• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Discrete Lumped Kinetic Modeling on Vacuum Gas Oil Hydrocracking

    2013-07-25 10:07:36HanLongnianFangXiangchenPengChongZhaoTao
    中國煉油與石油化工 2013年2期
    關鍵詞:乳粉現(xiàn)行保健食品

    Han Longnian; Fang Xiangchen; Peng Chong; Zhao Tao

    (1. Liaoning Shihua University, Fushun, Liaoning 113001; 2. SINOPEC Fushun Research Institute of Petroleum and Petrochemicals)

    Application of Discrete Lumped Kinetic Modeling on Vacuum Gas Oil Hydrocracking

    Han Longnian1; Fang Xiangchen2; Peng Chong2; Zhao Tao1

    (1. Liaoning Shihua University, Fushun, Liaoning 113001; 2. SINOPEC Fushun Research Institute of Petroleum and Petrochemicals)

    The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conversion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Furthermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-tune these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the kinetic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.

    hydrocracking; kinetic modeling; vacuum gas oil (VGO); optimization code; parallel reaction scheme

    1 Introduction

    Faced with a growing demand for middle distillate and an increasing production of heavy crude oils, the hydrocracking process has become one of the most important secondary petroleum refining processes. This process is versatile, flexible and can be strongly adapted to inferior feed oil with a strong capability to convert the heavy, high-boiling, and high EBP (end boiling point) feedstock to smaller, lower-boiling ones like qualified jet fuel, diesel, lubrication base oil, and naphtha for chemical use[1]. Hydrocracking takes place over a dual-functional catalyst in a hydrogen-rich, high temperature atmosphere, with other reactions, including hydrodesulfurization, hydrodenitrogenation and other hydrotreating reactions, occurring simultaneously[2]. Despite the successful application of hydrocracking technology in commercial scale, the research on its reaction mechanism and reaction kinetics still lags behind the customer needs.

    There are various kinetic models for the VGO hydrocracking reported in the literature, and the lumped model and detailed molecular model[3]are regarded as two main approaches being studied for a long time. Moreover, all of the hydrocracking kinetic models could be included in the two approaches. Among them, the lumped models incorporate the fixed lumped models, discrete lumped models[4-7]and continuous mixtures involved lumped models[8-10]. For the hydrocracking models based on the lumping technique, these physical properties such as true boiling point (TBP), carbon number (CN), and molecular weight[11]are usually adopted to divide discrete pseudocomponents (lumps). For the fixed lumped model and discrete lumped model, the major disadvantage is that a change in the cutting scheme of the hydrocracker products or in the number of products requires reformulating the model parameters to refit the data. The so-called continuous lumped model is a general case developed from the discrete lumped model, which allows for prediction of the entire distillation curve, but the dependency of model parameters on feed properties still exists. Furthermore, the distillation curves of heavy oils are not accurate when the feedstock is a mixed oil consisting of VGO, CGO, DAO and other fractions. Detailed approaches include the structure oriented lumped models[12]and the single event models[13-14], which express the chemical transformations in terms of typical molecular structures and elementarysteps of cation chemistry, respectively. For a relatively large number of pseudo-components the analytical information and experimental data are required, which impose restrictions on their applications to hydrocracking of real feedstocks.

    The complexity of real feedstocks suggests that lumped model will continue to be used for the research on VGO hydrocracking kinetics. However, detailed approaches need to be studied more precisely in order to obtain a better understanding of hydrocracking kinetics and provide an idea to optimize lumped model for prediction of hydrocracking product properties. A good kinetic model is a useful tool for reactor design, simulation, and optimization of oil refining processes.

    To have a better understanding of the VGO hydrocracking, in this work we conducted some experiments in a pilot plant equipped with two downflow fixed-bed reactors and developed a discrete lumped kinetic model, which will be presented in further papers.

    2 Experimental Data and Kinetic Model

    2.1 Experimental setup and feedstock

    The experiments were conducted in a single-stage series fixed-bed high-pressure pilot plant, which is shown schematically in Figure 1. Hydrocracking was conducted in a downflow mode of operation. The hydrotreating catalyst was loaded in a hydrotreating reactor and the hydrocracking catalyst (A) was loaded in a hydrocracking reactor. The reactor temperature was controlled at the desired level by using a three-zone electric furnace providing an isothermal temperature condition along the reaction section. The temperature inside the reactor was measured by a movable axial thermocouple located inside the reactor. Three typical heavy VGO samples, including Iranian VGO, Saudi VGO and mixed oil (Iranian VGO: CGO=8:2 sampled from Zhenhai refinery), were chosen as the feed. Main properties of these feedstocks are listed in Table 1. These feedstocks had high density, EBP, BMCI and sulfur content so that severe hydrogenation operating conditions were needed in order to achieve the expected conversion degree and index requirements of product properties. Hydrogen gas was provided from an electrolysis hydrogen source, with the hydrogen purity exceeding 99.9%.

    Figure 1 Experimental setup for high-pressure hydrocracking experiment

    Table 1 Main properties of feedstock

    2.2 Some properties of hydrocracking catalyst

    There were several advanced hydrocracking catalysts with high middle distillate yield, and the hydrocracking catalyst A was a new generation catalyst developed on the base of reference catalyst by modifying the support (Si/Al) and Y zeolite, which was a W/Ni commercial catalyst employed in the experiments (with a specific surface area of 200 m2/g, a pore volume of 0.28 cm3/g, and a mean pore diameter of 1.5—1.7 mm). The catalyst A was loaded into the hydrocracker and activated in situ by sulfiding with kerosene containing CS2. This catalyst had high hydrogenation performance, high middle distillate yield, and suitable activity and stability, and demonstrated strong adaptability to inferior feedstock. It had been used in many hydrocrackers to deliver qualified middle distillates and hydrocracked residue with low BMCI value.

    2.3 Experimental data of hydrocracking

    Experiments on hydrocracking of Iranian VGO at different conversion rates were carried out under the operating condition specifying a partial hydrogen pressure of 15.7 MPa, a total LHSV of 1.5 h-1and a total H2/oil ratio of 1 500:1. Moreover, the nitrogen content of hydrotreated oil was controlled at around 10 μg/g. The products were analyzed by true boiling point distillation, with the product distribution presented in Table 2. It can be seen from Table 2 that the VGO conversion increased following the increase of reaction temperature, which was accompanied by an increase of kerosene yield but a decrease of diesel yield. Meanwhile, it is obvious that the middle distillate yield increased when the hydrocracking temperature increased from 381 ℃ to 390 ℃ and these results were consistent with the catalytic activity of the hydrocracking catalyst A.

    Table 2 Product yield distribution of Iran VGO hydrocracking

    2.4 Kinetic model of VGO hydrocracking

    In this study, the kinetic model developed by Orochko[15]was used to simulate the product distribution in hydrocracking process. The hydrocracking kinetics of vacuum gas oil from Iranian crude oils was studied in a fixed-bed reactor over the hydrocracking catalyst A using a firstorder kinetic scheme involving four lumps. The reaction scheme is shown in Figure 2. Theoretically speaking, the four lumped kinetic model schemes should include a series of reactions and parallel reactions. But the hydrocracking catalyst A has low cracking activity and rarely takes part in secondary cracking reaction. So only the parallel reaction of heavy oil cracking was considered in the model scheme, while ignoring the secondary reactions, namely the formation of diesel lump to gasoline, the gas lump, and gasoline lump to gas lump.

    Figure 2 Reaction scheme for hydrocracking lump-kinetic model

    In this study, gases lump (include LPG and off-test),gasoline lump (light and heavy naphtha), and diesel lump (kerosene and diesel) were considered as three of four lumps. Moreover, the hydrocracker products and yield are shown in Table 2. The experimental data of hydrocracking process were used to model the kinetic parameters of hydrocracking reactions.

    The hydrocracking process took place according to a retarded first-order reaction, which was the equation developed by Orochko[1]. Based on this method, the yields of diesel lump and gasoline lump can be expressed by the total conversionyand macro-kinetic parameters.

    in whichZ,X, andGare experimental yield of diesel lump, gasoline lump and gases lump, respectively, andyis the conversion rate of VGO.

    Among them, the macrokinetic parameters (k′andk″) depend on feed properties, process temperature and catalyst characteristics. All kinetic model parameters are determined by experimental data and simulated by an optimization procedure written in the Matlab 2011b. Furthermore, the objective function which determines the optimized model parameters is defined as follows.

    3 Results and Discussion

    The operating conditions and experimental data of a pilotplant scale hydrocracker were used to calculate and validate the model parameters. The results of fine-tuning are shown in Table 3. By using these parameters, the product distribution can be calculated. A comparison between the model results for predicting the product yields is also shown in Table 3. It can be seen from Table 3 that there was an extraordinarily good agreement between model prediction results and experimental data. The absolute relative deviation (ARD) and mean square error (OBJ) of the model for predicting the product yields are defined as follows:

    in which yexpand ymodare experimental and model yield of product, respectively. The ARD and OBJ of model predictions are shown in Table 3. It can be seen from Table 3 that the calculation error was small enough to meet the requirements of the model.

    Table 3 Model macrokinetic parameters and standard deviation

    Sincek′andk″are kinetic factors with similar meaning to the rate constants, the relation between macrokinetic parameters and reaction temperature based on the Arrhenius equation should be studied. The correlation between -ln(k′,k″) and 1/Tis presented in Figure 3. It can be obviously seen that the macrokinetic parameterk′could satisfy the Arrhenius equation along with high related coefficient (R2=0.9905), but there was not a close relationship between macrokinetic parameterk″and reaction temperature because of its relatively low coefficient (R2=0.6899). It might occur because the model parameter (k″) was not only a function of reaction temperature, but was also related with other process conditions. This experiment studied only the process conditions of different reaction temperatures so that the complete correlation could not be fully reflected. Perhaps, a further research work needs tobe accomplished.

    Figure 3 Relationship between -ln(k′, k″) and 1/T

    3.2 Correlation of kinetic modeling parameters

    It has been referred to in the previous research[7]that the macrokinetic parameters (k′andk″) depend upon the feedstock property, the reaction temperature, and the nature of catalyst. Furthermore,k′andk″are kinetic factors with similar meaning to the rate constants.

    So a correlation function was put forward to calculate the macrokinetic parameters. Among them, the characteristic factor (Kf) and the volume-mean boiling point (Tv) functioned as factors which could mainly represent the feedstock property. The weight percent conversion of VGO (Xf), reaction temperature (T), and zeolite content of catalyst are also included in this empirical correlation.KfandTVare calculated by the following formulas and the calculated results are listed in Table 1.

    Through correlation and selection of various methods, the two empirical model correlations were chosen, which was an innovative idea adopted in this paper. The empirical correlations aboutk′andk″are listed as follows:

    據(jù)了解,我國保健食品注冊管理制度已經(jīng)實行了20年,約1.6萬個產品獲得了批準。現(xiàn)行注冊與備案的雙軌管理制度,也為產品準入、市場發(fā)展提供了強大活力。此外,嬰幼兒配方乳粉、特殊醫(yī)學用途配方食品注冊形成了科學完善的管理制度,實現(xiàn)了注冊管理的平穩(wěn)過渡。

    whereA1,A2,A3,B1,B2, andB3 are model parameters, which are calculated from the experimental data;wis the zeolite content in catalyst.

    The hydrocracking experiments were carried out on different feedstocks, with the reaction temperature and experimental data shown in Table 4. Firstly, the macrokinetic parameters (k′andk″) were calculated from experimental data listed in Table 4 and then the model parameters were correlated by the nonlinear least square method described in the Matlab 2011b. According to the calculated value listed in Table 4, the macrokinetic parameters (k′andk″) optimized from experimental data of three typical feedstocks were suited quite well to implementing the model calculation because of its low OBJ.

    Table 4 Hydrocracking experiments on different feedstocks and kinetic parameters

    And then the model parameters describing the relationship between macrokinetic parameters and feedstock properties, catalyst activity, and reaction temperature were simulated by an optimization procedure written in the Matlab 2011b. The objective function which determines the optimized model parameters is defined as mentioned previously. Judging from the optimization results listed in Table 5, it has good prediction accuracy which is appro-priate enough for meeting the model not only in terms of the ARD value but also the OBJ value.

    Figure 5 Model gasoline yield versus experimental gasoline yield

    Table 5 Model parameters of macrokinetic parameters (k′, k″)

    3.3 Validation of kinetic modeling

    After the kinetic modeling parameters were calculated from the above-mentioned experimental data, the kinetic model could be written as follows:

    By using these modeling parameters, the hydrocracking product distribution can be calculated. The comparison between the calculated results and the experimental data are shown in Figures 4—5. It can be seen from the data depicted in Figures 4—5 that there was a good agreement between model diesel predictions and experimental data.

    Figure 4 Model diesel yield versus experimental diesel yield

    But the model estimation relating to the gasoline lump and the gas lump was less reliable than the diesel lump especially with respect to the gas lump. Furthermore, the kinetic modeling cannot realize prediction when the products cutting scheme was changed.

    So far there would not be a model that can realize the prediction on different catalysts, feedstocks, and other factors. Despite the vast commercial application prospects of hydrocracking catalyst A, this model also does not have practicability for industrial hydrocrackers because of constraints related with internal diffusion, external diffusion and other factors.

    In general, this model can be only suitable for prediction of the hydrocracking catalyst at some extent. There is still a long way to establish a perfect kinetic model of hydrocracking.

    4 Conclusions

    (1) In this article, a discrete lumped kinetic approach was used to simulate the kinetics of hydrocracking reactions in a pilot-plant hydrocracker. The data sets were statistically analyzed and then an optimization code was applied to determine the model parameters. The model prediction was validated by experimental data and calculated data based on the model parameters.

    (2) Furthermore, the effect of feedstock properties, such as characteristic factor (K), volume-mean boiling point (TV), reaction temperature (T) and other parameters were also correlated in the model. The ARD and OBJ of the model prediction were calculated and the results verified the accuracy of the model parameters and model suitability for predicting the product distribution.

    Acknowledgements:Thanks to the fund of “National ‘Twelfth Five-Year’ Plan for Science & Technology Support” (No. 2012BAE05B04) and “Research on Hydrocracking Catalysts Grading Technology” undertaken by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP) supported by SINOPEC (No. 101102).

    [1] Kumar H, Froment G F. Mechanistic kinetic modeling of the hydrocracking of complex feedstocks, such as vacuum gas oils[J]. Ind Eng Chem Res, 2007, 46(18): 5881-5897

    [2] Ancheyta J, Sanchez S, Rodriguez M A. Kinetic modeling of hydrocracking of heavy oil fractions: A review[J]. Catalysis Today, 2005, 109(1-4): 76-92

    [3] Schweitzer J M, Galtier P, Schweich D. A single event kinetic model for the hydrocracking of paraffins in a three-phase reactor [J]. Chem Engng Sci, 1999, 54(13/14): 2441-2452

    [4] Sadighi S, Ahmad A, Mohaddecy S R S. 6-Lump kinetic model for a commercial vacuum gas oil hydrocracker[J]. International Journal of Chemical Reactor Engineering, 2010, 8(A1): 1-24

    [5] Sadighi S, Ahmad A, Rashidzadeh M. 4-Lump kinetic model for vacuum gas oil hydrocracker involving hydrogen consumption[J]. Korean J Chem Eng, 2010, 27(4): 1099-1108

    [6] Moghadassi A R, Amini N, Fadavi O, et al. The application of the discrete lumped kinetic approach for the modeling of a vacuum gas oil hydrocracker unit[J]. Petroleum Science and Technology, 2011, 29(23): 2416-2424

    [7] Kumar A, Sinha S. Steady state modeling and simulation of hydrocracking reactor[J]. Petroleum & Coal, 2012, 54(1): 59-64

    [8] Elizalde I, Rodriguez M A, Ancheyta J. Application of continuous kinetic lumping modeling to moderate hydrocracking of heavy oil[J]. Applied Catalysis A: General, 2009, 365(2): 237-242

    [9] Sadeghi M T, Shahhosseini S, Behroozshad F. Continuous lumping model of an industrial refinery isomax reactor[J]. Iranian Journal of Chemical Engineering, 2010, 7(2): 39-50

    [10] Elizaldea I, Rodríguezb M A, Ancheyta J. Modeling the effect of pressure and temperature on the hydrocracking of heavy crude oil by the continuous kinetic lumping approach[J]. Applied Catalysis A: General, 2010, 382(2): 205-212

    [11] Sadighi S, Ahmad A, Irandoukht A. Kinetic study on a commercial amorphous hydrocracking catalyst by weighted lumping strategy[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 1-24

    [12] Jaffe S B. Extension of structure-oriented lumping to vacuum residue[J]. Ind Eng Chem Res, 2005, 44(26): 9840-9852

    [13] Mitsios M, Guillaume D, Galtier P, et al. Single-event microkinetic model for long-chain paraffin hydrocracking and hydroisomerization on an amorphous Pt/SiO2·Al2O3catalyst[J]. Ind Eng Chem Res, 2009, 48(7): 3284-3292

    [14] Guillaume D, Valery E, Verstraete J J, et al. Single event kinetic modeling without explicit generation of large networks: Application to hydrocracking of long paraffins[J]. Oil & Gas Science and Technology, 2011, 66(3): 399-422

    [15] Orochko D I, Perezhigina I Y, Rogov S P, et al. Applied over-all kinetics of hydrocracking of heavy petroleum distillates[J]. Khimiya I Tekhnologiya Toplivi Masel, 1970, 8(6): 561-565 (in Russian)

    Recieved date: 2012-12-27; Accepted date: 2013-02-05.

    Professor Fang Xiangchen, E-mail: fangxiangchen.fshy@sinopec.com.

    猜你喜歡
    乳粉現(xiàn)行保健食品
    牛、羊乳粉的DSC熱學性質比較及摻假分析
    食品科學(2023年4期)2023-03-06 12:49:32
    抓現(xiàn)行
    微生物法測定嬰幼兒乳粉葉酸含量的不確定度評估
    新疆伊犁馬乳粉脂肪酸組成和含量分析
    保健食品說蕎麥
    淺談我國現(xiàn)行的房產稅
    活力(2019年15期)2019-09-25 07:21:38
    減肥類保健食品中25種非法添加化學物質的UPLC-DAD快速篩查
    中成藥(2018年12期)2018-12-29 12:26:10
    最適合胖人去脂減肥的保健食品
    被抓了現(xiàn)行
    現(xiàn)行企業(yè)內部控制制度探討
    色播在线永久视频| 免费不卡黄色视频| 麻豆乱淫一区二区| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 亚洲激情五月婷婷啪啪| 王馨瑶露胸无遮挡在线观看| 亚洲色图 男人天堂 中文字幕| 十八禁高潮呻吟视频| 曰老女人黄片| 大话2 男鬼变身卡| 亚洲三区欧美一区| 国产成人a∨麻豆精品| 色视频在线一区二区三区| 精品一区二区三区av网在线观看 | 老熟女久久久| 如何舔出高潮| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久午夜乱码| 久久精品国产综合久久久| 一本大道久久a久久精品| 亚洲美女搞黄在线观看| 大陆偷拍与自拍| 男人操女人黄网站| 亚洲,一卡二卡三卡| 日韩 亚洲 欧美在线| 男女无遮挡免费网站观看| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 久久97久久精品| 国产无遮挡羞羞视频在线观看| 久久天堂一区二区三区四区| 免费人妻精品一区二区三区视频| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 99久久人妻综合| 1024香蕉在线观看| 久久亚洲国产成人精品v| 丝袜喷水一区| 在线观看免费高清a一片| 99久国产av精品国产电影| 啦啦啦 在线观看视频| 免费观看人在逋| 亚洲美女黄色视频免费看| 日韩一卡2卡3卡4卡2021年| 国产高清国产精品国产三级| 一本大道久久a久久精品| 丝袜脚勾引网站| 欧美精品高潮呻吟av久久| 久久鲁丝午夜福利片| 精品福利永久在线观看| 日本wwww免费看| 国产视频首页在线观看| 国产在视频线精品| 国产精品久久久久久精品古装| 美女午夜性视频免费| 在线天堂中文资源库| 免费观看av网站的网址| 亚洲av欧美aⅴ国产| 天天躁夜夜躁狠狠久久av| 一级片免费观看大全| 大陆偷拍与自拍| 宅男免费午夜| 婷婷成人精品国产| 水蜜桃什么品种好| 国产亚洲av高清不卡| 悠悠久久av| 国产色婷婷99| 日韩,欧美,国产一区二区三区| 美女高潮到喷水免费观看| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 亚洲国产毛片av蜜桃av| 欧美亚洲日本最大视频资源| 亚洲国产欧美日韩在线播放| 久久久久久久大尺度免费视频| 十八禁高潮呻吟视频| 蜜桃在线观看..| 午夜福利在线免费观看网站| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡 | 国产精品国产三级国产专区5o| 国产亚洲一区二区精品| 老司机亚洲免费影院| 黑丝袜美女国产一区| 九草在线视频观看| 精品国产乱码久久久久久男人| 黑人巨大精品欧美一区二区蜜桃| 久热爱精品视频在线9| 精品亚洲成a人片在线观看| 国产精品国产av在线观看| 最近中文字幕2019免费版| 日本午夜av视频| 免费av中文字幕在线| 99九九在线精品视频| 亚洲专区中文字幕在线 | 国产免费福利视频在线观看| 色精品久久人妻99蜜桃| 中文字幕色久视频| 少妇猛男粗大的猛烈进出视频| 午夜91福利影院| 超碰97精品在线观看| 中文字幕人妻熟女乱码| 亚洲成人一二三区av| 青春草国产在线视频| 另类精品久久| 建设人人有责人人尽责人人享有的| 久久精品久久久久久久性| 午夜福利视频精品| 欧美日韩视频高清一区二区三区二| 国产成人啪精品午夜网站| 国产av国产精品国产| 亚洲精品av麻豆狂野| 狂野欧美激情性bbbbbb| 丰满少妇做爰视频| 国产精品蜜桃在线观看| 赤兔流量卡办理| 黑丝袜美女国产一区| 亚洲av电影在线进入| 久久久久网色| 另类精品久久| 三上悠亚av全集在线观看| 国产色婷婷99| 最近中文字幕2019免费版| 91国产中文字幕| 高清av免费在线| 99久久99久久久精品蜜桃| 99久国产av精品国产电影| 黄色 视频免费看| 国产精品久久久av美女十八| 色网站视频免费| 老鸭窝网址在线观看| 国产一区二区在线观看av| 91老司机精品| 日韩制服骚丝袜av| 欧美人与性动交α欧美软件| 国产精品女同一区二区软件| 日本av手机在线免费观看| 不卡av一区二区三区| 久久久久精品国产欧美久久久 | 久久青草综合色| 无限看片的www在线观看| 黄色 视频免费看| 亚洲国产精品999| 51午夜福利影视在线观看| 久久久久精品久久久久真实原创| 国产97色在线日韩免费| 久久久国产一区二区| 国精品久久久久久国模美| 色婷婷久久久亚洲欧美| 中文字幕av电影在线播放| 狂野欧美激情性bbbbbb| 亚洲国产日韩一区二区| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 午夜日本视频在线| 咕卡用的链子| 免费在线观看完整版高清| bbb黄色大片| av不卡在线播放| 欧美变态另类bdsm刘玥| 交换朋友夫妻互换小说| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲国产日韩| 狂野欧美激情性xxxx| 久久影院123| 久久韩国三级中文字幕| 国产精品久久久久久精品电影小说| 亚洲三区欧美一区| 99精国产麻豆久久婷婷| 国产一区二区 视频在线| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕大全免费视频 | 一边摸一边做爽爽视频免费| 午夜福利在线免费观看网站| 欧美人与性动交α欧美精品济南到| 高清视频免费观看一区二区| 亚洲成人一二三区av| 久久精品aⅴ一区二区三区四区| 国产有黄有色有爽视频| 久久性视频一级片| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 免费日韩欧美在线观看| 亚洲欧美色中文字幕在线| 在线天堂最新版资源| 操美女的视频在线观看| 99久久综合免费| 丝瓜视频免费看黄片| 捣出白浆h1v1| 91aial.com中文字幕在线观看| 久久午夜综合久久蜜桃| 建设人人有责人人尽责人人享有的| 亚洲男人天堂网一区| 欧美人与性动交α欧美精品济南到| 搡老乐熟女国产| 免费黄色在线免费观看| 秋霞伦理黄片| av网站免费在线观看视频| 大片电影免费在线观看免费| 亚洲四区av| 欧美精品高潮呻吟av久久| 国产一区二区激情短视频 | 日韩一区二区三区影片| 日韩一区二区视频免费看| 成人亚洲欧美一区二区av| 极品人妻少妇av视频| 亚洲综合精品二区| 无遮挡黄片免费观看| 国产免费福利视频在线观看| 亚洲免费av在线视频| 咕卡用的链子| videos熟女内射| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 久久青草综合色| 久久久精品区二区三区| 国产成人午夜福利电影在线观看| 欧美精品人与动牲交sv欧美| 精品一区二区三区四区五区乱码 | 中文字幕最新亚洲高清| 精品国产国语对白av| 18禁动态无遮挡网站| 国产成人系列免费观看| 国产在线视频一区二区| 国产伦人伦偷精品视频| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 国产无遮挡羞羞视频在线观看| 在线天堂最新版资源| 色视频在线一区二区三区| 国产又爽黄色视频| 少妇人妻久久综合中文| 日韩一区二区三区影片| 免费观看av网站的网址| 9191精品国产免费久久| 亚洲第一青青草原| 亚洲综合色网址| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 不卡av一区二区三区| 看免费成人av毛片| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 精品一区二区三区四区五区乱码 | 久久人人97超碰香蕉20202| 亚洲国产欧美一区二区综合| 午夜免费鲁丝| 蜜桃国产av成人99| 天天躁夜夜躁狠狠久久av| 观看美女的网站| 亚洲国产欧美日韩在线播放| 十八禁人妻一区二区| 2021少妇久久久久久久久久久| 国产探花极品一区二区| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 操出白浆在线播放| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 高清av免费在线| 人人妻,人人澡人人爽秒播 | 成人三级做爰电影| 三上悠亚av全集在线观看| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 国产又色又爽无遮挡免| 大码成人一级视频| 欧美精品高潮呻吟av久久| 久久精品久久久久久噜噜老黄| 一边摸一边做爽爽视频免费| 亚洲激情五月婷婷啪啪| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 91精品伊人久久大香线蕉| 欧美黑人欧美精品刺激| 在线观看国产h片| 免费少妇av软件| 久久久精品国产亚洲av高清涩受| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 久久久亚洲精品成人影院| 丰满少妇做爰视频| 天天添夜夜摸| netflix在线观看网站| 久久鲁丝午夜福利片| 激情五月婷婷亚洲| 日韩视频在线欧美| 国产精品人妻久久久影院| 久久精品国产a三级三级三级| 亚洲美女黄色视频免费看| 一级a爱视频在线免费观看| 制服丝袜香蕉在线| 高清欧美精品videossex| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 日本黄色日本黄色录像| 久久99热这里只频精品6学生| 国产午夜精品一二区理论片| 多毛熟女@视频| 国产免费又黄又爽又色| 精品久久久久久电影网| 亚洲伊人色综图| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o| 中文天堂在线官网| 成年人午夜在线观看视频| 精品国产露脸久久av麻豆| 中文字幕av电影在线播放| 亚洲成av片中文字幕在线观看| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 日本一区二区免费在线视频| 日韩 亚洲 欧美在线| 国产精品一区二区在线观看99| 亚洲成人av在线免费| 久久免费观看电影| 亚洲av电影在线观看一区二区三区| 咕卡用的链子| 丁香六月天网| 美女大奶头黄色视频| 丁香六月欧美| 免费黄网站久久成人精品| 午夜福利网站1000一区二区三区| 亚洲av电影在线观看一区二区三区| 在线观看免费日韩欧美大片| av天堂久久9| 中文乱码字字幕精品一区二区三区| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 中文字幕亚洲精品专区| 国产成人精品无人区| 国产成人啪精品午夜网站| av卡一久久| 一边亲一边摸免费视频| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 国产成人精品在线电影| 精品午夜福利在线看| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 国产精品亚洲av一区麻豆 | 19禁男女啪啪无遮挡网站| 日韩中文字幕视频在线看片| 女性被躁到高潮视频| 午夜福利一区二区在线看| 欧美人与性动交α欧美精品济南到| 亚洲综合精品二区| 国产探花极品一区二区| 黄片无遮挡物在线观看| 老司机亚洲免费影院| 久久久久精品人妻al黑| 国产99久久九九免费精品| 中文字幕人妻丝袜一区二区 | 波野结衣二区三区在线| 欧美乱码精品一区二区三区| 亚洲第一区二区三区不卡| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| www日本在线高清视频| 久久精品国产亚洲av高清一级| 我要看黄色一级片免费的| 一级毛片黄色毛片免费观看视频| 不卡av一区二区三区| 制服丝袜香蕉在线| 欧美日韩精品网址| 丝袜人妻中文字幕| 免费看av在线观看网站| 日韩伦理黄色片| 亚洲专区中文字幕在线 | 久久婷婷青草| 国产高清国产精品国产三级| 黄片小视频在线播放| 制服人妻中文乱码| 欧美黑人欧美精品刺激| 国产成人免费无遮挡视频| 大香蕉久久网| 久久精品国产综合久久久| 国产av精品麻豆| 午夜91福利影院| 亚洲久久久国产精品| 国产精品 欧美亚洲| 日本91视频免费播放| 亚洲av日韩精品久久久久久密 | 狂野欧美激情性bbbbbb| 最近最新中文字幕大全免费视频 | 国产亚洲午夜精品一区二区久久| 18禁动态无遮挡网站| 大话2 男鬼变身卡| 中国国产av一级| 欧美黑人精品巨大| 少妇人妻久久综合中文| 国产乱来视频区| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 最近中文字幕2019免费版| 啦啦啦中文免费视频观看日本| 欧美老熟妇乱子伦牲交| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 两个人看的免费小视频| 天天影视国产精品| 亚洲av成人精品一二三区| 久久精品久久久久久久性| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 人妻 亚洲 视频| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 1024香蕉在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲av综合色区一区| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆 | 超色免费av| 黄网站色视频无遮挡免费观看| 午夜av观看不卡| 伊人久久大香线蕉亚洲五| av片东京热男人的天堂| 日韩 欧美 亚洲 中文字幕| 丰满乱子伦码专区| 十八禁网站网址无遮挡| 亚洲国产最新在线播放| 精品福利永久在线观看| 国产无遮挡羞羞视频在线观看| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜| 制服诱惑二区| 中文字幕精品免费在线观看视频| videosex国产| 日本爱情动作片www.在线观看| 1024香蕉在线观看| √禁漫天堂资源中文www| 欧美97在线视频| 成人国产av品久久久| 国产一卡二卡三卡精品 | 成人午夜精彩视频在线观看| 成人漫画全彩无遮挡| 伦理电影大哥的女人| 欧美人与性动交α欧美软件| 亚洲七黄色美女视频| 我要看黄色一级片免费的| 亚洲欧美成人精品一区二区| 国产伦人伦偷精品视频| 日韩欧美精品免费久久| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜| 亚洲精品一二三| 久久午夜综合久久蜜桃| 亚洲成色77777| 成年人午夜在线观看视频| 只有这里有精品99| 伊人久久国产一区二区| 欧美少妇被猛烈插入视频| 国产一区二区三区综合在线观看| 午夜91福利影院| 伊人亚洲综合成人网| 999精品在线视频| 99热网站在线观看| 欧美变态另类bdsm刘玥| 少妇猛男粗大的猛烈进出视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 成人国产麻豆网| 欧美在线黄色| 国产成人av激情在线播放| 天天添夜夜摸| 侵犯人妻中文字幕一二三四区| 亚洲天堂av无毛| 丁香六月天网| 久久午夜综合久久蜜桃| 久久国产精品大桥未久av| 午夜激情av网站| 美女主播在线视频| 国产xxxxx性猛交| 亚洲情色 制服丝袜| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区国产| 久久精品久久久久久噜噜老黄| 国产日韩欧美在线精品| 观看美女的网站| 香蕉丝袜av| 麻豆乱淫一区二区| 国产麻豆69| 精品人妻在线不人妻| 久久ye,这里只有精品| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| 亚洲 欧美一区二区三区| 国产一区二区激情短视频 | 国产探花极品一区二区| 精品第一国产精品| 高清视频免费观看一区二区| 9色porny在线观看| 91精品三级在线观看| 日本av手机在线免费观看| 捣出白浆h1v1| 男男h啪啪无遮挡| 色94色欧美一区二区| 丝袜美足系列| 波野结衣二区三区在线| 天天躁日日躁夜夜躁夜夜| av.在线天堂| 中文乱码字字幕精品一区二区三区| 国产免费福利视频在线观看| 日韩人妻精品一区2区三区| 下体分泌物呈黄色| 青草久久国产| 18禁观看日本| 亚洲欧美精品自产自拍| 曰老女人黄片| 亚洲精品自拍成人| 日韩一区二区三区影片| 香蕉国产在线看| 成年av动漫网址| 中文字幕色久视频| 蜜桃在线观看..| xxxhd国产人妻xxx| 看十八女毛片水多多多| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜制服| 国产 精品1| 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 制服诱惑二区| 国产爽快片一区二区三区| 看非洲黑人一级黄片| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀 | 中文字幕av电影在线播放| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 国产福利在线免费观看视频| 国产精品嫩草影院av在线观看| a级毛片在线看网站| 国产乱来视频区| 国产欧美日韩综合在线一区二区| 日韩制服丝袜自拍偷拍| 日日撸夜夜添| 国产日韩欧美在线精品| 午夜久久久在线观看| 国产不卡av网站在线观看| 色视频在线一区二区三区| 伦理电影大哥的女人| 亚洲精品国产av成人精品| 伊人亚洲综合成人网| 另类精品久久| 精品一区二区免费观看| 美女午夜性视频免费| 国产亚洲最大av| 捣出白浆h1v1| 日韩欧美精品免费久久| 高清黄色对白视频在线免费看| 在线免费观看不下载黄p国产| 日本色播在线视频| 狠狠精品人妻久久久久久综合| 久久久久国产一级毛片高清牌| 久久久久精品人妻al黑| 黄色视频在线播放观看不卡| 色婷婷av一区二区三区视频| 亚洲,欧美精品.| 欧美国产精品va在线观看不卡| 日本午夜av视频| 国产av一区二区精品久久| 天天躁日日躁夜夜躁夜夜| 成人黄色视频免费在线看| 午夜福利乱码中文字幕| 欧美乱码精品一区二区三区| 国产精品一国产av| 男女无遮挡免费网站观看| 色播在线永久视频| 超色免费av| 日韩视频在线欧美| 午夜日韩欧美国产| 黄片无遮挡物在线观看| avwww免费| 欧美乱码精品一区二区三区| 国产 一区精品| avwww免费| 精品久久久精品久久久| 欧美人与性动交α欧美精品济南到| 日韩欧美一区视频在线观看| 9191精品国产免费久久| 欧美日韩视频精品一区| 午夜福利乱码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 日本色播在线视频| 亚洲七黄色美女视频| 天天躁夜夜躁狠狠躁躁| 精品第一国产精品| 中文天堂在线官网| 丁香六月天网| 午夜福利,免费看| 女性被躁到高潮视频| 精品一区二区免费观看| 捣出白浆h1v1| 少妇 在线观看|