• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of Ni-based, Fe-based and Co-based Oxygen Carriers in Chemical-Looping Hydrogen Generation

    2013-07-25 10:07:39LiangHaoZhangXiwenFangXiangchenYuanHonggang
    中國煉油與石油化工 2013年2期

    Liang Hao; Zhang Xiwen; Fang Xiangchen; Yuan Honggang

    (1. Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001; 2. Fushun Research Institute of Environmental Science, Fushun 113006)

    Performance of Ni-based, Fe-based and Co-based Oxygen Carriers in Chemical-Looping Hydrogen Generation

    Liang Hao1; Zhang Xiwen1; Fang Xiangchen1; Yuan Honggang2

    (1. Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001; 2. Fushun Research Institute of Environmental Science, Fushun 113006)

    Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method. The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Generation in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4conversion over the oxygen carriers decreased in the following order: NiO/LaNiO3>Co2O3/LaCoO3>Fe2O3/LaFeO3. The ability of NiO/LaNiO3and Fe2O3/ LaFeO3to decompose water was stronger than that of Co2O3/LaCoO3as evidenced by our experiments. H2amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3at 900 ℃ in the period from the third cycle to the eighth cycle.

    Chemical-Looping Hydrogen Generation; oxygen carrier; perovskite oxide; methane

    1 Introduction

    The current worldwide hydrogen demand is predominantly fulfilled by the steam methane reforming process on a large scale[1]. Water gas shift (WGS) reaction is needed after steam methane reforming process[2-3]. Therefore CO2is formed with H2in outlet gases simultaneously. CO2separation is generally realized by pressure swing adsorption process (PSA), which would consume a large amount of energy.

    The Chemical-Looping Hydrogen Generation (abbreviated hereinafter as CLHG) process is a novel method for hydrogen generation (as presented in Figure 1)[4-5]. CLHG with the advantage of inherent CO2separation attracts the attention of many researchers. This hydrogen production method is different from the chemical-looping methane reforming process for hydrogen generation. CLHG is divided into two reactions that are carried out in two reactors, respectively. The mechanism of the process is based on the chemical-looping combustion process. Firstly, the oxygen carrier is reduced by fuel in the fuel reactor, and gases exiting the fuel reactor are composed of CO2and steam[6]. All the carbon dioxide gas is gathered by condensation of steam and this process requires less energy consumption[7]. The reduced oxygen carrier is then transferred to the steam reactor where it is oxidized by steam. H2is the product resulted from decomposition of steam in the presence of the reduced oxygen carrier. The whole process is a complete redox cycle. And then the oxygen carrier undergoes the whole chemical cycle by passing through the fuel reactor and the steam reactor in turn.

    Figure 1 Simplified diagram of CLHG process

    The use of metal oxides in cyclic redox reactions to produce H2is not new[8-9]. Iron ores have been used for thispurpose in the steam-iron process dating almost a century back. Most of the designs were tailored to produce H2since CO2separation was not considered essential at that time. At present, the outlet gas treatment was necessary. Oxygen carrier is the key factor for realizing the CLHG process. It must have strong ability to oxidize fuels, and the reduced oxygen carrier must have excellent ability to decompose steam[9]. Therefore oxygen atoms in the oxygen carrier must be active whether in reduction process or in oxidization process. Usually, the CLHG process is generally realized at high temperature owing to the highly endothermic nature of the process[10]. It is well known that perovskite oxides are stable during high-temperature reactions, and structural change of perovskite oxides can lead to the formation of oxygen vacancies and increase mobility of oxygen atoms caused by changes in crystal lattice[11-12]. As far as the issue is concerned, literature information about CLHG is not adequate, with Fe2O3only being referred to on its use in the CLHG process[4]. Up to now there is less literature referring to the application of perovskite oxide as the support in the CLHG process.

    The purpose of this study is to discuss the performance of perovskite oxides, which are applied as the support of Nibased, Fe-based and Co-based oxygen carriers for realizing the CLHG process, and to afford reliable data for the application of perovskite oxides in the CLHG technology.

    2 Experimental

    2.1 Preparation of oxygen carriers

    The perovskite oxides were prepared by the citric acid complexation method. The reagents such as Ni(NO3)2·6H2O (AR), Fe(NO3)3·9H2O (AR), Co(NO3)2·6H2O (AR) and La(NO3)3·6H2O (AR) were used as metal sources. A solution containing 15 m% of NiO/LaNiO3was prepared according to the following procedure: 36.3 g of Ni(NO3)2·6H2O and 34.3 g of La(NO3)3·6H2O were dissolved in 100 mL of water, to which a citric acid solution was added dropwise at 40 ℃. After a while, the temperature was increased to 80 ℃ which was maintained until the solution became a gel. The gel was dried at 110 ℃ for 48 h in a drying oven, and was then calcined at 900 ℃ for 4 h in a muffle furnace.

    Aqueous solutions composed of 15 m% of Fe2O3/LaFeO3and 15 m% of Co2O3/LaCoO3, respectively, were prepared according to the same preparation procedure as mentioned above.

    2.2 Characterization techniques

    For the identification of crystalline phases, powder X-ray diffraction (XRD) patterns were acquired by a diffractometer D/Max-2500 using a Ni-filtered Cu Kα radiation. The temperature-programmed reduction (TPR) profiles were obtained by passing through 100 mg of sample under a gas containing 10 vol % of H2in Ar stream flowing at a flowrate of 100 cm3/min. The thermo-gravimetric analysis was carried out in a DSC204HP TG instrument under a dry-air stream at a heating rate of 10 ℃/min.

    2.3 Performance tests

    The performance of oxygen carriers was studied in a fixed-bed quartz reactor (0.8 cm in inside diameter and 60 cm in height) at 900 ℃ and under atmospheric pressure. The fuel was a gas mixture consisting of pure methane with a flow rate of 10 mL/min and N2with a flow rate of 90 mL/min. The sample amount was 1.24 g. The amount of water was 0.5 mL added at a flow rate of 0.2 mL/min. Prior to the reaction tests, oxygen carriers were calcined in situ in dry air (at a rate of 30 mL/min) for 1 h at 300 ℃with the oven reaching the required reaction temperature subsequently. During the reduction process, CH4and N2passed over the oxygen carrier at 900 ℃ for three minutes. Then N2was introduced in order to purge out methane remaining in the reactor. Water vapor diluted with N2was passed over the reduced Ni-based oxygen carrier at 900 ℃ for five minutes. Then N2was introduced in order to purge out steam remaining in the reactor. Then air was introduced in order to oxidize the Ni-based oxygen carrier completely for five minutes. The reduction process with methane and the subsequent oxidation process with water vapor and air were repeated under the same conditions. The inlet and outlet gases from the reactor were analyzed by a gas chromatograph equipped with a packed column, a porapak Q column, and a thermal conductivity detector.

    3 Results and Discussions

    3.1 Thermal analysis

    Figure 2 shows the TG-DSC curves of Fe2O3/LaFeO3,Co2O3/LaCoO3and NiO/LaNiO3, respectively. It can be seen from Figure 2(a) that the mass loss before 160 ℃ is ascribed to the evaporation of adsorbed water and structural water, and the sharp mass loss between 160 ℃ and 330 ℃is caused by the decomposition of NO3-species, while the mass loss in the temperature range of 330 ℃—360 ℃ is ascribed to the combustion of superfluous citric acid complexation, which is a strongly exothermic process, and the mass loss after 450 ℃ is attributed to the decomposition of La2O2CO3. The TG-DSC curves of Co2O3/LaCoO3and NiO/LaNiO3are similar to those of Fe2O3/LaFeO3, which are not addressed further. In one word, the final calcination temperature is specified at 900 ℃ for all samples.

    Figure 2 Thermal analysis of oxygen carriers

    3.2 X-ray diffraction

    The XRD patterns of Fe2O3/LaFeO3, Co2O3/LaCoO3and NiO/LaNiO3are shown in Figure 3. The diffraction peaks of perovskite structure can be observed in all oxygen carriers. Besides, the diffraction peaks of Fe2O3, Fe3O4, NiO and Co2O3are identified in Figure 3 (a), Figure 3 (b)and Figure 3 (c) respectively. All these diffraction peaks indicate that the oxygen carriers are composed of metal oxides and perovskite oxides.

    Figure 3 XRD patterns of the oxygen carriers

    3.3 Temperature programmed reduction tests

    Reduction properties of oxygen carriers are very critical in the redox cycle. The reduction properties of three kinds of oxygen carriers are presented in Figure 4. It can be seen from Figure 4 (a) that LaFeO3can hardly be reduced before 700 ℃, but the addition of Fe2O3to LaFeO3improves the reduction property of LaFeO3obviously, and LaFeO3can be reduced at 300℃. The big reduction peak around 500 ℃ is attributed to the reduction processes involving Fe3+→Fe0and the reduction of surface adsorbed oxygen in LaFeO3. The reduction peak which is higher than 700 ℃ is attributed to the reduction of lattice oxygen atoms in bulk LaFeO3particles.

    Figure 4 H2-TPR patterns of three oxygen carriers

    As to the oxygen carrier LaNiO3, there are two main reduction peaks at 300 ℃ and 480 ℃ as shown in Figure 4(b). The first one is attributed to the reduction of adsorbed oxygen, and the second one is attributed to the reduction of lattice oxygen in bulk LaNiO3particles. The addition of NiO facilitates the reduction of LaNiO3, and areas of all related peaks become much larger. There are two reduction peaks located between 200 ℃and 400 ℃. The former peak is related with the reduction process involving Ni2+→Ni0, and the latter peak is related with the reduction of adsorbed oxygen atoms. The same phenomenon occurs to LaCoO3. The addition of Co2O3to LaCoO3significantly favors the reduction of LaCoO3as shown in Figure 4(c).

    All H2-TPR profiles of the oxygen carriers showed that metal oxides could improve the reduction capacity of the corresponding perovskite oxides. There are more oxygen atoms which take part in the redox process over Fe2O3/LaFeO3, Co2O3/LaCoO3and NiO/ LaNiO3than that over LaFeO3, LaCoO3and LaNiO3, respectively.

    3.4 Performance evaluation

    The performance evaluation tests are carried out via a two-step reaction. The first step is the reduction of oxygen carrier by CH4, and the second one is the oxidation of oxygen carrier by steam to produce H2.

    Firstly, CH4conversion is evaluated over these three oxygen carriers (Figure 5). CH4conversion over the oxygen carriers decreases in the following order: NiO/LaNiO3>Co2O3/LaCoO3>Fe2O3/LaFeO3. When the temperature reaches 900 ℃, CH4is oxidized completely over both of oxygen carriers NiO/LaNiO3and Co2O3/LaCoO3, and the methane conversion rate is much higher than that over the oxygen carrier Fe2O3/ LaFeO3.

    The hydrogen yield that varies with reaction temperature over the oxygen carriers is shown in Figure 6. It is found out that H2yield shows an increasing trend with the in-crease of reaction temperature. At 900 ℃, the H2yield over NiO/LaNiO3is almost the same as that over Fe2O3/ LaFeO3, while the hydrogen output over Co2O3/LaCoO3is the lowest. This behavior reveals that the ability of NiO/LaNiO3and Fe2O3/LaFeO3to decompose water is stronger than that of Co2O3/LaCoO3as evidenced by our experiments. It is well known that Ni particles cannot react upon steam according to the thermodynamic calculation, however, the above results have manifested that the oxygen carrier NiO/LaNiO3can react with steam to produce H2. It is speculated that the vacant sites of oxygen atoms, other than the Ni particles, are active sites taking part in the reaction. Steam in the steam reactor actually oxidizes the vacant sites of oxygen atoms to release H2. The composition of gases exiting the fuel reactor is given in Figure 7. It is well known that CH4can be oxidized to form CO2, CO, H2and H2O. It can be seen from Figure 7 that CO2is the major product at the start of run, but its amount decreases sharply with time, while the amount of H2and CO increases with the reaction time. This occurs because lattice oxygen atoms in perovskite oxides participate gradually in the oxidization process with the increase in reaction time, and the lattice oxygen atoms can always be involved in the partial oxidization of methane. Therefore hydrogen is produced during methane decomposition.

    Figure 5 Variation in CH4conversion with reaction temperature over three oxygen carriers

    Figure 6 Hydrogen yield as function of temperature over three oxygen carriers

    Figure 7 Effect of reaction time on the composition of outletgases produced over NiO/LaNiO3

    Figure 8 Comparison of oxygen carriers on their catalytic performance

    Figure 8 exhibits the catalytic performance of NiO/ LaNiO3and NiO/SiO2. Figure 8 (a) shows that CH4isoxidized totally over NiO/LaNiO3and CH4is partly oxidized over NiO/SiO2in eight cycles. This result demonstrates that LaNiO3is not inert, and takes part in the oxidization process of CH4. Figure 8 (b) shows that H2output stabilizes at 80 mL starting from the fourth operating cycle over NiO/LaNiO3. However, H2output changes a lot during the eighth operating cycle over NiO/SiO2. H2output is related with the CH4conversion, the more CH4is oxidized, the more H2is formed. Though eight redox cycles are too short to manifest the catalytic stability, the role which LaNiO3plays can be obviously seen in Figure 8.

    4 Conclusions

    A novel process is developed for oxidizing natural gas to hydrogen. The oxygen carriers Fe2O3/LaFeO3, Co2O3/ LaCoO3, and NiO/LaNiO3were prepared by the citric acid complexation method. XRD results showed that all the samples are composed of metal oxides and perovskite oxides. The performance evaluation tests showed that the highest conversion of CH4and the maximum amount of H2were achieved over NiO/LaNiO3, which was attributed to the most reduction-prone oxygen atoms in NiO/ LaNiO3. The excellent performance of the oxygen carriers investigated thereby has revealed that CLPG of methane using NiO/LaNiO3as the oxygen carrier should be feasible for further study.

    Acknowledgement:This work was financially supported by China Petrochemical Corporation (SINOPEC) (Contact No. 106002000284).

    Reference

    [1] Aasberg-Petersen K, Bak Hansen J H, Christensen T S, et al. Technologies for large-scale gas conversion[J]. Applied Catalysis, A: General, 2001, 221(1/2): 379-387

    [2] Gideon Botes F. Water-gas-shift kinetics in the iron-based low-temperature Fischer-Tropsch synthesis[J]. Applied Catalysis, A: General, 2007, 328(2): 237-242

    [3] Denkwitz Y, Karpenko A, Plzak V, et al. Influence of CO2and H2on the low-temperature water-gas shift reaction on Au/CeO2catalysts in idealized and realistic reformate[J]. Journal of Catalysis, 2007, 246 (1): 74-90

    [4] Yang Jingbiao, Cai Ningsheng, Li Zhenshan. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char[J]. Energy & Fuel, 2008, 22 (4): 2570-2579

    [5] Gupta P, Velazquez-Vargas L G, Fan Liang-Shih. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy & Fuel, 2007, 21(5): 2900-2908

    [6] Shi Q L, Chen S Y, Xue Z P, et al. Experimental investigation of chemical looping hydrogen generation using iron oxides as oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(z): 168-174

    [7] Mattisson T, Lyngfelt A, Cho Paul. The use of iron oxide as an oxygen carrier in chemical combustion of methane with inherent separation of CO2[J]. Fuel, 2001, 80 (13): 1953-1962

    [8] Thomas F. Advance in Synthetic Organic Chemistry and Methods Reported in US Patents[M]. USA: Elsevier, 2006: 704

    [9] Cormos C C. Evaluation of iron based chemical looping for hydrogen and electricity co-production by gasification process with carbon capturing and storage[J]. Internationl Journal of Hydrogen Energy, 2010, 35(6): 2278-2289

    [10] Ryu H J, Jin G T. Chemical-looping hydrogen generation system: Performance estimation and process selection[J]. Korean J Chem Eng, 2007, 24(3): 527-531

    [11] Cui Hongtao, Zayat M, Levy D. Epoxide assisted solgel synthesis of perovskite-type LaMxFe1-xO3(M=Ni, Co) nanoparticles[J]. Journal of Non-Crystalline Solids, 2006, 352:3035-3040

    [12] Wang Huanxin, Xu Jiaqiang, Cheng Zhixuan, et al. Synthesis and H2S gas sensing properties of SmFeO3nanosized powder[J]. Chinese J Sensor Actuator, 2006, 19(5): 2138-2141(in Chinese)

    Recieved date: 2012-12-27; Accepted date: 2013-02-05.

    Liang Hao, Telephone: +86-24-56389767; E-mail: lianghao2003@126.com.

    亚洲av国产av综合av卡| 涩涩av久久男人的天堂| 少妇人妻精品综合一区二区| 青春草国产在线视频| 欧美成人精品欧美一级黄| 99久久人妻综合| 国产亚洲av片在线观看秒播厂| 亚洲不卡免费看| 免费黄频网站在线观看国产| 欧美精品高潮呻吟av久久| 久久婷婷青草| 欧美老熟妇乱子伦牲交| 人妻制服诱惑在线中文字幕| 伦精品一区二区三区| 国产成人aa在线观看| 国产片内射在线| 黄色怎么调成土黄色| 日日爽夜夜爽网站| 精品人妻熟女av久视频| 人妻少妇偷人精品九色| 久久久精品区二区三区| 18禁观看日本| 在线观看人妻少妇| 免费少妇av软件| 亚洲精品一二三| videosex国产| 高清黄色对白视频在线免费看| 最新的欧美精品一区二区| 婷婷色综合大香蕉| 色婷婷av一区二区三区视频| 成人国产麻豆网| 日本vs欧美在线观看视频| 免费大片黄手机在线观看| 亚洲精华国产精华液的使用体验| 伊人久久精品亚洲午夜| 久久狼人影院| 欧美一级a爱片免费观看看| 久久久精品区二区三区| 性色av一级| 亚洲五月色婷婷综合| 亚洲国产精品成人久久小说| 国产爽快片一区二区三区| 一级毛片aaaaaa免费看小| 99国产精品免费福利视频| 国产成人精品福利久久| 国产有黄有色有爽视频| 国产精品 国内视频| 欧美日韩精品成人综合77777| 亚州av有码| 欧美性感艳星| 性色avwww在线观看| 免费黄色在线免费观看| 特大巨黑吊av在线直播| 国产精品麻豆人妻色哟哟久久| 亚洲久久久国产精品| 国产成人精品无人区| 国产精品一国产av| 亚洲精品久久久久久婷婷小说| 少妇精品久久久久久久| 青春草视频在线免费观看| 久久毛片免费看一区二区三区| 亚洲国产成人一精品久久久| 蜜桃久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 国语对白做爰xxxⅹ性视频网站| 久久久久国产精品人妻一区二区| 午夜激情福利司机影院| 国产精品蜜桃在线观看| 亚洲欧美色中文字幕在线| 久久这里有精品视频免费| 免费看光身美女| 人妻制服诱惑在线中文字幕| 男女边摸边吃奶| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久精品精品| 色婷婷av一区二区三区视频| 久久99热这里只频精品6学生| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 中文字幕免费在线视频6| 在线亚洲精品国产二区图片欧美 | 午夜福利在线观看免费完整高清在| 国产精品国产三级专区第一集| 日本wwww免费看| 欧美另类一区| 国产高清有码在线观看视频| 老司机影院成人| 少妇 在线观看| 亚洲国产欧美日韩在线播放| 免费少妇av软件| 伊人久久精品亚洲午夜| 成人毛片60女人毛片免费| 3wmmmm亚洲av在线观看| 日本猛色少妇xxxxx猛交久久| 卡戴珊不雅视频在线播放| 亚洲欧美中文字幕日韩二区| 久久久久久久大尺度免费视频| 日韩欧美一区视频在线观看| 国产精品一区二区三区四区免费观看| 天天操日日干夜夜撸| 最新中文字幕久久久久| 国产日韩一区二区三区精品不卡 | 日本黄色片子视频| 欧美变态另类bdsm刘玥| 国产精品成人在线| 国产av国产精品国产| 内地一区二区视频在线| 久久99一区二区三区| 国产精品免费大片| 亚洲国产欧美日韩在线播放| 狠狠婷婷综合久久久久久88av| 欧美精品国产亚洲| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 七月丁香在线播放| 国产精品久久久久久精品电影小说| 99久久精品一区二区三区| av在线观看视频网站免费| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美亚洲二区| 欧美精品一区二区大全| 校园人妻丝袜中文字幕| av线在线观看网站| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区| 一本一本综合久久| 国产毛片在线视频| 亚洲av.av天堂| 亚洲综合精品二区| 秋霞伦理黄片| 欧美bdsm另类| 99久国产av精品国产电影| 美女中出高潮动态图| 日韩av不卡免费在线播放| 国产精品女同一区二区软件| 91成人精品电影| av网站免费在线观看视频| 中国国产av一级| 丝袜在线中文字幕| 精品国产露脸久久av麻豆| 亚州av有码| 97精品久久久久久久久久精品| 高清视频免费观看一区二区| 亚洲av男天堂| 99热6这里只有精品| 欧美激情国产日韩精品一区| 春色校园在线视频观看| 在线观看免费视频网站a站| 91午夜精品亚洲一区二区三区| 制服人妻中文乱码| 一个人免费看片子| www.av在线官网国产| 精品人妻偷拍中文字幕| 国产成人91sexporn| 亚洲色图综合在线观看| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看| 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 狂野欧美激情性xxxx在线观看| 香蕉精品网在线| 国产男女超爽视频在线观看| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 精品一区二区免费观看| 亚洲人与动物交配视频| 精品酒店卫生间| 成人国产av品久久久| 国产精品一区二区三区四区免费观看| 九色成人免费人妻av| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 性色av一级| 国产男女超爽视频在线观看| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲 | 欧美性感艳星| 在线观看一区二区三区激情| 亚洲天堂av无毛| 久久国产亚洲av麻豆专区| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 久久人人爽人人片av| 亚洲成人一二三区av| 免费观看无遮挡的男女| 亚洲欧美一区二区三区国产| 在线观看免费视频网站a站| 国产熟女欧美一区二区| 欧美日韩成人在线一区二区| 亚洲av福利一区| 18禁在线播放成人免费| 午夜激情福利司机影院| 日韩视频在线欧美| 日本黄大片高清| 桃花免费在线播放| 午夜老司机福利剧场| 特大巨黑吊av在线直播| 中国美白少妇内射xxxbb| 久久人妻熟女aⅴ| 日韩精品有码人妻一区| 国产精品三级大全| 热99国产精品久久久久久7| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 亚洲av国产av综合av卡| 精品久久久久久电影网| 搡老乐熟女国产| a级毛片黄视频| av在线app专区| 国产精品一区二区三区四区免费观看| 哪个播放器可以免费观看大片| av天堂久久9| 久久精品夜色国产| 国产午夜精品一二区理论片| 大陆偷拍与自拍| 国产一区有黄有色的免费视频| 久久久久久久久久久免费av| 又大又黄又爽视频免费| 精品一区在线观看国产| 少妇人妻精品综合一区二区| 精品人妻在线不人妻| 欧美最新免费一区二区三区| 国产欧美日韩综合在线一区二区| 黑人欧美特级aaaaaa片| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区| 汤姆久久久久久久影院中文字幕| 男女边吃奶边做爰视频| 亚洲欧美中文字幕日韩二区| 免费少妇av软件| 久久久久久久久久成人| 亚洲精品亚洲一区二区| 亚洲精品乱久久久久久| 精品久久久久久久久av| 国产老妇伦熟女老妇高清| 丁香六月天网| 狠狠婷婷综合久久久久久88av| 日韩中字成人| a级毛片免费高清观看在线播放| 精品久久久精品久久久| 久久久国产欧美日韩av| 精品熟女少妇av免费看| 国产男女内射视频| 免费黄色在线免费观看| 色5月婷婷丁香| 69精品国产乱码久久久| 黄色毛片三级朝国网站| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 国产成人精品婷婷| 亚洲国产精品成人久久小说| 久久狼人影院| 制服丝袜香蕉在线| 久久久久精品久久久久真实原创| 有码 亚洲区| 国产成人a∨麻豆精品| 另类精品久久| 精品久久久噜噜| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件| 美女内射精品一级片tv| 国产色爽女视频免费观看| 亚洲国产精品一区二区三区在线| 日韩av免费高清视频| 女性被躁到高潮视频| 夜夜爽夜夜爽视频| 成人毛片a级毛片在线播放| 免费观看的影片在线观看| 丝袜在线中文字幕| 国产欧美亚洲国产| 一区二区av电影网| 国产高清国产精品国产三级| 亚洲成人手机| 久久99热6这里只有精品| 丰满饥渴人妻一区二区三| 99国产精品免费福利视频| 精品久久蜜臀av无| 少妇精品久久久久久久| 美女国产视频在线观看| 性色av一级| 制服丝袜香蕉在线| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 男女国产视频网站| 欧美97在线视频| 又大又黄又爽视频免费| 亚洲精品456在线播放app| 日韩一本色道免费dvd| 最近手机中文字幕大全| 黄色一级大片看看| 视频中文字幕在线观看| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 国产高清三级在线| 亚洲美女视频黄频| 狠狠精品人妻久久久久久综合| 日本与韩国留学比较| 亚洲国产色片| 九九在线视频观看精品| 成人无遮挡网站| 国产在线视频一区二区| 丰满迷人的少妇在线观看| 在线观看免费视频网站a站| 我的女老师完整版在线观看| 日日啪夜夜爽| www.色视频.com| 飞空精品影院首页| 日本与韩国留学比较| 免费黄色在线免费观看| 精品人妻偷拍中文字幕| a 毛片基地| 免费观看av网站的网址| 日韩免费高清中文字幕av| 免费大片黄手机在线观看| 亚洲av电影在线观看一区二区三区| 国产免费又黄又爽又色| 久久久国产一区二区| 国产亚洲精品第一综合不卡 | 最近最新中文字幕免费大全7| 国产精品久久久久久久久免| 午夜av观看不卡| 最近2019中文字幕mv第一页| 交换朋友夫妻互换小说| 午夜激情av网站| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 色视频在线一区二区三区| 日韩成人伦理影院| 日韩强制内射视频| 亚洲国产精品999| 一级毛片电影观看| 午夜视频国产福利| 欧美国产精品一级二级三级| 欧美成人精品欧美一级黄| 国产精品.久久久| 高清视频免费观看一区二区| 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区在线不卡| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品自产自拍| 丰满乱子伦码专区| 亚洲不卡免费看| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| 精品亚洲成国产av| 伊人亚洲综合成人网| 狂野欧美激情性xxxx在线观看| 999精品在线视频| 高清午夜精品一区二区三区| av天堂久久9| 亚洲少妇的诱惑av| 男女边摸边吃奶| 免费观看无遮挡的男女| 一级爰片在线观看| 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 午夜福利视频在线观看免费| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久av不卡| 亚洲丝袜综合中文字幕| 成人手机av| 亚洲国产最新在线播放| 另类亚洲欧美激情| 少妇人妻久久综合中文| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 91精品一卡2卡3卡4卡| 成人免费观看视频高清| 国产亚洲一区二区精品| 97在线人人人人妻| 久久久久久久久久久久大奶| 久久久久久久精品精品| 精品亚洲成a人片在线观看| 天天操日日干夜夜撸| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 天天躁夜夜躁狠狠久久av| 国产av国产精品国产| 欧美一级a爱片免费观看看| 日本午夜av视频| av不卡在线播放| 麻豆成人av视频| 色吧在线观看| 三级国产精品片| .国产精品久久| 成人影院久久| 亚洲少妇的诱惑av| 久久久午夜欧美精品| 国产成人a∨麻豆精品| 成人午夜精彩视频在线观看| 国产欧美日韩综合在线一区二区| 国产精品一区www在线观看| 夫妻性生交免费视频一级片| 搡老乐熟女国产| 丝袜喷水一区| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| 精品久久久久久久久av| kizo精华| 在线观看美女被高潮喷水网站| 国产一区二区三区综合在线观看 | 午夜免费鲁丝| 大香蕉久久网| 亚洲国产最新在线播放| 人妻夜夜爽99麻豆av| 下体分泌物呈黄色| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 尾随美女入室| 成年av动漫网址| 中文天堂在线官网| 在线免费观看不下载黄p国产| 丝瓜视频免费看黄片| 九九在线视频观看精品| 日韩不卡一区二区三区视频在线| 人人澡人人妻人| 久久久a久久爽久久v久久| 国产精品偷伦视频观看了| 亚洲四区av| 免费看不卡的av| 国产亚洲精品第一综合不卡 | 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 亚洲精品一二三| 午夜久久久在线观看| 18禁观看日本| 亚洲精品乱码久久久久久按摩| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 九九久久精品国产亚洲av麻豆| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | av.在线天堂| 最近中文字幕高清免费大全6| 久久亚洲国产成人精品v| 一本色道久久久久久精品综合| 纯流量卡能插随身wifi吗| 亚洲精品乱码久久久久久按摩| 老司机亚洲免费影院| 亚洲人成77777在线视频| 天美传媒精品一区二区| 久久这里有精品视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女搞黄在线观看| 国产精品成人在线| 九色亚洲精品在线播放| 亚洲色图综合在线观看| 色94色欧美一区二区| 日韩免费高清中文字幕av| 亚洲av日韩在线播放| 在线免费观看不下载黄p国产| 黄片无遮挡物在线观看| 99久久人妻综合| 色吧在线观看| 国产av一区二区精品久久| 国产日韩一区二区三区精品不卡 | 多毛熟女@视频| 午夜福利,免费看| 国产精品久久久久久av不卡| 国产免费福利视频在线观看| 国产成人aa在线观看| 亚洲精品日韩av片在线观看| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 久久久久久久久久成人| 成人无遮挡网站| 男的添女的下面高潮视频| 国产乱来视频区| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 高清av免费在线| 国产伦理片在线播放av一区| 嫩草影院入口| 91久久精品电影网| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| av专区在线播放| 黑人欧美特级aaaaaa片| 97超碰精品成人国产| 免费av中文字幕在线| 午夜激情福利司机影院| 国产乱人偷精品视频| 只有这里有精品99| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| a级毛片黄视频| 久久久久久久久久人人人人人人| 插阴视频在线观看视频| 国产探花极品一区二区| 中国国产av一级| 国产精品国产av在线观看| 97在线视频观看| av专区在线播放| 久久久国产一区二区| 午夜影院在线不卡| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 中文天堂在线官网| 老司机亚洲免费影院| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 国产成人精品福利久久| 美女xxoo啪啪120秒动态图| 国产不卡av网站在线观看| 九色成人免费人妻av| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 高清在线视频一区二区三区| 一级毛片 在线播放| 久久这里有精品视频免费| 欧美日韩视频高清一区二区三区二| 成人亚洲精品一区在线观看| 日本欧美国产在线视频| 国产精品成人在线| 精品人妻一区二区三区麻豆| 丰满乱子伦码专区| 黄色配什么色好看| 国产精品嫩草影院av在线观看| 日产精品乱码卡一卡2卡三| 18禁动态无遮挡网站| 免费不卡的大黄色大毛片视频在线观看| 国产不卡av网站在线观看| 亚洲国产最新在线播放| 男女啪啪激烈高潮av片| 高清毛片免费看| 国产片内射在线| 精品酒店卫生间| 老司机影院成人| 亚洲美女黄色视频免费看| 亚洲精品一区蜜桃| 夫妻午夜视频| 国产白丝娇喘喷水9色精品| 国产精品嫩草影院av在线观看| 国产精品一国产av| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 久久国产精品大桥未久av| 三级国产精品片| 日韩制服骚丝袜av| 蜜桃在线观看..| 丝袜美足系列| 欧美日韩成人在线一区二区| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 女性生殖器流出的白浆| 下体分泌物呈黄色| 国产国语露脸激情在线看| 日韩一区二区视频免费看| 免费观看性生交大片5| 久久人妻熟女aⅴ| 韩国高清视频一区二区三区| 日日撸夜夜添| 亚洲性久久影院| 国产精品熟女久久久久浪| 国产精品无大码| 久久久a久久爽久久v久久| 中国国产av一级| 大陆偷拍与自拍| 久久99热6这里只有精品| 成人国产av品久久久| 国产免费一级a男人的天堂| 国产精品久久久久久精品古装| 久久久久久久久大av| 国产不卡av网站在线观看| 18禁在线无遮挡免费观看视频| 精品人妻偷拍中文字幕| 乱人伦中国视频| av一本久久久久| 免费高清在线观看日韩| 亚洲精品第二区| 一级毛片 在线播放| 麻豆成人av视频| 免费观看的影片在线观看| 黄片无遮挡物在线观看| 欧美精品高潮呻吟av久久| 最近中文字幕高清免费大全6| 国产永久视频网站| 高清毛片免费看| 成人影院久久| 你懂的网址亚洲精品在线观看| 国产69精品久久久久777片| 18禁裸乳无遮挡动漫免费视频| 亚洲性久久影院| 国产老妇伦熟女老妇高清| 亚洲欧美成人综合另类久久久| 成人午夜精彩视频在线观看| 亚洲婷婷狠狠爱综合网| 大香蕉久久成人网| 精品视频人人做人人爽| 久久 成人 亚洲| 久久免费观看电影| 欧美97在线视频| 亚洲精品久久午夜乱码| 男的添女的下面高潮视频| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 天堂中文最新版在线下载| 欧美日韩亚洲高清精品| 国产成人精品婷婷| 少妇高潮的动态图|