• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A SIFT Algorithm for Bistatic SAR Imaging in a Spaceborne Constant-offset Configuration

    2013-07-25 06:25:34ChenShichaoXingMengdaoZhangShuangxiBaoZheng
    雷達(dá)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:西安電子科技大學(xué)傅里葉頻譜

    Chen Shi-chao* Xing Meng-dao Zhang Shuang-xi Bao Zheng

    ?

    A SIFT Algorithm for Bistatic SAR Imaging in a Spaceborne Constant-offset Configuration

    Chen Shi-chaoXing Meng-dao Zhang Shuang-xi Bao Zheng

    (Key Laboratory for Radar Signal Processing, Xidian University, Xi’an 710071, China)

    This paper focuses on the problem of the space-variance of the range-cell migration term for bistatic Synthetic Aperture Radar (SAR) and proposes a Scaled Inverse Fourier Transform (SIFT)-based imaging algorithm for the constant-offset configuration of bistatic SAR data processing. Range-cell migration correction is realized when two times phase multiplies and a convolution operation are executed. Because the imaging algorithm is based on a precise spectrum that has been deduced from the Geometry-Based Formula (GBF) algorithm, the proposed algorithm can handle the bistatic SAR data, which were obtained with a large baseline to ratio. The advantages and effectiveness of the proposed imaging method have been verified by simulated and comparable experiments. Moreover, unlike other scaling-imaging algorithms that are dependent on the frequency modulated characteristics of the signal, the SIFT imaging algorithm is also suitable for phase-coded signals, which are used in a wider range of applications.

    Bistatic Synthetic Aperture Radar (SAR); 2D Point Target (PT) spectrum; Scaled Inverse Fourier Transform (SIFT)

    1 Introduction

    Unlike the Synthetic Aperture Radar (SAR) for monostatic case, the transmitter and the receiver of bistatic SAR are mounted on different platforms, and hence results in many great advantages over monostatic SAR. It has a bright future in many application areas such as resource investigation, lithosphere transmutationreconnaissance. Spaceborne constant-offset bistatic SAR has a relatively easy configuration, which can achieve more angular information and improve thedetection probability for Ground Moving Target Indication (GMTI) and can also improve the precision for ground height measurement. Due to its significance, the very configuration has attracted increasing radar workers to work deep into it. And the famous TanDEM- X satellite has been launched already, which has obtained satisfying bistatic SAR imaging results.

    As is well known to us, the main difference between the bistatic SAR and the monostatic SAR lie in their different range histories. The range history of the bistatic SAR is the sum of two Double Square Root (DSR), which results in the difficulty of obtaining the precise bistatic Point Target (PT) spectrum by directly using the Principle Of the Stationary Phase (POSP). Although the time domain method can get ideal focusing qualities for general configurations, it requires heavy computational burden. To reduce the com- putational burden of the time domain method, an effective way has been proposed called Fast Factorized Back-Projection (FFBP) algorithm, and Rodriguez- Cassola has extended the FFBP algorithm into bistatic case successfully with the imaging algorithm named Bistatic Fast Factorized Back-Projection (BFFBP) algorithm. However, the computational burden is still heavy respect to the frequency domain algorithms.

    The bistatic PT spectrum is the presupposition of designing fast imaging algorithms in the frequency domain, hence, many approximate spectrums have been proposed for bistatic imaging, and many effective imaging algorithms have been proposed for different configurations based on these spectrums. Although these spectrums are all with high precision, and some of them have wider application ranges, they are all approximate ones under different situations. And they can not deal with the bistatic SAR data with large baselines. With the increasing of the baseline, the precision of the spectrums will reduce, and some of them are even very sensitive to the length of the baseline.

    Based on the instantaneous Doppler concept, Zhang,. proposed the Geometry-Based Formula (GBF) bistatic PT spectrum for bistatic SAR data processing in parallel configuration, and also gave out a Range Migration Algorithm (RMA) for bistatic stripmap SAR data processing. The analytical expression of the PT spectrum is given in Ref. [24], but an important factor existed in the spectrum is not exact analytically deduced, which has to be gotten through numerical methods. Due to the importance of the constant- offset configuration of bistatic SAR, the exact analytical PT expression has been deduced in Ref. [27], and in which also the corresponding RMA is performed. However, “stolt” interpolation needs to be carried out for the RMA imaging algorithm, the interpolation process requires relatively huge computa- tional burden, and the error caused by the interpolation will also affect the precision of the final image phase, which will give a negative influence to the following process such as the interferometric SAR.

    The scaled inverse Fourier transform is performed in the two-Dimensional (2-D) frequency domain to equalize the range-dependence of the range migration term in the SIFT algorithm, the whole imaging process can be finished with only the Fast Fourier Transforms (FFTs) and phase multiplies, the algorithm is with high efficacy and precision. In the same time, the Scaled Inverse Fourier Transform (SIFT) algorithm does not relay on the frequency modulated characteristic of the chirp signal, it can be extended to a more widely range of signal types, such as phase-coded signals.

    A SIFT imaging algorithm based on the exact analytical spectrum presented in Ref. [27] for constant- offset configuration bistatic SAR data processing is proposed in this article. The proposed imaging algorithm is suitable for dealing with large baseline bistatic SAR data. Unlike the imaging algorithms in the wavenumber domain, fast imaging algorithm is achieved in the frequency domain. Simulated experi- ment and comparable experiment further verify the effectiveness and advantage of the proposed algorithm.

    2 Signal Model of the Constant-offset Bistatic SAR

    Fig. 1 shows the geometry relationship of space- borne constant-offset configuration, the transmitter and the receiver moves along the same direction of theaxis (the positive direction of axis) with an identical velocity,andare the instantaneous angles from the target to the transmitter and receiver at zero azimuth time when the transmitter and the receiver are at the locationsand, respectively.andare the corresponding slant ranges, respectively.his half the length of the baseline, andRis the closest distance from the target to the flight path.() and() are the slant ranges of the transmitter and the receiver when they move overdistance away from the zero time positions,andare the corresponding squint angles when the transmitter and the receiver are at locationsand, respectively. Based on the geometry relationship of Fig. 1, the exact analytical solution of the half bistatic angle is deduced successfully through the solution of a four-order equation with the variable of the tangent of the half bistatic angle. The expression is given as:

    Fig. 1 Illustration of the spaceborne constant-offset bistatic SAR geometry

    (2)

    From Fig. 1, we can tell that the slant range of the bistatic SAR is

    where

    Suppose that the radar transmits chirps, and after demodulation and range compression, the signal can be written as

    Transforming the signal into thedomain, we have

    Performing FFT in azimuth to the signal expressed by Eq. (6), we can get the bistatic PT spectrum of the bistatic SAR, which can be expressed as

    Unfortunately, due to the existence of the DSR term existed in the range history of bistatic SAR, we can not get the exact solution of Eq. (7) by directly using POSP.

    3 SIFT Imaging Algorithm for Bistatic SAR in Constant-offset Configuration

    Utilizing the GBF method presented in Refs. [24,25], we can get the exact analytical PT spectrum expression of the bistatic SAR. The PT spectrum can be written as

    Substituting the half bistatic angle expressed by Eq. (1) and Eq. (2) into Eq. (8), we get the exact analytical expression of the bistatic SAR PT spectrum in constant-offset configuration. And the following imaging algorithm is based on the very expression.

    First, making Taylor series expressions at=up to the second term, and we have:

    (12)

    In the equations above, the expressions forMare given as

    where

    In the following, Eq. (15) is substituted into Eq. (9), and the signal arrives at:

    To eliminate the range migration difference represented by, we adopt the SIFT imaging algorithm to the bistatic SAR signal processing. The matched-filter function is priority constructed as:

    Performing the SIFT transform to the signal, we can get to:

    Hereto, from Eq. (19) we can tell that, the processing consists of the following steps: the signal is multiplied by an exponential phase term with the formationfirstly, and then the convolution operation is carried out between the product obtained in the first step and another exponential term with the formation, in the end the result is multiplied by an exponential phase expressed by. Briefly speaking, the SIFT transform is realized by two times complex multiplications and one time convolution, and this is just in accordance with the monostatic case.

    The signal after the SIFT transform is given as:

    As can be seen, the range-dependence range migration has been eliminated properly,is no longer dependent on the Doppler parameters. After the imaging processing in range, the azimuth matched-filter function is constructed as

    (21)

    After azimuth compression, an Inverse FFT (IFFT) is performed to finish the whole imaging process to obtain the focused complex image. Note that, from Eq. (16), we can tell that, the parameters existed in the azimuth matched-filter function is range dependent. To realize satisfying focusing quality, this step needs to be operated line by line,.. dynamitic focusing. The block diagram of the proposed imaging algorithm is shown in Fig. 2.

    4 Simulation Results

    The simulation parameters for spaceborne bistatic SAR in constant-offset configuration is shown in Tab. 1. Nine targets are put in the imaging scene, the distance between any neighboring two targets is set to be 2000 m away from each other in range, and the distance between any two neighboring targets is set to be 1500 m away from each other in azimuth. The baseline is set to be 600 km from the transmitter to the receiver along the flight track, i.e. the length of the baseline is equal to the length of the closest distance from the flight track to the scene center, and this condition is the extreme situation in practice.

    Fig. 2 Block diagram of the proposed SIFT imaging algorithm for spaceborne constant-offset bistatic SAR

    The proposed SIFT imaging algorithm is carried out to equalize the difference of the range migration term, and the final imaging result is shown in Fig. 3. As can be seen, all the targets are quite well focused. The contour-plots and the impulse response functions both in the range and azimuth directions are shown in Fig. 4. The detailed values of the Impulse Response Width (IRW), the Peak Side-Lobe Ratio (PSLR) and the Integrated Side-Lobe Ratio (ISLR) are shown in Tab. 2. We can tell that both the reference target and the edge target in the imaging scene are well focused. To test the advantage of the proposed imaging algorithm, a comparable experiment is performed in accordance. The comparable imaging algorithm is performed based on Ref. [31], and corresponding imaging results for the reference and edge targets of the same imaging scene are given in Fig. 5. From the contour-plots and the impulse response function in both the range and azimuth direc- tions, we can find out that, the focusing quality for the reference range target is well enough. However, the focusing quality of the edge target is much worse than the proposed one, especially in the azimuth direction. Since the proposed SIFT imaging algorithm is carried out based on an exact analytical spectrum for constant- offset configuration, which can handle the bistatic SAR data with a very large length of the baseline. And the imaging algorithm carried out based on Ref. [31] is on the basis of an approximate spectrum whose spectrum precision is less than the proposed one, especially in the situation of large baseline situation, when the spectrum precision of Ref. [31] degrades dramatically.

    Fig. 3 Imaging results of the whole imaging scene

    Tab. 2 Impulse response function analysis of the proposed algorithm

    TargetRangeAzimuth IRW(cells)PSLR(dB)ISLR(dB)IRW(cells)PSLR(dB)ISLR(dB) The reference target1.5-12.4547-9.23061.1875-13.3516-9.7870 The edge target1.5-11.5698-9.42161.4375-5.5275-4.1295

    5 Conclusion

    The DSR term existed in the range history of bistatic SAR has been the most difficult obstacle to overcome in obtaining the precise bistatic SAR PT spectrum by using POSP for designing bistatic SAR imaging algorithms. The problem has been handled by the solution of a four-order equation with respect to the tangent of the half bistatic angle on the basis of the GBF method. The range migration problem for bistatic SAR imaging is solved by using the SIFT imaging algorithm based on an exact analytical bistatic PT spectrum presented in Ref. [27] in this article. And well-focused imaging results for the spaceborne constant-offset configuration are obtained.

    Moreover, we have to note that, the proposed imaging algorithm is carried out based on an ideal geometry condition, which is hard to realize in practice. In real bistatic SAR systems, motion error is inevitable. The motion errors of bistatic SAR are even more complex than that of the monostatic SAR, and effective motion compensation algorithms deserve further studying cooperating with real bistatic SAR data.

    [1] Duque S, Lopez-dekker P, and Mallorqui J. Single-pass bistatic SAR interferometry using fixed-receiver configurations: theory and experimental validation[J]., 2010, 48(6): 2740-2749.

    [2] I Walterscheid, T Espeter, A Brenner,.. Bistatic SAR experiments with PAMIR and TerraSAR-X—setup, processing, and image results[J]., 2010, 48(8): 3268-3279.

    [3] Rodriguez-Cassola M, Prats P, Schulze D,.. First bistatic spaceborne SAR experiments with TanDEM-X[J]., 2012, 9(1): 33-37.

    [4] Prats P, Rodriguez-Cassola M, Marotti L,.. A versatile processing chain for experimental TanDEM-X product evaluation[C]. EUSAR, Aachen, Germany, June 2010: 4059-4062.

    [5] Barber B. Theory of digital imaging from orbit synthetic aperture radar[J]., 1985, 6(6): 1009-1057.

    [6] Ulander L, Hellsten H, and Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection[J]., 2003, 39(3): 760-776.

    [7] Frolind P and Ulander L. Evaluation of angular interpolation kernels in fast back-projection SAR processing[J].-, 2006, 153(3): 243-249.

    [8] Rodriguez-Cassola M, Prats P, and Krieger G. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J]., 2011, 47(4): 2949-2966.

    [9] D’Aria D, Guarnieri A, and Rocca F. Focusing bistatic synthetic aperture radar using dip move out[J]., 2004, 42(7): 1362-1376.

    [10] Loffeld O, Nies H, and Peters V. Models and useful relations for bistatic SAR processing[J]., 2004, 42(10): 2031-2038.

    [11] Wang R, Loffeld O, Neo Y,.. Extending Loffeld's bistatic formula for the general bistatic SAR configuration[J].&, 2010, 4(1): 74-84.

    [12] Chen Shi-chao, Wu Qi-song, Zhou Peng,.. A new look at Loffeld’s bistatic formula in tandem configuration[J]., 2012, 9(1): 710-714.

    [13] Neo Y, Wong F, and Cumming I. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]., 2007, 4(1): 93-96.

    [14] Neo Y, Wong F, and Cumming I. A comparison of point target spectra derived for bistatic SAR processing[J]., 2008, 46(9): 2481-2492.

    [15] Clemente C and Soraghan J. Approximation of the bistatic slant range using Chebyshev polynomials[J]., 2012, 9(4): 682-686.

    [16] Wang R, Deng Y, Loffeld O,.. Processing the azimuth- variant bistatic SAR data by using monostatic imaging algorithms based on two-dimensional principle of stationary phase[J]., 2011, 49(10): 3504-3520.

    [17] Natroshvili K, Loffeld O, Nies H,.. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT[J]., 2006, 44(10): 2718-2727.

    [18] Nies H, Loffeld O, and Natroshvili K. Analysis and focusing of bistatic airborne SAR data[J]., 2007, 45(11): 3342-3349.

    [19] Robert W, Loffeld O, Nies H,.. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J]., 2009, 47(3): 952-963.

    [20] Robert W, Loffeld O, Neo Y,.. Focusing bistatic SAR data in airborne/stationary configuration[J]., 2010, 48(1): 452-465.

    [21] Zhong H and Liu X. An effective focusing approach for azimuth invariant bistatic SAR processing[J]., 2010, 90(1): 395-404.

    [22] Neo Y, Wong F, and Cumming I. Focusing bistatic SAR data using nonlinear chirp scaling algorithm[J]., 2008, 46(9): 2493-2505.

    [23] Neo Y, Wong F, and Cumming I. Processing of azimuth- invariant bistatic SAR data using the range-Doppler algorithm[J]., 2008, 46(1): 14-21.

    [24] Zhang Zhen-hua, Xing Meng-dao, Ding Jin-shan,.. Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain[J]., 2007, 45(11): 3633-3645.

    [25] Li Yan-ping, Zhang Zhen-hua, Xing Meng-dao,.. Bistatic spotlight SAR processing using the frequency-scaling algorithm[J]., 2008, 5(1): 48-52.

    [26] Krieger G and Moreira A. Spaceborne bi- and multistatic SAR: potentials and challenges[J].-, 2006, 153(3): 184-198.

    [27] Wu Qi-song, Liang Yi, Xing Meng-dao,.. Focusing of tandem bistatic-configuration data with range migration algorithm[J]., 2011, 8(1): 88-92.

    [28] Liu Yue, Deng Yun-kai, and Robert Wang. Focus squint FMCW SAR data using inverse chirp-z transform based on an analytical point target reference spectrum[J]., 2012, 9(5): 866-870.

    [29] Tang Yu and Xing Meng-dao. Two dimension chirp-Z transform for polar format imaging algorithm[C]. APSAR, Xi’an, China, November 2007: 743-746.

    [30] Li Shen, Sun Jin-ping, Liu Zhen-hua,.. Research of chirp Z imaging algorithm for SAR[J]., 2008, 30(1): 48-51.

    [31] Wu Yong-jun and Wu Xian-lian. Tandem bistatic squint SAR imaging algorithm based on the chirp-Z transform[J].&, 2010, 32(2): 383-387.

    [32] Rigling B and Moses R. Motion measurement errors and autofocus in bistatic SAR[J]., 2006, 15(4): 1008-1016.

    一種串行雙基SAR的SIFT成像算法

    陳士超 邢孟道 張雙喜 保 錚

    (西安電子科技大學(xué)雷達(dá)信號(hào)處理國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071)

    針對(duì)串行雙基地合成孔徑雷達(dá)(SAR)中的距離徙動(dòng)的空變問(wèn)題,該文提出了一種變標(biāo)逆傅里葉變換成像算法,通過(guò)兩次相位相乘和一次卷積操作實(shí)現(xiàn)距離徙動(dòng)的精確校正。該算法基于一種由幾何關(guān)系公式方法推導(dǎo)出的嚴(yán)格解析雙基點(diǎn)目標(biāo)頻譜,可以完成長(zhǎng)基線距離比條件下的串行雙基SAR的數(shù)據(jù)處理。仿真實(shí)驗(yàn)和對(duì)比實(shí)驗(yàn)驗(yàn)證了該算法的有效性和優(yōu)越性。此外,不同于其他的變標(biāo)算法,該變標(biāo)逆傅里葉變換(SIFT)成像算法不依賴于信號(hào)的線性調(diào)頻特性,同樣適用于相位編碼信號(hào),有更廣的適用范圍。

    雙基地合成孔徑雷達(dá);2維點(diǎn)目標(biāo)頻譜;變標(biāo)逆傅里葉變換

    TN958

    A

    2095-283X(2013)01-0014-09

    Chen Shi-chao.E-mail: chenshichao725@gmail.com.

    CLC index: TN958

    10.3724/SP.J.1300.2013.13018

    Manuscript received March 11, 2013; revised March 15, 2013. Published online March 19, 2013.

    Supported by the National Natural Science Foundation of China (No. 61222108, 60890072) and the National Research Program of China (“973” Program) (No. 2010CB731903).

    Chen Shi-chao (1985-), was born in Heilongjiang, China. He received the B.S. degree in electrical engineering from Xidian University in 2009. He is currently working toward his Ph.D. degree in Signal Processing at National Lab for Radar Signal Processing of Xidian University. His major research interests are radar imaging and ground moving target indication (GMTI), especially bistatic synthetic aperture radar (BiSAR). E-mail: chenshichao725@gmail.com.

    Xing Meng-dao (1975-), was born in Zhejiang, China. He received the Bachelor degree and the Ph.D. degree in 1997 and 2002, respectively, from Xidian University, both in electrical engineering. He is currently a full professor with the National Key Laboratory for Radar Signal Processing, Xidian University. His research interests include SAR, ISAR and over the horizon radar (OTHR).

    Zhang Shuang-xi (1984-), was born in Fujian, China. He received the B.S. degree in technique of measuring control and instrument engineering from Xidian University in 2008. He is currently working toward Ph.D. degree in Signal Processing at National Key Lab of Radar Signal Processing of Xidian University. His major research interest is radar imaging (SAR).

    Bao Zheng was born in Jiangsu, China. Currently, he is a professor with Xidian University and the chairman of the academic board of the National Key Lab of Radar signal Processing. He has authored or co-authored 6 books and published over 300 papers. Now, his research fields include space-time adaptive processing (STAP), radar imaging (SAR/ ISAR), automatic target recognition (ATR) and over-the-horizon radar (OTHR) signal processing. Professor Bao is a member of the Chinese Academy of Sciences.

    猜你喜歡
    西安電子科技大學(xué)傅里葉頻譜
    一種用于深空探測(cè)的Chirp變換頻譜分析儀設(shè)計(jì)與實(shí)現(xiàn)
    雙線性傅里葉乘子算子的量化加權(quán)估計(jì)
    基于小波降噪的稀疏傅里葉變換時(shí)延估計(jì)
    一種基于稀疏度估計(jì)的自適應(yīng)壓縮頻譜感知算法
    Redefinition of Tragedy in Modern Age: The Case of Death of a Salesman
    基于傅里葉變換的快速TAMVDR算法
    認(rèn)知無(wú)線電頻譜感知技術(shù)綜述
    OnRadicalFeminism
    EmploymentAgeDiscriminationonWomen
    ItIsBetterToGiveThanItIsToReceive
    亚洲天堂国产精品一区在线| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 国产视频首页在线观看| 永久网站在线| 亚洲av成人精品一二三区| 最近2019中文字幕mv第一页| av在线天堂中文字幕| 久久久久久久午夜电影| 免费大片18禁| 99久久精品热视频| 免费播放大片免费观看视频在线观看| 欧美极品一区二区三区四区| 伦精品一区二区三区| 国产精品一区www在线观看| 欧美精品一区二区大全| av播播在线观看一区| 亚洲综合精品二区| 亚洲自拍偷在线| 欧美xxⅹ黑人| av专区在线播放| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久av| 亚洲欧美日韩无卡精品| 不卡视频在线观看欧美| 欧美成人精品欧美一级黄| 亚洲精品久久午夜乱码| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线 | 最近最新中文字幕大全电影3| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 日韩国内少妇激情av| 成人鲁丝片一二三区免费| 亚洲aⅴ乱码一区二区在线播放| 成人高潮视频无遮挡免费网站| 日韩成人伦理影院| 男人爽女人下面视频在线观看| 人人妻人人看人人澡| 午夜福利视频精品| 啦啦啦中文免费视频观看日本| 成人毛片a级毛片在线播放| 午夜免费鲁丝| 精品久久久久久电影网| 波野结衣二区三区在线| 看免费成人av毛片| 真实男女啪啪啪动态图| 欧美国产精品一级二级三级 | 我的女老师完整版在线观看| 各种免费的搞黄视频| 熟女av电影| 波多野结衣巨乳人妻| videos熟女内射| 欧美 日韩 精品 国产| 韩国高清视频一区二区三区| 日韩亚洲欧美综合| 久久99热这里只频精品6学生| 少妇被粗大猛烈的视频| 精品久久久久久久人妻蜜臀av| 下体分泌物呈黄色| 国产成人91sexporn| 亚洲四区av| 亚洲自拍偷在线| 免费看不卡的av| 久久久久国产精品人妻一区二区| 嫩草影院入口| 最近最新中文字幕免费大全7| 在线观看一区二区三区| 两个人的视频大全免费| 欧美极品一区二区三区四区| 国产高潮美女av| 亚洲国产精品国产精品| 丰满乱子伦码专区| 啦啦啦中文免费视频观看日本| 丰满乱子伦码专区| 中文欧美无线码| 国产探花极品一区二区| 国产人妻一区二区三区在| 国语对白做爰xxxⅹ性视频网站| 日本黄大片高清| 水蜜桃什么品种好| 亚洲四区av| 久久午夜福利片| 久久6这里有精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲网站| 日日摸夜夜添夜夜爱| 国产精品不卡视频一区二区| 在线观看人妻少妇| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 在线观看国产h片| 欧美高清成人免费视频www| 亚洲精品一区蜜桃| 99九九线精品视频在线观看视频| 亚洲av男天堂| 日韩,欧美,国产一区二区三区| 国产一区有黄有色的免费视频| 久久精品国产鲁丝片午夜精品| 国产乱来视频区| 一级毛片电影观看| 在线 av 中文字幕| av在线观看视频网站免费| 永久免费av网站大全| 在线观看人妻少妇| 麻豆精品久久久久久蜜桃| 欧美zozozo另类| 国产精品国产三级国产av玫瑰| 欧美成人精品欧美一级黄| 少妇人妻精品综合一区二区| 国产精品女同一区二区软件| 综合色av麻豆| 国产成人精品婷婷| 亚洲av二区三区四区| 精品99又大又爽又粗少妇毛片| 狠狠精品人妻久久久久久综合| 一级爰片在线观看| 啦啦啦啦在线视频资源| 九九爱精品视频在线观看| 日韩免费高清中文字幕av| 禁无遮挡网站| 日本午夜av视频| eeuss影院久久| 少妇人妻 视频| 亚洲av.av天堂| 亚洲av免费在线观看| 国产高清国产精品国产三级 | 欧美一区二区亚洲| 在线看a的网站| 亚洲av欧美aⅴ国产| 亚洲国产精品999| 热re99久久精品国产66热6| 嘟嘟电影网在线观看| 亚洲精品乱码久久久v下载方式| 国产在线一区二区三区精| 久久久久久久久久久丰满| 国产久久久一区二区三区| 老女人水多毛片| 国产在线一区二区三区精| 精品亚洲乱码少妇综合久久| 丝瓜视频免费看黄片| 久久精品久久久久久久性| 国模一区二区三区四区视频| 久久人人爽人人爽人人片va| 久久久久久久久大av| 日本色播在线视频| 日本-黄色视频高清免费观看| 国产精品.久久久| 制服丝袜香蕉在线| 插逼视频在线观看| 最新中文字幕久久久久| 欧美丝袜亚洲另类| 免费在线观看成人毛片| 少妇人妻精品综合一区二区| 成人二区视频| 少妇人妻精品综合一区二区| 久久99热6这里只有精品| 51国产日韩欧美| 亚洲欧美中文字幕日韩二区| 26uuu在线亚洲综合色| 波野结衣二区三区在线| 国产欧美亚洲国产| 日日摸夜夜添夜夜添av毛片| 亚洲av不卡在线观看| 春色校园在线视频观看| 午夜福利视频1000在线观看| 日韩免费高清中文字幕av| 丝袜脚勾引网站| 成年人午夜在线观看视频| 成年版毛片免费区| 日韩 亚洲 欧美在线| 日本猛色少妇xxxxx猛交久久| 午夜福利高清视频| 亚洲欧美日韩东京热| 国产爽快片一区二区三区| 99热全是精品| 简卡轻食公司| 久久影院123| 自拍偷自拍亚洲精品老妇| 女人久久www免费人成看片| 99热这里只有是精品50| 国产精品熟女久久久久浪| 国产男女内射视频| 97超视频在线观看视频| 成人黄色视频免费在线看| 国产探花在线观看一区二区| 久久精品久久久久久久性| 免费黄色在线免费观看| 极品少妇高潮喷水抽搐| 观看免费一级毛片| 免费人成在线观看视频色| 国产精品99久久久久久久久| 久久久久久久久久人人人人人人| 看黄色毛片网站| 成人亚洲欧美一区二区av| 汤姆久久久久久久影院中文字幕| 欧美日韩精品成人综合77777| 亚洲欧美一区二区三区黑人 | 男人狂女人下面高潮的视频| 美女cb高潮喷水在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩成人av中文字幕在线观看| 亚洲欧美日韩另类电影网站 | 精品国产乱码久久久久久小说| 22中文网久久字幕| 日韩欧美一区视频在线观看 | 麻豆精品久久久久久蜜桃| 亚洲美女搞黄在线观看| 亚洲精品国产av蜜桃| 可以在线观看毛片的网站| av福利片在线观看| 天天躁夜夜躁狠狠久久av| 亚洲怡红院男人天堂| 久久久精品94久久精品| 丝袜美腿在线中文| 欧美成人一区二区免费高清观看| 女人十人毛片免费观看3o分钟| 午夜亚洲福利在线播放| 七月丁香在线播放| 黄色欧美视频在线观看| 免费黄网站久久成人精品| 精品久久久久久久人妻蜜臀av| 97精品久久久久久久久久精品| 亚洲精品成人av观看孕妇| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 夜夜看夜夜爽夜夜摸| 搡老乐熟女国产| 久久99精品国语久久久| 精品久久久久久久久亚洲| 精品午夜福利在线看| 亚洲av免费高清在线观看| 久久久久久久久久久丰满| 亚洲经典国产精华液单| eeuss影院久久| 夫妻午夜视频| 大片电影免费在线观看免费| 免费av毛片视频| 国产成人精品婷婷| 欧美日韩综合久久久久久| 国产亚洲av嫩草精品影院| 天天躁日日操中文字幕| 我要看日韩黄色一级片| 欧美成人a在线观看| 乱系列少妇在线播放| 天美传媒精品一区二区| 久久精品久久精品一区二区三区| xxxhd国产人妻xxx| 色视频在线一区二区三区| 国产成人精品无人区| 亚洲欧美日韩另类电影网站| 色视频在线一区二区三区| 91老司机精品| 亚洲欧洲精品一区二区精品久久久 | tube8黄色片| a级片在线免费高清观看视频| 成人亚洲精品一区在线观看| 亚洲,欧美,日韩| 中文字幕av电影在线播放| 久久热在线av| xxx大片免费视频| 久久久久精品国产欧美久久久 | 男女午夜视频在线观看| 中文欧美无线码| 亚洲三区欧美一区| 亚洲精品美女久久久久99蜜臀 | 国产免费一区二区三区四区乱码| 亚洲精品av麻豆狂野| 国产成人免费观看mmmm| 女性生殖器流出的白浆| 在线观看免费日韩欧美大片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品久久成人aⅴ小说| 成年av动漫网址| 精品人妻一区二区三区麻豆| 欧美97在线视频| 人妻一区二区av| 少妇被粗大的猛进出69影院| 亚洲成人国产一区在线观看 | 亚洲精品中文字幕在线视频| 国产日韩欧美视频二区| 久久热在线av| 精品第一国产精品| 我要看黄色一级片免费的| 晚上一个人看的免费电影| 欧美日韩亚洲高清精品| 美女扒开内裤让男人捅视频| 亚洲欧洲精品一区二区精品久久久 | 2021少妇久久久久久久久久久| 欧美人与性动交α欧美软件| 欧美日韩精品网址| 亚洲欧洲精品一区二区精品久久久 | 两性夫妻黄色片| 18禁动态无遮挡网站| 亚洲五月色婷婷综合| 赤兔流量卡办理| 成人手机av| 青青草视频在线视频观看| 久久久精品94久久精品| 欧美在线一区亚洲| 欧美老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| 99热国产这里只有精品6| 伊人久久国产一区二区| 另类亚洲欧美激情| 亚洲精品视频女| 日本爱情动作片www.在线观看| 久久人人爽人人片av| 热99久久久久精品小说推荐| 欧美日韩一级在线毛片| 最近手机中文字幕大全| 日本欧美视频一区| 一级,二级,三级黄色视频| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 精品少妇黑人巨大在线播放| 亚洲精品,欧美精品| 久久免费观看电影| 亚洲成av片中文字幕在线观看| 亚洲一区二区三区欧美精品| 男女国产视频网站| 亚洲精品国产区一区二| 日韩一区二区视频免费看| 亚洲国产精品一区二区三区在线| 一边亲一边摸免费视频| 一级a爱视频在线免费观看| 中文字幕人妻丝袜一区二区 | 2018国产大陆天天弄谢| 久久国产亚洲av麻豆专区| 国产亚洲精品第一综合不卡| 最近中文字幕2019免费版| 色综合欧美亚洲国产小说| 精品一区二区三区av网在线观看 | 看免费av毛片| 美女午夜性视频免费| 美女大奶头黄色视频| 欧美久久黑人一区二区| 99久久人妻综合| 亚洲成色77777| 天天操日日干夜夜撸| 国产av一区二区精品久久| 午夜日本视频在线| av国产精品久久久久影院| 久久久国产欧美日韩av| 久久免费观看电影| 一二三四中文在线观看免费高清| 国产精品久久久人人做人人爽| 亚洲国产av影院在线观看| 丝袜脚勾引网站| 午夜福利一区二区在线看| av福利片在线| 男人爽女人下面视频在线观看| 久久毛片免费看一区二区三区| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 精品少妇一区二区三区视频日本电影 | 国产成人精品福利久久| 视频在线观看一区二区三区| 一本大道久久a久久精品| 国产精品二区激情视频| 亚洲国产欧美在线一区| 日韩 亚洲 欧美在线| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 两个人免费观看高清视频| a级毛片在线看网站| 丁香六月欧美| 18禁观看日本| 日本黄色日本黄色录像| 成人手机av| av在线播放精品| 久久久久久久大尺度免费视频| 国产精品一区二区精品视频观看| 啦啦啦在线免费观看视频4| 久久久久久人妻| 男女下面插进去视频免费观看| 成人国产av品久久久| 少妇的丰满在线观看| 精品少妇久久久久久888优播| 美女国产高潮福利片在线看| 两性夫妻黄色片| 日日撸夜夜添| a级毛片黄视频| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| 超碰成人久久| 国产精品久久久av美女十八| 最近最新中文字幕大全免费视频 | 久久久久精品久久久久真实原创| 免费日韩欧美在线观看| 亚洲久久久国产精品| 啦啦啦在线观看免费高清www| 亚洲伊人色综图| 在线观看免费日韩欧美大片| 亚洲精品日本国产第一区| 黄色一级大片看看| xxx大片免费视频| 天堂俺去俺来也www色官网| 日本黄色日本黄色录像| 精品一区二区三区四区五区乱码 | 夜夜骑夜夜射夜夜干| 午夜激情av网站| 午夜福利一区二区在线看| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 精品国产一区二区三区久久久樱花| 国产1区2区3区精品| 亚洲视频免费观看视频| 又大又黄又爽视频免费| 卡戴珊不雅视频在线播放| 91成人精品电影| 国产免费现黄频在线看| www.熟女人妻精品国产| 国产探花极品一区二区| 看十八女毛片水多多多| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| 久久99一区二区三区| 一边亲一边摸免费视频| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 狂野欧美激情性bbbbbb| 免费观看av网站的网址| 各种免费的搞黄视频| 九九爱精品视频在线观看| 国产成人精品久久二区二区91 | 黑人巨大精品欧美一区二区蜜桃| 欧美日韩一级在线毛片| 大片免费播放器 马上看| 亚洲第一青青草原| 又大又黄又爽视频免费| 亚洲欧美精品综合一区二区三区| 欧美黑人精品巨大| 色婷婷久久久亚洲欧美| 亚洲天堂av无毛| 欧美另类一区| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 国产精品久久久久成人av| 深夜精品福利| 国产一区二区三区av在线| 欧美少妇被猛烈插入视频| 女的被弄到高潮叫床怎么办| 亚洲一码二码三码区别大吗| 日本av手机在线免费观看| 久久久欧美国产精品| 操美女的视频在线观看| 少妇人妻精品综合一区二区| 在线天堂最新版资源| 天美传媒精品一区二区| 男女无遮挡免费网站观看| 免费不卡黄色视频| 婷婷成人精品国产| 久久精品国产亚洲av高清一级| 国产成人a∨麻豆精品| 男女床上黄色一级片免费看| 一级毛片电影观看| 亚洲欧美色中文字幕在线| 在线观看免费午夜福利视频| a级毛片黄视频| 国产有黄有色有爽视频| 青青草视频在线视频观看| 国产淫语在线视频| 精品一区二区免费观看| 欧美亚洲 丝袜 人妻 在线| 我的亚洲天堂| 男女床上黄色一级片免费看| 成人影院久久| 日韩视频在线欧美| 99香蕉大伊视频| 女性被躁到高潮视频| videos熟女内射| 欧美xxⅹ黑人| 国产精品免费大片| 伊人久久大香线蕉亚洲五| 国产成人精品在线电影| 天堂8中文在线网| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 91国产中文字幕| 日本爱情动作片www.在线观看| 最近最新中文字幕免费大全7| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 亚洲七黄色美女视频| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 久久午夜综合久久蜜桃| 美女中出高潮动态图| 久久久久视频综合| 伊人久久大香线蕉亚洲五| av福利片在线| 性色av一级| 亚洲人成电影观看| 最近2019中文字幕mv第一页| 久久99一区二区三区| 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影 | 国产女主播在线喷水免费视频网站| 亚洲免费av在线视频| 国产成人免费观看mmmm| 在线亚洲精品国产二区图片欧美| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 亚洲国产精品一区二区三区在线| 久久97久久精品| 久久久久久久久久久免费av| 咕卡用的链子| av有码第一页| 午夜日韩欧美国产| 国产一区二区激情短视频 | 一级毛片黄色毛片免费观看视频| 国产精品熟女久久久久浪| 久久久国产精品麻豆| av天堂久久9| 18禁国产床啪视频网站| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 美女高潮到喷水免费观看| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 久久青草综合色| 精品人妻熟女毛片av久久网站| 久久久久国产一级毛片高清牌| 久久精品久久久久久久性| 18在线观看网站| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 国产片内射在线| 久久国产精品男人的天堂亚洲| 亚洲一级一片aⅴ在线观看| 极品少妇高潮喷水抽搐| 黑丝袜美女国产一区| 两个人看的免费小视频| 考比视频在线观看| av天堂久久9| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 人妻一区二区av| 亚洲精品av麻豆狂野| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| 亚洲国产最新在线播放| 亚洲第一青青草原| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 亚洲欧美一区二区三区久久| av.在线天堂| 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 久久精品久久精品一区二区三区| 亚洲情色 制服丝袜| 晚上一个人看的免费电影| 黄片无遮挡物在线观看| 亚洲熟女毛片儿| av网站免费在线观看视频| 国产片特级美女逼逼视频| 黄频高清免费视频| 一边摸一边抽搐一进一出视频| 纵有疾风起免费观看全集完整版| 97人妻天天添夜夜摸| 成人免费观看视频高清| 久久精品国产综合久久久| 黄色一级大片看看| 日韩精品有码人妻一区| 丁香六月欧美| 老汉色av国产亚洲站长工具| 免费av中文字幕在线| 中文字幕最新亚洲高清| 无遮挡黄片免费观看| 少妇人妻 视频| 精品亚洲成a人片在线观看| 99久久精品国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 少妇的丰满在线观看| 日韩电影二区| 一级毛片 在线播放| 搡老岳熟女国产| 国产亚洲欧美精品永久| 国产淫语在线视频| 国产精品三级大全| 宅男免费午夜| 日日摸夜夜添夜夜爱| 一本一本久久a久久精品综合妖精| 搡老乐熟女国产| 欧美在线黄色| 巨乳人妻的诱惑在线观看| 性少妇av在线| 国产又爽黄色视频| 亚洲av成人精品一二三区| 国产精品久久久久成人av| 天天躁夜夜躁狠狠久久av| 亚洲一区中文字幕在线| 中文天堂在线官网| 久久精品久久久久久久性| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香六月天网| 免费久久久久久久精品成人欧美视频| 宅男免费午夜| 久久青草综合色| 亚洲成人av在线免费| av电影中文网址| av网站免费在线观看视频| 欧美另类一区| 久久久久久久久免费视频了| 久久精品国产亚洲av涩爱| 亚洲婷婷狠狠爱综合网| 久久人妻熟女aⅴ| 丝袜脚勾引网站|