楊建慧,白 超
燕山大學 信息科學與工程學院,河北 秦皇島 066004
àtrous小波-NSCT遙感圖像融合
楊建慧,白 超
燕山大學 信息科學與工程學院,河北 秦皇島 066004
近年來遙感技術(shù)飛速發(fā)展,可用的遙感圖像數(shù)據(jù)種類日趨繁多。多光譜圖像含豐富的光譜信息,對地物的判讀、識別與解譯非常有利,空間分辨率卻很低下。全色圖像具有很高的空間分辨率,能夠詳盡地描述地物的細節(jié)特征,但光譜分辨特性較差。通過數(shù)學模型將多光譜圖像和全色圖像信息融合在一起可以有效改善后續(xù)處理效果,這對于土地、森林利用調(diào)查,資源探測,城市環(huán)境規(guī)劃都具有重要作用[1]。常用的遙感圖像融合算法有:IHS變換法,基于Brovery變換,主成分分析(PCA)變換法。此類方法得到的融合圖像雖有效地提高了空間分辨率,卻存在很嚴重的光譜失真問題。之后,多分辨率分析法廣泛被應用。小波變換雖然具有良好的時頻分析特性[2],能有效克服光譜失真,卻只能捕獲有限的方向信息,不能有效表達圖像本身所具有的幾何正則性[3-4]。同時由于在小波變換過程中存在下采樣操作,缺乏平移不變性,在源圖像之間存在配準誤差的情況下,將對融合結(jié)果帶來不利影響。àtrous小波算法雖具有平移不變性,高頻細節(jié)部分卻缺乏方向性。近幾年,A.L.Cunha等人在Contourlet變換的基礎上提出了非下采樣Contourlet變換(Nonsubsampled Contourlet Transform,NSCT),可有效解決上述存在的問題。NSCT具有多分辨率、局域化、多方向性、平移不變性等優(yōu)點,能有效表達圖像[5]。
本文將NSCT算法結(jié)合àtrous小波變換及IHS變換,充分利用其各自的優(yōu)勢,采用àtrous小波-NSCT變換實現(xiàn)對圖像的多尺度分辨率分析,基于傳統(tǒng)的細節(jié)注入法[6]提出一種新的融合規(guī)則。實驗所得的融合結(jié)果表明,本文提出的算法在主客觀評價方面均優(yōu)于目前所廣泛使用的àtrous小波變換以及NSCT等融合算法。
2.1 NSCT算法
NSCT是在Contourlet變換的基礎上提出的。其實現(xiàn)可以看作是兩個步驟:非下采樣金字塔濾波器組(Nonsubsampled Pyramid Filter Bank,NSPFB)分解和非下采樣方向濾波器組(Nonsubsampled Directional Filter Bank,NSDFB)分解。其中NSPFB是雙通道的,{ } H0(z),H1(z)為低、高通分解濾波器。每下一級NSPFB由上一級NSPFB進行2×2行列上采樣構(gòu)成。圖像經(jīng)過N級非采樣金字塔分解后,可得到N+1個與原圖像具有相同大小的子帶圖像。NSDFB由兩通道非亞采樣濾波器組迭代構(gòu)成,其理想頻域支撐區(qū)間為扇形。采用不同的采樣矩陣對扇形濾波器U0(z)和U1(z)進行上采樣,并對上一級方向分解后的子帶進行濾波,可以獲得頻域中更為精確的方向分解,輸入信號經(jīng)過l級方向分解濾波后就被分解為2l個子帶。
NSCT先將Contourlet變換中的濾波器組進行插值后再進行濾波來實現(xiàn)其平移不變性,去除了各個濾波器組分解后進行分析濾波器和綜合濾波器前的上采樣環(huán)節(jié)。對圖像進行NSCT的實現(xiàn)過程可簡要描述為:首先利用NSPFB對圖像進行多尺度分析來捕獲圖像中的奇異點,原始圖像經(jīng)一級NSPFB分解后得到一個低頻子帶圖像和高頻子帶圖像,之后對低頻子帶繼續(xù)進行NSPFB迭代分解,最終獲得一個低頻子帶圖像和一系列高頻子帶圖像;其次對高頻子帶圖像采用NSDFB進行方向濾波,將分布在同方向上的奇異點合成為輪廓段,有效捕獲圖像的方向信息。
2.2 àtrous小波變換
àtrous小波變換通過有限濾波器的內(nèi)插近似,達到無抽取離散小波變換,具有平移不變性。其思想是通過由尺度函數(shù)生成的濾波器對圖像進行分解,得到與原圖像大小相同的一低頻近似面和各高頻小波面。在二維空間進行àtrous小波變換類似用卷積核對影像進行濾波,通常選B3樣條函數(shù)作為尺度函數(shù)。對于圖像可逐層得到以下圖像序列:
其中Li為低通濾波操作,fi為尺度i下的近似圖像,小波面為相鄰尺度上近似圖像之差,ωi(x,y)=fi-1(x,y)-fi(x,y)。
圖像的重構(gòu)為:小波變換在重構(gòu)時不涉及卷積運算,簡便快捷。
2.3 àtrous-NSCT小波變換
àtrous小波雖能達到很好的多分辨率分解效果,但欠缺多方向性,不能很好地反映圖像邊緣輪廓信息。NSCT中的NSDFB能有效挖掘圖像各方向細節(jié)信息,且具有平移不變性,彌補其不足。另外,由于NSCT塔形分解結(jié)構(gòu)中,不同分辨率的細節(jié)信息彼此相關,算法具有不穩(wěn)定性[7],àtrous小波變換能有效克服這一點。故將àtrous小波變換替換NSCT中的NSPFB分解獲得多尺度分析效果,然后將得到的各高頻小波面進行NSDFB分解。基于àtrous小波-NSCT變換的分解流程如圖1所示。
圖1 àtrous小波-NSCT變換分解流程圖
3.1 融合模型
將多尺度分辨率分析應用于遙感圖像融合,如何根據(jù)高低頻系數(shù)確定融合圖像的特征,采取何種判決準則,直接決定最終融合效果。此處的融合策略基于傳統(tǒng)的細節(jié)注入法,建立一決策因子,控制所要添加的全色圖像細節(jié)分量,將適當?shù)募毠?jié)特征注入到原多光譜圖像。它包括特征提取及決策兩個過程。
(1)基于特征量積的特征提取
將對于變換所得的高頻分量系數(shù),可以依據(jù)基于局域窗口的統(tǒng)計特性,如梯度、方差、局部能量等來進行特征選取??紤]到一個特征量不足以表達圖像的細節(jié)特征,因此采用特征量積[8],使用多個特征量。原圖像 X進行àtrous小波-NSCT變換后得到的高頻細節(jié)分量為,其中 j是分解的層數(shù),k是各層分解的方向數(shù)。設系數(shù)在中心點 (x,y),窗口為 n×n的標準差為DkX(n×n)(2j;x,y),在點(x,y)使用Sobel算子[7]得到的局部平均梯度為
定義特征量積:
它表示圖像X在區(qū)域中心為(x,y),窗口為n×n的特征量積。
(2)決策選擇融合
定義決策因子:
圖2 多光譜圖像和全色圖像的融合流程圖
閾值α控制著全色圖像細節(jié)特征的添加量。調(diào)整其閾值的大小,能夠滿足不同應用下的需要。
3.2 融合算法及執(zhí)行流程
(1)對多光譜圖像進行IHS變換,將其分解為強度I、色調(diào)H、飽和度S,3個近似正交的分量。其中I分量代表了多光譜圖像的亮度信息。
(2)將全色圖像與多光譜I分量圖像進行直方圖匹配。
(3)對匹配后的全色圖像和多光譜I分量圖像進行àtrous小波-NSCT變換分解,獲得各自的低頻近似系數(shù)和高頻系數(shù)。
(4)按照公式(1)求出兩圖像各高頻層各方向的特征量積,實現(xiàn)特征提取。
(5)按照公式(2)計算各高頻層各個方向所的決策因子,選取閾值α,按公式(3)求出全色圖像有效高頻細節(jié)面。
(6)利用小波附加法思想,將全色圖像有效高頻細節(jié)面,與原多光譜圖像的強度分量I相加得最后融合結(jié)果。
遙感多光譜圖像和全色圖像的融合框圖如圖2所示。
本文選用配準好的某地區(qū)的SPOT全色圖像和TM多光譜圖像進行仿真實驗,其分辨率為2.5 m,大小為256像素×256像素。為驗證本文所提出算法的有效性,以Matlab8.0為實驗平臺,將其與àtrous小波附加法、基于NSCT變換法[9]、基于非下采樣方向濾波器組融合法[10]的結(jié)果進行比較。其中所涉及到的多尺度分解均為3層,各級方向數(shù)均為2,4,8,尺度濾波器采用db8,方向分解濾波器為9-7 pkva。其源圖像和各種融合結(jié)果如圖3所示。
為了客觀地對其融合圖像質(zhì)量進行評價,本文選用方差(SD)、平均梯度(AG)、信息熵(IE)、相關系數(shù)(CC)、光譜扭曲度(DD)作為評價指標,對實驗結(jié)果進行分析比對。方差、平均梯度、信息熵越大,圖像的空間細節(jié)質(zhì)量越優(yōu)。相關系數(shù)越大,扭曲度越小,光譜保持性能越好。
實驗中采用的各種方法得到的融合圖像性能指標評價如表1所示。
圖3 實驗源圖像和各種融合結(jié)果
表1 融合圖像性能指標評價
同時為了客觀地對其算法的復雜度進行評價,本文選用程序執(zhí)行時間(T)作為評價指標,與基于NSCT變換法[9]、基于非下采樣方向濾波器組融合法[10]進行分析比對,其結(jié)果如表2所示。耗時時間越小,計算復雜度越小。
表2 融合算法執(zhí)行時間
從實驗融合結(jié)果圖3及表1、2得出:4種方法所得的融合圖像均很好地改善了多光譜圖像的空間分辨率。àtrous小波附加法將全色圖像的空間細節(jié)全部注入多光譜圖像,方差、平均梯度最大,空間質(zhì)量最好,但它缺乏方向信息,不能從不同方向選擇全色圖像有效細節(jié)信息,光譜扭曲度最大,尤其應用于地物識別將存在嚴重問題;文獻[9]和文獻[10]均采用多尺度多方向分辨率分解,但是由于低頻部分均采用加權(quán)法,造成了一定的光譜失真,空間分辨率也沒有很大提高。本文算法所得融合結(jié)果的光譜扭曲度最小,方差、平均梯度也有較好的提高,相關系數(shù)最大,很大程度上保留了光譜信息,且空間細節(jié)也很豐富,圖像較其他算法清晰,無論是從視覺效果還是從客觀評價指標上較其他方法均得到提高。由于本文算法中也使用了非下采樣方向濾波器組,數(shù)據(jù)冗余量大,且需要特征量積的計算,耗時較長,但相比文獻[9-10]時間約增加了7%,并沒有太多加大其運算的復雜性,且獲得的融合圖像質(zhì)量最優(yōu)。
本文充分利用àtrous小波變換和NSCT變換各自的優(yōu)點,補其不足,將二者相結(jié)合得到基于對àtrous小波-NSCT變換,以達到對圖像進行多尺度,多方向分解。融合規(guī)則首先依據(jù)特征量積和決策因子抽取全色圖像各層各方向細節(jié)信息,然后將其進行逆變換得到的有效高頻細節(jié)面注入多光譜圖像I分量,經(jīng)IHS反變換得融合圖像。實驗結(jié)果表明,在運算復雜度允許的范圍內(nèi),最終所得的融合圖像在盡可能保持光譜信息的同時,有效地增強了空間細節(jié)信息,均優(yōu)于àtrous小波附加法、IHS-NSCT變換法,基于非下采樣方向濾波器組融合法,該方法有效、可行。
[1]黃海東,王斌,張立明.一種基于非下采樣Contourlet變換的遙感圖像融合方法[J].復旦學報,2008,47(1):124-128.
[2]Zhang Z,Blum R S.A categorization of multiscale-decompositionbased image fusion schemes with a performance study for a digitalcamera application[J].Proceedings ofthe IEEE,1999,87(8):1315-1326.
[3]Yang L P,Peng Y,Liu H M.Two-dimensional transient temperature field of finish rolling section in hot tandem rolling[J]. Journal of Iron and Steel Research(International),2004,11 (4):29-33.
[4]焦李成,譚山.圖像的多尺度幾何分析:回顧和展望[J].電子學報,2003,31(12A):1975-1981.
[5]da Cunha A L,Zhou J P,Do M N.The nonsubsampled contourlettransform:theory,design,and applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101.
[6]Núňez J,Otazu X,F(xiàn)ors O,et al.Multiresolution-base image fusion with additive wavelet decomposition[J].IEEE TransactionsonGeoscienceandRemoteSensing,1999,37(3):1204-1211.
[7]Gonzalez R C,Woods R E.Digital image processing[M].2nd ed. New York:Prentice-Hall,2003:105-107.
[8]劉哲,郝重陽,馮偉,等.一種基于小波系數(shù)特征的遙感圖像融合算法[J].測繪學報,2004,33(1):53-57.
[9]Chu Heng,Teng De-gui,Wang Ming-quan.Fusion of remotely sensed imagesbased on subsampled contourlettransform and spectralresponse[C]//Urban Remote Sensing Joint Event.Shanghai:[s.n.],2009:1-5.
[10]李俊峰.非下采樣方向濾波器組在遙感圖像融合中的應用[J].中國圖形圖象學報,2009,14(10):2047-2053.
YANG Jianhui,BAI Chao
College of Information Science and Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China
A fusion scheme for multispectral image and panchromatic image is proposed,based on Intensity,Hue,and Saturation (IHS)transform and Nonsubsampled Directional Filter Bank(NSDFB)included in nonsubsampled contourlet transform which provides a full shift-invariant directional multi-resolution trait,combined with the superiority of àtrous transform.In view of the fusion rule of the traditional details injection method which causes larger spectral distortion,the characteristic product is chosen to express local image features for the high-frequency component obtained by the transform in this paper,and then the details of panchromatic image are extracted on the basis of the threshold of the decision-making factor,eventually effective high-frequency detail surface acquired by NSDFB inverse transform is attached to the component of multispectral image.The experimental results show that,the algorithm in this paper makes the spectral distortion minimum and makes correlation coefficient maximum,and improves the spatial detail quality largely in a variety of different performance index evaluations.
image fusion;nonsubsampled Contourlet transform;àtrous wavelet transform;characteristic product;decision-making factor
在IHS空間變換基礎上,利用非下采樣Contourlet變換中具有多方向性、平移不變性的非下采樣方向濾波器組,并結(jié)合àtrous小波變換,實現(xiàn)了一種基于àtrous小波-NSCT變換的遙感多光譜圖像和全色圖像融合方法。針對傳統(tǒng)的細節(jié)注入法融合規(guī)則會引起較大光譜失真,對變換所得的高頻分量采用特征量積表達局部圖像細節(jié)特征,依據(jù)決策因子閾值抽取全色圖像細節(jié)信息,將經(jīng)反方向濾波得到的有效高頻細節(jié)面附加給多光譜圖像分量。實驗結(jié)果表明,在多種不同性能指標評價下,該算法得到的光譜扭曲最小,相關系數(shù)最大,同時空間細節(jié)質(zhì)量也得到很好改善。
圖像融合;非下采樣Contourlet變換;àtrous小波變換;特征量積;決策因子
A
TP391.41
10.3778/j.issn.1002-8331.1107-0296
YANG Jianhui,BAI Chao.Remote sensing image fusion based on àtrous-NSCT transform.Computer Engineering and Applications,2013,49(5):170-173.
楊建慧(1986—),女,碩士研究生,主要研究領域為遙感圖像融合;白超(1986—),男,碩士研究生。E-mail:yangjianhui05@126.com
2011-07-14
2011-09-07
1002-8331(2013)05-0170-04
CNKI出版日期:2011-11-14 http://www.cnki.net/kcms/detail/11.2127.TP.20111114.0949.061.html