜制服| 成人二区视频| 2018国产大陆天天弄谢| 国产精品.久久久| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 日韩精品免费视频一区二区三区 | 日韩成人伦理影院| 又黄又粗又硬又大视频| 波多野结衣一区麻豆| 亚洲三级黄色毛片| 美女福利国产在线| 18在线观看网站| 久久久国产欧美日韩av| 校园人妻丝袜中文字幕| 交换朋友夫妻互换小说| 欧美 日韩 精品 国产| 免费久久久久久久精品成人欧美视频 | 亚洲激情五月婷婷啪啪| 精品亚洲乱码少妇综合久久| 美女xxoo啪啪120秒动态图| 成年美女黄网站色视频大全免费| 亚洲av综合色区一区| 国产亚洲欧美精品永久| 成人亚洲精品一区在线观看| 久久久久国产精品人妻一区二区| av片东京热男人的天堂| 亚洲国产精品999| 夜夜骑夜夜射夜夜干| 91aial.com中文字幕在线观看| 久久国产精品男人的天堂亚洲 | 午夜福利网站1000一区二区三区| 午夜精品国产一区二区电影| 精品一区在线观看国产| 全区人妻精品视频| 国产精品久久久久久精品古装| 国产国拍精品亚洲av在线观看| 久久精品人人爽人人爽视色| 麻豆精品久久久久久蜜桃| 99热网站在线观看| 精品少妇黑人巨大在线播放| 黄色视频在线播放观看不卡| 日本wwww免费看| 18+在线观看网站| 国语对白做爰xxxⅹ性视频网站| 国产 一区精品| 精品一品国产午夜福利视频| 99九九在线精品视频| 一区二区三区精品91| 精品一区二区三卡| 嫩草影院入口| 欧美精品一区二区免费开放| 免费人成在线观看视频色| av卡一久久| 成人手机av| 国产免费又黄又爽又色| 嫩草影院入口| 黄片无遮挡物在线观看| 在线观看一区二区三区激情| 国精品久久久久久国模美| 18在线观看网站| 夜夜爽夜夜爽视频| 精品卡一卡二卡四卡免费| 如日韩欧美国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲国产最新在线播放| av免费观看日本| 少妇的逼水好多| 99久国产av精品国产电影| 亚洲美女视频黄频| 熟女av电影| 久久久久精品性色| www.色视频.com|