• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Catalytic Performance of Potassium Titanate Used as Soot Oxidation Catalyst

    2013-07-25 10:07:37GaoYuanMengXiuhongPanLihongSongLijuanDuanLinhai
    中國煉油與石油化工 2013年2期
    關(guān)鍵詞:前后輪軸重后輪

    Gao Yuan; Meng Xiuhong; Pan Lihong; Song Lijuan; Duan Linhai

    (1.Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, Liaoning 113001; 2. Shandong Tianhong New Energy Chemical Co. Ltd.)

    Preparation and Catalytic Performance of Potassium Titanate Used as Soot Oxidation Catalyst

    Gao Yuan1,2; Meng Xiuhong1; Pan Lihong1; Song Lijuan1; Duan Linhai1

    (1.Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, Liaoning 113001; 2. Shandong Tianhong New Energy Chemical Co. Ltd.)

    To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4as raw materials was developed. The crystalline phase and surface morphology of K2Ti2O5were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti2O5and soot, the content of water vapor and SO2in exhaust, and the repeated use on catalytic activity of K2Ti2O5were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti2O5had high catalytic activity and good stability.

    citrate acid complex-combustion method; diesel exhaust; potassium titanate; soot oxidation

    1 Introduction

    Over the past decade, diesel engine is becoming increasingly widely used since its invention for its high fuel economy, long lifetime and low annual maintenance costs. However, the emission of various pollutants in the exhaust gases leads to severe atmospheric pollution and climate change[1-2]. In order to control the emission of particulate matter, the most feasible way is a combination of traps and oxidation catalysts[3-4](using diesel particulate filter combined with diesel oxidation catalysts). The catalyst equipped in the traps should lower the soot ignition temperature for noncatalytic combustion (about 600 ℃) down to the temperature range characteristic of diesel exhaust gases (180—350 ℃) to enable self-recovery of traps. Till now, platinum-based catalysts[5-6]seem to represent the best catalytic activity, which allows soot oxidation at a quite low temperature, viz. the ignition temperature at 247 ℃[7]. However, the high catalyst cost and its sensitivity to SO2have restricted its application.

    The perovskite-type oxides[8-10]and CeO2based oxides[11-13]have been proved to possess certain soot oxidation activities, but the oxidation temperature is still not low enough for practical application. Molten salt catalysts, especially potassium salts due to their high fluidity, have promising catalytic performance for soot combustion under realistic conditions[14]through enhancing their efficiency on contact with the soot. Up to now, extensive investigations on potassium-promoted catalysts for soot combustion have been performed[15-17].

    In this study, potassium titanate catalyst K2Ti2O5was successfully prepared via the citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4as starting materials. The crystalline phase and surface morphology of K2Ti2O5were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). Its catalytic activity on soot oxidation was evaluated in a temperatureprogrammed oxidation (TPO) equipment (consisting of a packed-bed made of quartz tube) in terms ofTig(beginning of the carbon black oxidation) andTm(peak-top temperature) together. The influence of some factors, such as the type of contact between K2Ti2O5and soot, the content of water vapor and SO2in exhaust, and the repeated use of K2Ti2O5on its catalytic activity was also investigated. The results showed that K2Ti2O5prepared by the citrate acid complex-combustion method exhibited high activity andbetter stability than that prepared by the sol-gel method or the solid-phase method.

    2 Experimental

    To obtain the potassium precursor, potassium nitrate and citric acid (CA) at a molar ratio of 2:1 were added into deionized water under vigorous stirring. To obtain the titanium precursor, a 50% citric acid solution was pre-adjusted to a pH value of 7.0 with ammonia water, to which Ti(OC4H9)4was added under constant stirring. Flake precipitate occurred first and then was dissolved gradually. The solution was divided into upper and lower layers on standing, with the upper layer composed of butanol and lower layer-citric titanium solution.

    Titanium precursor solution was added into potassium citrate to reach a K/Ti molar ratio of 2:1, to which ammonia water was added to make the solution slightly alkaline. The mixture was dried at 100 ℃ overnight followed by calcination in air.

    2.1 Catalyst characterization

    X-ray diffraction patterns were obtained with an X-ray analyzer (type M18XHF, made by Mac Science Co., Japan). Cu Kα radiation (λ=0.154 15 nm) was used with an X-ray gun operated at 40 kV and 100 mA. Diffraction patterns were obtained within the range of 2θ=10°—80° with a step size of 0.02o and a scanning velocity of 4°/min. The morphology of the catalysts was observed by FESEM (type S-4200, made by Hitachi, Japan) and TEM (type JEM-2000EX, made by Hitachi, Japan).

    2.2 PM oxidation activity tests

    All activity tests of K2Ti2O5on catalytic oxidation of soot were evaluated in a fixed-bed quartz reactor (10 mm in I. D.) using a TPO system in the temperature range of 373 K to 723 K (at a heating rate of 2 K/min). The activity of the catalyst is represented byTigandTmtogether. The soot used was Printex-U supplied by Degussa and the simulated diesel exhaust consisting of 10% O2in Ne gas passed through the reactor at a flow rate of 100 ml/min. The catalyst-soot mixture at a weight ratio of 9:1 was ground in an agate mortar for 30 minutes to simulate a mode of ‘tight contact’, while upon mixing the mixture with a spatula a mode of gently ‘loose contact’ was simulated. The outlet gas composition was automatically injected into and analyzed by an online gas chromatograph (modified type of Beifen GC-3420) equipped with a thermal conductivity detector (TCD) and a column Porapak Q for separating CO2and O2.

    3 Results and Discussion

    3.1 The effect of aging

    Figure 1 gives the XRD patterns of aged catalyst as well as the non-aged sample, the doping of K2Ti2O5·xH2O can be reflected judging from the XRD patterns of non-aged K2Ti2O5via comparison with a single crystal phase after aging. It can be seen from Figure 1 that with respect to K2Ti2O5prepared by citrate acid complex-combustion method, the aging process could gradually eliminate water in the reactant and make the crystal phase regular and single. It can be seen from Figure 2 that water in K2Ti2O5·xH2O could not be completely removed even under a sintering temperature of 700 ℃, which could al-ter the structure of K2Ti2O5to affect its catalytic activity. Therefore, the aging process is critical for the catalyst preparation method.

    Figure 1 X-ray patterns of K2Ti2O5prepared by aging for 24 hours (a) and K2Ti2O5sample without aging (b)

    Figure 2 XRD patterns of water-dissolved K2Ti2O5at 100—700

    3.2 Structural analysis

    Figure 3 presents the SEM and TEM images of K2Ti2O5, from which we can see both the inner and outer structure of K2Ti2O5are regular and dense, with the grain size mostly concentrated in the range of 20—40 μm.

    Figure 4 shows the idealized crystal of K2Ti2O5with a layered structure. The potassium ions are located in the middle of the layered structure to form a sandwich-like structure, which can promote the fluidity of potassium ions and the activity of K2Ti2O5in certain reactions.

    Figure 3 SEM and TEM images of K2Ti2O5

    Figure 4 Idealized crystal of K2Ti2O5with a layered structure

    3.3 Effect of calcination temperature

    Figure 5 shows the XRD patterns of K2Ti2O5calcined under different temperatures. When the sintering temperature is 550 ℃, the characteristic peaks are only observed at 48°, indicating to the absence of K2Ti2O5. When the sample calcination occurred at 600 ℃, all the peaks matched well with the characteristic peaks belonging to K2Ti2O5and the XRD spectra showed small peaks and uneven baseline, suggesting that the mixture did not react fully. When the temperature reached up to 650 ℃, all characteristic narrow peaks with even baseline were identified. The analytical results have revealed that 650 ℃ is the best sintering temperature, since at a lower temperature all the precursors could not react fully to form the expected structure of K2Ti2O5.

    Figure 5 XRD patterns of samples prepared by sintering K-Ti raw materials mixture at 650600, and 550respectively

    In previous work performed by our team[20-21], K2Ti2O5with high crystallinity was successfully prepared by the solid-phase method and the sol-gel method. It is found out that the calcination temperature of the samples prepared by these two methods should be 810 ℃ and 850 ℃, respectively. However, the adoption of citric acid complex-combustion method can reduce the calcination temperature down to 650 ℃, resulting in shortening of preparation cycle and energy saving.

    3.4 Effect of contact mode

    It has already been found out that the contact type between soot and catalyst is one of the major factors that can determine the soot oxidation rate. Loose contact condition is more close to real condition while intimate contact is helpful to reflect the intrinsic characteristics of the catalyst. The soot oxidation activity of the catalyst prepared by two methods (citric acid complex-combustion method and solid-phase method) and both of two contact modes were chosen for comparison, and the TPR profilesare presented in Figure 6.

    Figure 6 TPR results for screening test of catalyst samples

    It can be easily found out that generally soot combustion occurs at lower temperature under tight contact mode than the case under loose contact mode since its peak temperature moved to lower temperature for soot oxidation, which might be attributed to the better dispersion on the catalyst surface of particulate material (PM) and higher utilization efficiency of specific surface area in the former mode. Additionally, in the tight contact mode K2Ti2O5samples prepared by both of the two methods have nearly the same catalytic activity. But in the loose contact mode, K2Ti2O5samples prepared by the citric acid complex-combustion method demonstrate a better catalytic activity. This case might be related with the fact that catalyst samples prepared by the citric acid complexcombustion method have higher specific area which can enhance the interaction between soot and catalyst. K2Ti2O5samples prepared by the new method are preferable because of their high activity under loose contact with the soot, which is closer to the real condition in the PM filter.

    3.5 Effect of active metal component

    Figure 7 shows the TPR curves of five kinds of catalysts containing different active metal components, the catalytic activity of catalyst samples decreases in the following order: K2Ti2O5>Na2Ti3O7=Pt/TiO2>Cr2Ti2O7>TiO2. TiO2has low activity, which suggests that the activity of these catalysts is related with active metal components rather than TiO2. K2Ti2O5has a best catalytic activity, which may be related with the sandwich-like structure that can promote the fluidity of potassium ions.

    Figure 7 TPR results for screening the catalytic activity of K2Ti2O5, Na2Ti3O7, TiO2, 1%Pt/TiO2, and Cr2Ti2O7

    3.6 Effect of SO2and water vapor on exhaust composition

    Figure 8 gives the TPR profiles of soot oxidation on K2Ti2O5in the presence of water vapor and sulfur dioxide. It can be seen from Figure 8 that the catalytic effect of K2Ti2O5does not change when the content of SO2is below 10 mg/L. When the SO2content reaches up to 30—60 mg/L, the catalytic activity of K2Ti2O5significantly declines. Since the SO2content in diesel exhaust is 8—16 mg/L under normal conditions, its concentration would not impede the soot oxidation, suggesting that K2Ti2O5is suitable for functioning as a particulate trap. When 10% (by volume) of water vapor was introduced into the exhaust, the poisoning effect of SO2weakens, which may be caused by the presence of water vapor that can enhance the contact between soot and catalyst to further increase the surface utilization rate and thereby reduce the poisoning effect of SO2. For traditional noble metal loaded catalyst, such as Pt/Al2O3, the presence of SO2will lead to a depletion of support materials. K2Ti2O5can be a good candidate for noble metal loaded catalysts thanks to its stability in a SO2-containing atmosphere.

    Figure 8 Effect of SO2and water vapour on activity of K2Ti2O5

    3.7 Effect of repeated use on activity of K2Ti2O5

    The used K2Ti2O5catalyst and another 0.01 g of soot were carefully ground in an agate mortar and placed in a quartz tube reactor again. After the same reaction cycle with the same catalyst bling repeatedly used for three times, its catalytic effect did not change much judging from its fixed perovskite structure, as shown in Figure 9. This result indicates that K2Ti2O5can satisfy the demand for this catalyst in terms of its catalytic stability.

    Figure 9 Effect of repeated use on the catalytic activity of K2Ti2O5

    4 Conclusions

    A new way of citric acid complex-combustion method for preparation of potassium titanate catalyst was developed, by which the catalyst could be obtained with a high crystallinity and large specific surface area. The K2Ti2O5catalyst samples tested under the intimate contact mode has a higher activity than the reported commercialized Ptbased catalysts, the transition-metal-based catalysts and perovskite-structured catalysts, and the K2Ti2O5catalyst assumes a highest activity among active metal loaded TiO2catalysts. Compared with the reported method (solid-phase), the optimum calcination temperature adopted by the citric acid complex-combustion method is lower (650 ℃) and the samples prepared have a better activity in the loose contact mode; K2Ti2O5catalyst also has good stability for soot oxidation in the presence of water vapor and SO2, and this catalyst can be used repeatedly to retain its activity. In summary, the citrate acid complex-combustion method possesses a practical value featuring simple operation, short preparation cycle and readiness for commercialization.

    Acknowledgement:The authors are grateful for the financial supports provided for this research by the Education Department of Liaoning Province of China (No.2009T061) and the Ministry of Education of China (No.[2010]1561).

    [1] Reichert D, Bockhorn H, Kureti S. Study of the reaction of NOxand soot on Fe2O3catalyst in excess of O2[J]. Applied Catalysis B: Environmental, 2008, 80(3/4): 248-259

    此汽車各輪制動力和已達標(biāo),因其是前輪左輪制動力偏小,跑偏趨勢是向右,后輪是右輪制動力偏小,跑偏趨勢是向左,這樣,前后輪跑偏趨勢互相抵消了。本人認(rèn)為,如上述超標(biāo)車,因其制動力小的輪的制動力數(shù)據(jù)已超過軸重的30%,而制動力差為非同測車輪,應(yīng)按合格車對待。

    [2] Caroca J, Villata G, Fino D, et al. Comparison of different diesel particulate filters[J]. Topics in Catalysis, 2009, 52(13-20): 2076-2082

    [3] Raux S, Frober A, Jeudy E. Low temperature activity of euro 4 diesel oxidation catalysts: Comprehensive material analyses and experimental evaluation of a representative panel[J]. Topics in Catalysis, 2009, 52(13-20): 1903-1908

    [4] Keita T, Takahiro H, Tsuyoshi T, et al. Mechanical activation of self-propagating high-temperature-synthesized LaFeO3to be used as catalyst for diesel soot oxidation[J]. Catalysis Letters, 2009, 130(3/4): 362-366

    [5] Krishna K, Makkee M. Pt-Ce-soot generated from fuelborne catalysts: soot oxidation mechanism[J]. Topics in Catalysis, 2007, 42-43(1-4): 29-236

    [6] Oi-Uchishawa J, Wang S D, Nanba T, et al. Improvement of Pt catalyst for soot oxidation using mixed oxide as a support[J]. Appl Catalysis B, 2003, 44(3): 207-215

    [7] Oi-Uchisawa J, Akira Obuchi, Ryuji Enomoto, et al. Oxidation of carbon black over various Pt/MOx/SiC catalysts[J].Applied Catalysis B: Environmental, 2001, 32(4): 257-268

    [8] Peng Xiaosheng, Lin He, Shangguan Wenfeng, et al. A highly efficient and porous catalyst for simultaneous removal of NOxand diesel soot[J]. Catalysis Communications, 2007, 8(2):157-161

    [9] Zhu Ling, Wang Xuezhong, Liang Cunzhen. Catalytic combustion of diesel soot over K2NiF4-type oxides La2-xKxCuO4[J]. Journal of Rare Earths, 2008, 26(2): 254-257

    [11] Atribak I, Bueno-Lopez A, Garcta-Garcfa A. Thermally stable ceria-zirconia catalysts for soot oxidation by O2[J]. Catalysis Communications, 2008, 9(2): 250-255

    [12] Krishna K, Bueno-Lo′pez A, Makkee M, et al. Potential rare earth modified CeO2catalysts for soot oxidation I. Characterisation and catalytic activity with O2[J]. Applied Catalysis B: Environmental, 2007, 75(3/4): 189-200

    [13] May I, Corinne P, Alain B, et al. Oxidation of carbon by CeO2: Effect of the contact between carbon and catalyst particles[J]. Fuel, 2008, 87(6): 740-750

    [14] Neeft J P A, Makkee M, Moulijn J A. Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study[J] . Applied Catalysis B: Environmental, 1996, 8(1): 57-78

    [15] Zhang Z L, Mou Z G, Yu P F, et al. Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts[J]. Catalysis Communications, 2007, 8(11): 1621-1624

    [16] An H, Kilroy C, McGinn P J. Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion[J]. Catalysis Today, 2004, 98(3): 423-429

    [17] Zhang Y H, Zou X T. The catalytic activities and thermal stabilities of Li/Na/K carbonates for diesel soot oxidation[J]. Catalysis Communications, 2007, 8(5): 760-764

    [18] Lee Dae-Won, Song Seung-Jin, Lee Kwan-Young. Reduction of lean NO2with diesel PM over metal-exchanged ZSM-5, perovskite and γ-alumina catalysts[J]. Korean J Chem Eng, 2010, 27(2): 452-458

    [19] Milt V G, Banu′s E D, Ulla M A, et al. PM combustion and NOx adsorption on Co, Ba, K/ZrO2[J]. Catalysis Today, 2008, 133-135: 435-440

    [20] Yin G S, Meng X H, Liu L L, et al. Application of K2Ti2O5in removing soot from diesel engine exhaust[J]. Petrochemical Technology & Application, 2011, 29(6): 498-501 (in Chinese)

    [21] Meng X H, Gao Y, Liu L L, et al. Catalytic oxidation of soot in exhaust of diesel engine using K2Ti2O5[J]. Journal of Petrochemical Universities, 2011, 24(6): 63-67 (in Chinese)

    Recieved date: 2012-12-27; Accepted date: 2013-02-05.

    Professor Duan Linhai, Telephone: +86-24-56860757; E-mail: lh.duan@126.com.

    猜你喜歡
    前后輪軸重后輪
    雷克薩斯全新RZ
    汽車觀察(2023年3期)2023-05-30 19:36:44
    2019款起亞K5 Pro車左后輪電子駐車制動功能失效
    20t軸重米軌轉(zhuǎn)向架裝用搖枕的研制
    汽車制動控制系統(tǒng)ABS/EBD設(shè)計與仿真
    創(chuàng)意涂鴉
    門牌號碼
    前輪和后輪
    32.5t軸重貨車作用下重載鐵路軌道的合理剛度
    27 t軸重貨車動載荷淺析*
    既有線開行27t軸重貨車減速頂調(diào)速系統(tǒng)的分析
    国产精品一区二区性色av| 精品久久国产蜜桃| 卡戴珊不雅视频在线播放| 亚洲欧美清纯卡通| 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 成人高潮视频无遮挡免费网站| 国产精品一区二区性色av| 午夜a级毛片| 国产一区二区三区在线臀色熟女| 一本一本综合久久| 直男gayav资源| 亚洲丝袜综合中文字幕| 看十八女毛片水多多多| 99国产极品粉嫩在线观看| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看 | 亚洲天堂国产精品一区在线| 精品少妇黑人巨大在线播放 | 亚洲av五月六月丁香网| 精品人妻视频免费看| 日韩三级伦理在线观看| 国产一区二区三区av在线 | 亚洲va在线va天堂va国产| 国产日本99.免费观看| 男女那种视频在线观看| 三级男女做爰猛烈吃奶摸视频| 成人毛片a级毛片在线播放| 97人妻精品一区二区三区麻豆| 99国产极品粉嫩在线观看| 国产 一区精品| www.色视频.com| 国产一区二区在线av高清观看| 久久久久久久久久黄片| 亚洲高清免费不卡视频| 亚洲精品影视一区二区三区av| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 亚洲av二区三区四区| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 99久久精品国产国产毛片| 91精品国产九色| 成人精品一区二区免费| 日韩av不卡免费在线播放| 久久中文看片网| 欧美zozozo另类| a级毛色黄片| 欧美最黄视频在线播放免费| 欧美一区二区精品小视频在线| 国产精品一及| 春色校园在线视频观看| 国产又黄又爽又无遮挡在线| 国产视频一区二区在线看| 国产真实伦视频高清在线观看| 国产精品三级大全| 一进一出抽搐动态| 波多野结衣巨乳人妻| 亚洲欧美精品自产自拍| 免费电影在线观看免费观看| 天天躁日日操中文字幕| 蜜桃久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 深夜a级毛片| or卡值多少钱| a级毛色黄片| 赤兔流量卡办理| 国产精品一区二区性色av| 我的女老师完整版在线观看| 高清毛片免费观看视频网站| 久久人妻av系列| 黄色日韩在线| 亚洲国产精品sss在线观看| 久久久精品94久久精品| 国产美女午夜福利| 午夜免费男女啪啪视频观看 | 麻豆av噜噜一区二区三区| 天堂av国产一区二区熟女人妻| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄 | 少妇丰满av| 免费看美女性在线毛片视频| 麻豆乱淫一区二区| 中文字幕av在线有码专区| av在线蜜桃| 精品乱码久久久久久99久播| 亚洲精品国产av成人精品 | 亚洲内射少妇av| 久久久久九九精品影院| 亚洲在线观看片| 国产老妇女一区| 菩萨蛮人人尽说江南好唐韦庄 | 成人国产麻豆网| 校园人妻丝袜中文字幕| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线观看播放| 国产av在哪里看| 淫秽高清视频在线观看| 色视频www国产| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 97在线视频观看| 亚洲成人久久爱视频| 精品国内亚洲2022精品成人| 日韩av不卡免费在线播放| 精品久久久久久久久av| 熟女人妻精品中文字幕| 看片在线看免费视频| 两个人的视频大全免费| 成人特级av手机在线观看| 午夜爱爱视频在线播放| 久久亚洲国产成人精品v| 嫩草影视91久久| 男女边吃奶边做爰视频| 夜夜夜夜夜久久久久| 久久亚洲国产成人精品v| 99国产极品粉嫩在线观看| or卡值多少钱| 一卡2卡三卡四卡精品乱码亚洲| 熟妇人妻久久中文字幕3abv| 国产精品av视频在线免费观看| 国产高清有码在线观看视频| 级片在线观看| 免费在线观看影片大全网站| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 国产伦精品一区二区三区四那| 悠悠久久av| 天堂√8在线中文| 简卡轻食公司| 免费一级毛片在线播放高清视频| 2021天堂中文幕一二区在线观| 亚洲国产欧美人成| 成人二区视频| 少妇熟女aⅴ在线视频| 婷婷精品国产亚洲av在线| 亚洲无线在线观看| 中文字幕免费在线视频6| 看免费成人av毛片| www.色视频.com| 日韩高清综合在线| 国产精品电影一区二区三区| 国产精品福利在线免费观看| 欧美一区二区亚洲| 久久久国产成人精品二区| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| 久久精品国产自在天天线| 一区二区三区四区激情视频 | 精品福利观看| 成人国产麻豆网| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 青春草视频在线免费观看| 两个人的视频大全免费| 成人特级av手机在线观看| 日本撒尿小便嘘嘘汇集6| 伦精品一区二区三区| 无遮挡黄片免费观看| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 成年女人看的毛片在线观看| 哪里可以看免费的av片| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添av毛片| 色综合亚洲欧美另类图片| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕| 日本五十路高清| 午夜亚洲福利在线播放| 老师上课跳d突然被开到最大视频| 插逼视频在线观看| 九九热线精品视视频播放| 夜夜夜夜夜久久久久| 少妇熟女aⅴ在线视频| 亚洲美女视频黄频| 成人av在线播放网站| 亚洲人成网站在线观看播放| 色噜噜av男人的天堂激情| 毛片一级片免费看久久久久| 联通29元200g的流量卡| 无遮挡黄片免费观看| 少妇猛男粗大的猛烈进出视频 | 一级黄色大片毛片| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 精品不卡国产一区二区三区| a级毛片免费高清观看在线播放| 日韩高清综合在线| 麻豆乱淫一区二区| 禁无遮挡网站| 一进一出抽搐动态| 久久精品夜色国产| 久久精品国产亚洲网站| 午夜福利成人在线免费观看| 免费人成在线观看视频色| .国产精品久久| 亚洲自拍偷在线| 成年女人永久免费观看视频| 一级毛片我不卡| 欧美3d第一页| 联通29元200g的流量卡| 欧美日韩综合久久久久久| 亚洲欧美日韩无卡精品| 欧美一区二区国产精品久久精品| 俺也久久电影网| 午夜精品国产一区二区电影 | 六月丁香七月| 国产久久久一区二区三区| 在线a可以看的网站| 久久中文看片网| 日韩欧美精品免费久久| 国产v大片淫在线免费观看| 精品乱码久久久久久99久播| 精品乱码久久久久久99久播| 久久中文看片网| 久久6这里有精品| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 国产在线男女| 久久欧美精品欧美久久欧美| 国产精品av视频在线免费观看| 色播亚洲综合网| 国产69精品久久久久777片| 99久久精品一区二区三区| 免费av不卡在线播放| 亚洲乱码一区二区免费版| 色哟哟·www| 禁无遮挡网站| 丝袜喷水一区| 免费观看在线日韩| 久久中文看片网| 日韩精品青青久久久久久| 成人三级黄色视频| 中国国产av一级| 18禁在线播放成人免费| 午夜精品国产一区二区电影 | 亚洲中文字幕日韩| 婷婷精品国产亚洲av在线| 一区福利在线观看| 听说在线观看完整版免费高清| 91在线精品国自产拍蜜月| 在线免费十八禁| 最近最新中文字幕大全电影3| 国产免费男女视频| 麻豆久久精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 国产成人freesex在线 | 亚洲最大成人手机在线| 蜜桃亚洲精品一区二区三区| 免费av观看视频| 国产高清不卡午夜福利| 97人妻精品一区二区三区麻豆| 男女边吃奶边做爰视频| 麻豆国产av国片精品| 久久久国产成人免费| 老女人水多毛片| 一个人看的www免费观看视频| 日本一本二区三区精品| 一级黄色大片毛片| 色噜噜av男人的天堂激情| 五月玫瑰六月丁香| 日韩成人av中文字幕在线观看 | 国产精品久久久久久久电影| 国产精品av视频在线免费观看| or卡值多少钱| 在线免费观看不下载黄p国产| 亚洲图色成人| 变态另类成人亚洲欧美熟女| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜爱| a级毛色黄片| 日日摸夜夜添夜夜添小说| 欧美最新免费一区二区三区| 国产高清激情床上av| 亚洲av第一区精品v没综合| 麻豆成人午夜福利视频| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 午夜福利18| 日韩av在线大香蕉| 亚洲成a人片在线一区二区| 欧美潮喷喷水| 亚洲第一区二区三区不卡| 久久精品国产清高在天天线| 一级毛片久久久久久久久女| 欧美成人精品欧美一级黄| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 久久精品综合一区二区三区| 欧美丝袜亚洲另类| 国产精品一区www在线观看| av在线亚洲专区| 国产高清激情床上av| 别揉我奶头~嗯~啊~动态视频| 国产伦在线观看视频一区| 一a级毛片在线观看| 久久久久九九精品影院| 午夜免费男女啪啪视频观看 | 一卡2卡三卡四卡精品乱码亚洲| 不卡一级毛片| 欧美日韩乱码在线| 国产又黄又爽又无遮挡在线| 免费在线观看影片大全网站| 国产不卡一卡二| 一区二区三区四区激情视频 | 午夜激情福利司机影院| 99久久成人亚洲精品观看| 成年版毛片免费区| 国产 一区精品| 国国产精品蜜臀av免费| 男人的好看免费观看在线视频| 欧美国产日韩亚洲一区| 国产伦一二天堂av在线观看| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 蜜桃亚洲精品一区二区三区| 欧美激情国产日韩精品一区| 精品熟女少妇av免费看| 亚洲自偷自拍三级| 欧美色视频一区免费| 免费人成在线观看视频色| 日韩欧美 国产精品| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 国产在线男女| 亚洲自拍偷在线| 少妇猛男粗大的猛烈进出视频 | 欧美在线一区亚洲| 日本撒尿小便嘘嘘汇集6| 久久久久久久久中文| 日韩人妻高清精品专区| 国产精品三级大全| 久久国内精品自在自线图片| 日韩大尺度精品在线看网址| 国产三级在线视频| 亚洲av一区综合| 欧美成人精品欧美一级黄| 三级经典国产精品| 一区福利在线观看| 高清毛片免费观看视频网站| 老女人水多毛片| 国产爱豆传媒在线观看| 精品国产三级普通话版| 久久久久九九精品影院| 在线播放无遮挡| 日产精品乱码卡一卡2卡三| 精品免费久久久久久久清纯| 久久久久久久久久久丰满| 国产精品乱码一区二三区的特点| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 性欧美人与动物交配| 亚洲专区国产一区二区| 日韩强制内射视频| 高清毛片免费看| 精品一区二区三区视频在线观看免费| 少妇的逼好多水| 麻豆久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 日本一本二区三区精品| 小说图片视频综合网站| 乱人视频在线观看| 欧美极品一区二区三区四区| .国产精品久久| 哪里可以看免费的av片| 亚洲欧美清纯卡通| 精品一区二区三区av网在线观看| 色在线成人网| 成人无遮挡网站| 老女人水多毛片| 国产爱豆传媒在线观看| 夜夜夜夜夜久久久久| 少妇高潮的动态图| 久久久久久伊人网av| 亚洲av免费高清在线观看| 午夜视频国产福利| av在线观看视频网站免费| 免费看美女性在线毛片视频| 成年免费大片在线观看| 国产精品99久久久久久久久| 在线观看一区二区三区| 婷婷色综合大香蕉| 两个人视频免费观看高清| 亚洲人成网站在线播| 国产伦一二天堂av在线观看| 精品人妻视频免费看| 亚洲av一区综合| 久久国内精品自在自线图片| 国产综合懂色| 国产成人精品久久久久久| 国产精品久久久久久亚洲av鲁大| 九九热线精品视视频播放| 免费看日本二区| 麻豆久久精品国产亚洲av| 最近视频中文字幕2019在线8| 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 一a级毛片在线观看| 在线观看午夜福利视频| 亚洲第一电影网av| 国产成人精品久久久久久| 色吧在线观看| 在线免费观看不下载黄p国产| 婷婷精品国产亚洲av| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 亚洲久久久久久中文字幕| 免费无遮挡裸体视频| 有码 亚洲区| 免费看日本二区| 伦理电影大哥的女人| 美女黄网站色视频| 国产美女午夜福利| 搡老熟女国产l中国老女人| 亚洲精品日韩av片在线观看| 最近手机中文字幕大全| 午夜日韩欧美国产| 村上凉子中文字幕在线| 一级毛片我不卡| 午夜免费男女啪啪视频观看 | 一个人免费在线观看电影| 如何舔出高潮| 国产亚洲精品久久久久久毛片| 97在线视频观看| 99热这里只有精品一区| 精品不卡国产一区二区三区| 欧美一区二区国产精品久久精品| 久久久久久久久久久丰满| 99国产极品粉嫩在线观看| 69av精品久久久久久| 直男gayav资源| 日本黄大片高清| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 99久久九九国产精品国产免费| 亚洲18禁久久av| 内地一区二区视频在线| 12—13女人毛片做爰片一| 精品久久国产蜜桃| 秋霞在线观看毛片| 搡老熟女国产l中国老女人| www日本黄色视频网| 男插女下体视频免费在线播放| 亚洲无线观看免费| 99久久精品热视频| 久久久久性生活片| 国产老妇女一区| 国产高清视频在线观看网站| 国产日本99.免费观看| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲丝袜综合中文字幕| 国产色爽女视频免费观看| 欧美激情国产日韩精品一区| 亚洲av成人av| 亚洲一区高清亚洲精品| 黄色一级大片看看| 天堂动漫精品| 国产v大片淫在线免费观看| 麻豆久久精品国产亚洲av| 亚洲国产精品成人综合色| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 在线看三级毛片| 亚洲国产精品合色在线| 十八禁网站免费在线| 最近的中文字幕免费完整| 色综合色国产| 色哟哟·www| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 在线观看66精品国产| 国产精品精品国产色婷婷| 国产aⅴ精品一区二区三区波| 亚洲真实伦在线观看| 一本久久中文字幕| 少妇熟女aⅴ在线视频| 久久精品国产清高在天天线| 久久久久性生活片| 国产视频一区二区在线看| 露出奶头的视频| 国产高清三级在线| 一进一出好大好爽视频| 校园春色视频在线观看| 插逼视频在线观看| 观看美女的网站| 日韩在线高清观看一区二区三区| 国产欧美日韩精品亚洲av| 美女高潮的动态| 精品一区二区三区人妻视频| 一夜夜www| 亚洲三级黄色毛片| 久久久久久伊人网av| 成人二区视频| 少妇人妻一区二区三区视频| 1024手机看黄色片| av福利片在线观看| 少妇猛男粗大的猛烈进出视频 | 六月丁香七月| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 欧美极品一区二区三区四区| 无遮挡黄片免费观看| 国产精品久久久久久av不卡| 日日摸夜夜添夜夜添小说| 高清日韩中文字幕在线| 美女 人体艺术 gogo| 成人高潮视频无遮挡免费网站| 亚洲国产精品sss在线观看| 午夜福利在线观看吧| 亚洲精华国产精华液的使用体验 | 亚洲专区国产一区二区| 国产男人的电影天堂91| 欧美中文日本在线观看视频| 女同久久另类99精品国产91| 最近视频中文字幕2019在线8| 久久久精品大字幕| 色噜噜av男人的天堂激情| 久久韩国三级中文字幕| av在线老鸭窝| 午夜福利18| 一边摸一边抽搐一进一小说| 久久亚洲国产成人精品v| 欧美bdsm另类| 麻豆av噜噜一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲精品综合一区在线观看| 香蕉av资源在线| 性欧美人与动物交配| 两个人的视频大全免费| 在线观看美女被高潮喷水网站| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| 亚洲国产精品成人综合色| 久久久久久久久中文| 波多野结衣高清作品| 老女人水多毛片| 亚洲成人中文字幕在线播放| 桃色一区二区三区在线观看| 亚洲av中文av极速乱| 三级毛片av免费| 又粗又爽又猛毛片免费看| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 国产高清不卡午夜福利| 亚洲性夜色夜夜综合| 国产成人a区在线观看| 日韩欧美精品v在线| 国产精品嫩草影院av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 最新在线观看一区二区三区| 99久久久亚洲精品蜜臀av| 一区二区三区免费毛片| 亚洲,欧美,日韩| 丰满乱子伦码专区| 亚洲av成人精品一区久久| 亚洲国产精品sss在线观看| 最近2019中文字幕mv第一页| av福利片在线观看| 美女xxoo啪啪120秒动态图| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 久久人人爽人人片av| 日本黄大片高清| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片| 一级毛片我不卡| 亚洲av二区三区四区| 两个人视频免费观看高清| 两性午夜刺激爽爽歪歪视频在线观看| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 床上黄色一级片| 天堂av国产一区二区熟女人妻| 十八禁网站免费在线| 十八禁国产超污无遮挡网站| 男女做爰动态图高潮gif福利片| 在线播放国产精品三级| 久久久久久伊人网av| 日本在线视频免费播放| 精品国产三级普通话版| 色av中文字幕| 热99在线观看视频| 亚洲人成网站在线播| 一a级毛片在线观看| 老司机福利观看| 2021天堂中文幕一二区在线观| 干丝袜人妻中文字幕| 3wmmmm亚洲av在线观看| 成人二区视频| 一级a爱片免费观看的视频| 99久国产av精品| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 亚洲精品一区av在线观看| 亚洲成a人片在线一区二区| 自拍偷自拍亚洲精品老妇| 可以在线观看的亚洲视频| 最近2019中文字幕mv第一页| 亚洲国产高清在线一区二区三| 麻豆成人午夜福利视频| 国产av在哪里看| 欧美成人免费av一区二区三区| 国产伦精品一区二区三区视频9| 久久久久精品国产欧美久久久|