• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic constitutive model for soils considering asymmetry of skeleton curve

    2013-07-10 12:23:42GuoxingChenHuPnHuiLongXiojunLi

    GuoxingChen,HuPn,HuiLong,XiojunLi,c

    aInstituteofGeotechnicalEngineering,NanjingUniversityofTechnology,Nanjing210009,China

    bGeotechnicalResearchInstitute,HohaiUniversity,Nanjing210098,China

    cInstituteofGeophysics,ChinaEarthquakeAdministration,Beijing100081,China

    Dynamic constitutive model for soils considering asymmetry of skeleton curve

    GuoxingChena,b,HuaPana,?,HuiLonga,XiaojunLia,c

    aInstituteofGeotechnicalEngineering,NanjingUniversityofTechnology,Nanjing210009,China

    bGeotechnicalResearchInstitute,HohaiUniversity,Nanjing210098,China

    cInstituteofGeophysics,ChinaEarthquakeAdministration,Beijing100081,China

    A R T I C L E I N F O

    Articlehistory:

    Received 18 June 2012

    Received in revised form 2 December 2012

    Accepted 5 January 2013

    Function with double asymptotes

    Dynamic constitutive model

    Shear modulus

    Damping ratio

    Complex initial stress state

    Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils, a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils. The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote. The coef ficient of initial unloading modulus is used to ensure that the constructed hysteresis loop fits well with the experimental data. Then, a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated. The veri fication tests on saturated Nanjing fine sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model. It is found that the predicted curves by the UD model agree well with the test data.

    ? 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    The soil dynamic constitutive model is a basis for studying the dynamic characteristics of soils and soil-structure interaction system under dynamic loads as well as the prerequisite for conducting numerical dynamic analysis.

    Masing (1926) suggested a one-dimensional dynamic stress–strain relationship of soil under constant stress cyclic loading. He adopted a hyperbola to describe the skeleton curve, and structured the hysteretic curve using the “double times method”. However, an irrational phenomenon occurred in his model: the value of calculated stress exceeded the ultimate stress under irregular cyclic loading.

    Rosenblueth and Herrear (1964) and Newmark and Rosenblueth (1971) respectively put forward the “upper skeleton curve” and“upper large loop” as two supplementary rules to Masing rule. Masing rule and the two supplementary ones were termed as“extended Masing rule”. However, the extended Masing rule cannot be described by a simple mathematical expression. Moreover, it needs tremendous amount of memory capacity to find the intersection point of the present and previous stress–strain curves. Pyke (1979) simplified the extended Masing rule using “ntimes method”instead of “double times method” to restrict the hysteresis loops of follow-up wave within the asymptote of skeleton curve. Besides, Li (1992) modified the Masing rule by introducing the concept of dynamic skeleton curve, which constrains the calculated stress within the ultimate stress.

    Wang et al. (1980) made adjustments to the theoretical hysteresis loops by introducing “damping ratio degeneration factor”. This factor led the area of hysteresis loop to fit the experimental value of damping ratio. The essence of this method is to adjust the stress–strain hysteretic damping ratio by changing the original unloading and following shear modulus which is obtained based on the Masing rule. Then, Chen et al. (2009) extended this factor into “general damping ratio degeneration factor” by introducing an adjustment parameterAd. They used a changeable curve to fit the experimental value of damping ratio, thus the fitting can be more flexible.

    Based on the studies of Wang et al. (1980), many researchers have conducted extensive studies on this Masing-type constitutive model to analyze the site earthquake responses (Borja et al., 2000; Purzin and Shiran, 2000; Muravskii, 2005; Zhang et al., 2005; Zekkos et al., 2006; Okur and Ansal, 2007; Yamada et al., 2008; Phillips and Hashash, 2009).

    The skeleton curves of Masing hysteresis loops can be constructed by hyperbola model (Hardin and Drnevich, 1972a, 1972b), by Ramberg–Osgood model (Ramberg and Osgood, 1943), or by Martin–Davidenkov model (Martin and Seed, 1982). However, in the Martin–Davidenkov model, the shear strain as well as the shearstress may increase infinitely, which is inapplicable to soils. For this reason, Chen and Zhuang (2005) used upper limit value of strain amplitude as a dividing point. The piecewise function was adopted to modify the skeleton curve, and the formula to calculate the damping ratio was deduced. Qi and Bo (2009) put forward a new dynamic constitutive model of soils, in which the exponential function was used to construct the skeleton curve and the hysteresis loop.

    As mentioned above, the research results of Masing dynamic constitutive model of soils are quite abundant, whereas there is a fault in common that the skeleton curves adopted are all odd functions which are symmetrical around the origin of coordinates. This does not agree with the results of hysteretic characteristics obtained from the tests under cyclic loading, especially under anisotropic consolidation. In this paper, a function with double asymptotes is proposed for describing the skeleton curves of soils. Then, a new dynamic constitutive model (UD model) considering the asymmetry of skeleton curve is constructed. The verification tests on saturated Nanjing fine sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model.

    2. Dynamic constitutive model of soils with asymmetric skeleton curve

    2.1.PrinciplesforconstructingMasingtypeconstitutivemodelof soils

    The principles for construction of Masing-type constitutive model suitable for soils can be summarized as follows:

    (1) During the initial loading, the stress–strain relationship can be described by the skeleton curve.

    (2) During the unloading and reloading process, the value of dynamic modulus at the beginning of the unloading process is considered equal to the maximum dynamic shear modulus.

    (3) Stress value in the skeleton curve and following hysteresis loop should not exceed the maximum stress level.

    (4) The hysteresis loop has the same functional form as the skeleton curve, whereas the parameters are different. The hysteresis loop could be obtained by translating, revolving and scaling the skeleton curve.

    2.2.Selectionofskeletoncurvefunction

    Considering the principles for constructing dynamic constitutive model of soils, Eq. (1) is adopted to describe the skeleton curve, which has the following features:

    (1) The function curve passes through the origin of coordinates.

    (2) There are two asymptotes with different absolute asymptotic values.

    (3) The function curve becomes convex when the independent variables are positive and concave-down when the independent variables are negative.

    (4) The function is continuous and differentiable within its definition domain (? ∞ , + ∞).

    Fig. 1. Schematic diagram of skeleton curve.

    whereA,t1,t2,kare the fitting parameters, andA< 0,t1< 0,t2< 0,k> 0. The limits of Eq. (1) asxapproaches positive and negative infinity can be respectively expressed as

    2.3.Constructionofskeletoncurve

    The skeleton curve of the dynamic constitutive model, has the same form as Eq. (1), can be expressed as

    where τ and γ are the dynamic shear stress and dynamic shear strain, respectively. The limits of Eq. (4) can be obtained by

    where τuuand τduare the upper and lower asymptotic lines of the skeleton curve, respectively (see Fig. 1).

    The value of the maximum initial dynamic shear modulusGmaxcan be obtained from the slope of the tangent through the original pointO(Fig. 1):

    From Eqs. (5)–(7), the following equations can be derived:

    By fitting multiple sets of experimental data, it can be found that, whent1= ?100, four parameters of the skeleton curve shown in Eq. (4) can be simplified as three parameters and the fitting results aregood. Thus, the skeleton curve can be determined by

    Fig. 2. Schematic diagram of hysteresis loop.

    2.4.Constructionofhysteresisloop

    Based on the above-mentioned construction principles as well as the processing method from Pyke (1979), the hysteresis loop is constructed by translating and scaling the skeleton curve; meanwhile, τ = τuuand τ = τduare taken as the asymptotes.

    2.4.1.Case1:theunloadingpointliesontheskeletoncurve

    For this case, first step is to construct the lower hysteresis loop. Set the unloading point (reverse loading point)P(γ0, τP) on the upper skeleton curve, and pointB(? γ0, τB) is the symmetric point ofP(γ0, τP), the value of τBcan be determined by the equations related to the skeleton curve. Then the curvePCBin Fig. 2 corresponds to the lower hysteresis loop, and its functional form is the same as the skeleton curve:

    whereAd,kdandtdare the unknown parameters, and the subscript“d” represents the lower hysteresis loop.

    In order to determine the value of the three model parameters (Ad,kdandtd), it is assumed that:

    (1) The asymptote of the lower hysteresis loop is τ = τdu.

    (2) The shear modulus of the initial unloading point on the lower hysteresis loop is equal to the maximum initial shear modulus and can be expressed asPP′‖OHandGP=Gmax.

    (3) In order to ensure the closure feature of the hysteresis loop under constant strain cyclic loading, the pointB(? γ0, τB) must be set on the lower hysteresis loop so that the peak point of the hysteresis loop could be on the skeleton curve.

    Based on the above assumptions, the following expressions can be obtained:

    The values ofAd,kdandtdcan be derived from Eqs. (13)–(15), and the expression of the lower hysteresis loop can be determined.

    Then the upper hysteresis loop should be constructed. Setting the unloading point (reverse loading point)B(? γ0, τB) on the lower skeleton curve, and the pointP(γ0, τP) is the symmetric point ofB(? γ0, τB). Then the curveBDPin Fig. 2 corresponds to the upper hysteresis loop, and its functional form is the same as the skeleton curve:

    whereAu,kuandtuare the undetermined parameters, and the subscript “u” represents the upper hysteresis loop. Similarly, in order to determine the value of the three model parameters (Au,kuandtu), it is assumed that:

    (1) The asymptote of the upper hysteresis loop is τ = τuu.

    (2) The shear modulus of initial unloading point on the upper hysteresis loop is equal to the maximum initial shear modulus which is expressed asBB’ ‖OHandGB=Gmax.

    (3) In order to ensure the closure feature of the hysteresis loop under constant strain cyclic loading, theP(γ0, τP) must be set on the upper hysteresis loop.

    Based on the above assumptions, the following expressions can be obtained:

    The values ofAu,kuandtucan be obtained from Eqs. (17)–(19), and the expression of the upper hysteresis loop can be determined.

    2.4.2.Case2:theunloadingpointisnotontheskeletoncurve

    As shown in Fig. 2, it is assumed that the stress–strain process under loading and unloading after the pointPisP→C→E→M→F→N. When analyzing the unloading pointE, the curveEMFis the upper branch of the follow-up hysteresis loop. Its functional form is the same as the skeleton curve. There are three unknown parameters, and three corresponding assumptions need to be made in order to determine the function form of curveEMF. Obviously, the above-mentioned assumptions of the asymptote and taking the shear modulus of the initial unloading point as the maximum initial shear modulusGmaxstill hold true. However, since the pointEis not on the skeleton curve, its corresponding symmetric strain point cannot be determined. Therefore, another assumption needs to be determined.

    As a result, it is assumed that if the unloading point is not on the skeleton curve, the following hysteresis loopmust go through the previous unloading point (reverse loading point). Taking pointEwhose previous unloading point is pointPfor example, the curveEMFmust go through the pointP. Therefore, in such a case the unloading point is not on the skeleton curve, the following hysteresis loop can be determined according to the above-mentioned three assumptions.

    3. Characteristics of proposed dynamic constitutive model

    The proposed dynamic constitutive model, called UD model by authors, has several features as follows:

    (1) The function of the skeleton curve has two asymptotes respectively called the upper and lower asymptotes with different absolute asymptotic values, which may re flect that the shear moduli under compression and “tension” are not equal (the“tension” means that the practical soils are not necessarily under tension, whereas the soils must be in tension under loading).

    (2) It is suitable for unsymmetrical cyclic loading.

    (3) The constructing method is simple and needs little memory consumption, so it is easily accomplished by numerical algorithms.

    (4) It has only a few parameters that have clear physical meaning and can be determined by conventional tests.

    When verifying the model, it is found that the skeleton curve may fit the test data very well. However, there are two main problems when fitting the test data using the hysteresis loop:

    (1) The hysteresis loop constructed by the UD model cannot fit the test date well.

    Fig. 3. Verification results of proposed model. (a) Isotropic consolidation (the unloading point is on the skeleton curve). (b) Isotropic consolidation (the unloading point is not on the skeleton curve). (c) Anisotropic consolidation (α0= 0°). (d) Anisotropic consolidation (α0= 45°). (e) Anisotropic consolidation (α0= 90°).

    (2) When the strain is comparatively small, the proposed method for determining the hysteresis loop is infeasible: no solution can be obtained by solving the simultaneous equations.

    The first problem is commonly understood. It is the same as that in other viscoelastic constitutive models. In order to ensure that the constructed hysteresis loop can well fit the experimental data, additional technological means should be used to adjust the shape of the hysteresis loop, for example using the damping ratio degeneration factor.

    With respect to the second problem, it is assumed that the shear modulus of the initial unloading point is equal to the maximum initial shear modulus, which actually is not theoretically founded and is not totally vindicated.

    Some results from dynamic tensional shear tests and dynamic triaxial tests (Chen, 2006) demonstrate that the shear modulus of the initial unloading point is not always equal to the maximum initial shear modulus. For normally consolidated cohesive soils or sandy soils, when the strain changes within a small range, the shear modulus of the initial unloading point is usually beyond the maximum initial shear modulus. When the strain varies by a substantial margin, the shear modulus of the initial unloading point is less than the maximum initial shear modulus. The shear modulus of initial unloading point would be in accordance with the maximum initial shear modulus when the strain changes within a medium range. Wang et al. (1980) made adjustments to the theoretical hysteresis loop by introducing a “damping ratio degeneration factor”. The essence of this method is that the adjustment of stress–strain hysteretic damping can be achieved by changing the original and following shear moduli. We found that when the strain changes within a small range, the instantaneous shear modulus can be appropriately raised during the unloading process to solve the above-mentioned second problem. The above two problems can be solved by defining the initial shear modulus coefficient in the unloading process denoted asJ(λ):

    whereG′is the initial shear modulus in unloading process.

    It can be found thatJ(λ) would be greater than 1.0 when the strain amplitude of soils is smaller; andJ(λ) would be approximately equal to 1.0 when the strain amplitude of soils is medium; andJ(λ) would be less than 1.0 when the strain amplitude of soils is larger. However, there are no strict standards for the de finition of the dynamic strain amplitude and the distinct boundaries are made among soils with different characteristics which may be determined by a very large number of trials.

    Thus, the construction process of the UD model can be described as follows:

    (1) According to the above three assumptions (in Case 1 or Case 2), we can solve the simultaneous equations.

    (2) If the simultaneous equations have solutions, the corresponding hysteresis loop can be constructed directly; if not, a reasonableJ(λ) can be given in advance on the basis of the value of dynamic strain, and the equation of the hysteresis loop can be constructed.

    (3) Make the fitting of damping ratio and adjust the value ofJ(λ) gradually (i.e. adjustG′) till the constructed damping ratio is close to the test result.

    4. Model veri fication

    To verify the applicability of the proposed model, saturated Nanjing fine sand was employed. Considering different initial consolidation conditions, four sets of further veri fication tests were conducted. Under isotropic consolidation conditions, preliminary examination was made on the hysteresis loop whose unloading point is not on the skeleton curve. Veri fication results of the proposed model are shown in Fig. 3. From Fig. 3, it can be found that the UD model can well predict the stress–strain relationship of the saturated Nanjing fine sand.

    5. Conclusions

    The asymmetry characteristic of skeleton curve is universal in dynamic testing of soils. However, the existing dynamic constitutive models do not consider the asymmetry characteristics of skeleton curve. A function with double asymptotes can be used to describe the skeleton curve features. Based on this, a new dynamic constitutive model considering the asymmetry of skeleton curve, which is called UD model, is constructed. The coef ficient of initial unloading modulus is used to ensure that the constructed hysteresis loop fits well the experimental data. Four sets of further veri fication tests demonstrate that the UD model can be used to describe the stress–strain relationship of soils under complex stress condition.

    Acknowledgements

    The authors would like to thank the financial support by the Major Research Plan Integration Project of the National Natural Science Foundation of China under Grant No. 91215301 and by the National Basic Research Program of China under Grant No. 2011CB013601.

    Borja RI, Lin CH, Sama KM, Masada GM. Modelling non-linear ground response of non-lique fiable soils. Earthquake Engineering and Structural Dynamics 2000;29(1):63–83.

    Chen GX, Zhuang HY. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve. Chinese Journal of Geotechnical Engineering 2005;27(8):860–4 (in Chinese).

    Chen XL. Study on soil dynamic characteristics nonlinear seismic response of complex site and its methods. Harbin: Institute of Engineering Mechanics, China Seismological Bureau; 2006 (in Chinese).

    Chen XL, Jin X, Tao XX, Li HY. Dynamic constitutive model for soils based on generalized damping degradation coef ficient. Chinese Journal of Computational Mechanics 2009;26(2):245–51 (in Chinese).

    Hardin BO, Drnevich VP. Shear modulus and damping in soil: Measurement and parameter effects. Journal of the Soil mechanics and Foundation Engineering Division, ASCE 1972a;98(6):603–24.

    Hardin BO, Drnevich VP. Shear modulus and damping in soil: design equations and curves. Journal of the Soil mechanics and Foundation Engineering Division, ASCE 1972b;98(7):667–92.

    Li XJ. One simple functional expression of soil dynamic constitutive relations. Chinese Journal of Geotechnical Engineering 1992;14(5):90–4 (in Chinese).

    Masing G. Eigenspannungeu und verfertigung beim Messing. In: Proceedings of the 2nd International Congress on Applied Mechanics; 1926. p. 332–5.

    Muravskii G. On description of hysteretic behaviour of materials. International Journal of Solids and Structures 2005;42(9/10):2625–44.

    Martin PP, Seed HB. One dimensional dynamic ground response analysis. Journal of Geotechnical Engineering, ASCE 1982;108(7):935–52.

    Newmark NM, Rosenblueth E. Fundamentals of earthquake engineering. Englewood Cliffs, NJ: Prentice Hall Inc; 1971. p. 163–92.

    Okur DV, Ansal A. Stiffness degradation of natural fine grained soils during cyclic loading. Soil Dynamics and Earthquake Engineering 2007;27(9): 843–54.

    Purzin AM, Shiran A. Effects of the constitutive relationship on seismic response of soils. Part I. Constitutive modeling of cyclic behavior of soils. Soil Dynamics and Earthquake Engineering 2000;19(5):305–18.

    Phillips C, Hashash Y. Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering 2009;29(7):1143–58.

    Pyke R. Nonlinear soil models for irregular cyclic loadings. Journal of the Geotechnical Engineering Division, ASCE 1979;105(6):715–25.

    Qi WH, Bo JS. A new soil dynamic constitutive model. Earthquake Engineering and Engineering Vibration 2009;29(1):169–74 (in Chinese).

    Rosenblueth E, Herrear I. On a kind of hysteretic damping. Journal of the Engineering Mechanics Division, ASCE 1964;90(4):37–47.

    Ramberg W, Osgood W. Description of stress strain curves by three parameters. Technical Note No. 902. Washington, DC: National Advisory Committee for Aeronautics; 1943.

    Wang ZL, Wang YQ, Han QY. Visco-elastoplastic soil model for irregular shear cyclic dynamic loadings. Chinese Journal of Geotechnical Engineering 1980;2(3):10–20 (in Chinese).

    Yamada S, Hyodo M, Orense R, Dinesh S, Hyodo T. Strain-dependent dynamic properties of remolded sand-clay mixtures. Journal of Geotechnical and Geoenvironmental Engineering 2008;134(7):972–81.

    Zekkos D, Bray JD, Riemer MF. Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing. Canadian Geotechnical Journal 2006;45(1):45–58.

    Zhang J, Andrus RD, Juang CH. Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering 2005;131(4):453–60.

    Guoxing Chenobtained his M.Sc. and a Ph.D. degree from Institute of Engineering Mechanics, China Earthquake Administration. He is a professor of Civil Engineering and the Dean of College of Transportation Science and Engineering, Nanjing University of Technology. He has been involved in geotechnical and earthquake engineering research, consulting and education more than 20 years. His research fields involve soil dynamics, nonlinear seismic site effects, cyclic triaxial test and shaking table model test technology, rail rapid transit dynamics, as well as earthquake disaster prevention and mitigation of urban underground structure, earth and rock dam. He is the author or co-author of more than 200 scientific papers and he serves on the editorial boards of several top journals in China. He has obtained the professional qualifications of Civil Engineer (Geotechnical) and Level 1 Seismic Hazard Assessment Engineer in China. He is a member of National Seismic Hazard Assessment Committee and Science & Technology Committee of Earthquake Administration in Jiangsu Province. He has consulted widely and has given both geotechnical and seismic advice on a series of major projects. He has been awarded the State-class Young and Middle-aged Experts with Outstanding Contribution in 1996. Also, he has been awarded National Outstanding Scientific and Technological Workers in 2012.

    pan1983@163.com (H. Pan).

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    ?Corresponding author. Tel.: +86 15026555734.

    E-mail address: hua

    1674-7755 ? 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2013.01.003

    好看av亚洲va欧美ⅴa在| 757午夜福利合集在线观看| 午夜福利视频1000在线观看| 我要看日韩黄色一级片| 少妇人妻一区二区三区视频| 全区人妻精品视频| 日韩国内少妇激情av| 免费观看精品视频网站| 亚洲av不卡在线观看| 日韩 亚洲 欧美在线| 美女xxoo啪啪120秒动态图 | 看黄色毛片网站| 亚洲天堂国产精品一区在线| 国产69精品久久久久777片| 亚洲精品影视一区二区三区av| 久久久精品欧美日韩精品| 久久久久久久久久黄片| 精品国产三级普通话版| 中文字幕av成人在线电影| 免费无遮挡裸体视频| 天堂av国产一区二区熟女人妻| 亚洲av不卡在线观看| 99久久精品国产亚洲精品| av女优亚洲男人天堂| 最后的刺客免费高清国语| 久久6这里有精品| 亚洲无线在线观看| 狠狠狠狠99中文字幕| 国产亚洲精品久久久com| 精品一区二区三区视频在线| 欧美黄色淫秽网站| 国产av一区在线观看免费| 如何舔出高潮| 国产 一区 欧美 日韩| 中文字幕久久专区| 两性午夜刺激爽爽歪歪视频在线观看| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 又紧又爽又黄一区二区| 亚洲国产高清在线一区二区三| 99视频精品全部免费 在线| 国产探花极品一区二区| 久久久久免费精品人妻一区二区| 日本熟妇午夜| 欧美日韩瑟瑟在线播放| www.熟女人妻精品国产| 人妻久久中文字幕网| 男人狂女人下面高潮的视频| 久久伊人香网站| 久久精品国产亚洲av天美| 久久精品国产亚洲av天美| 最近最新中文字幕大全电影3| 久久伊人香网站| 国产亚洲精品av在线| 两性午夜刺激爽爽歪歪视频在线观看| 男女那种视频在线观看| 欧美一级a爱片免费观看看| 成人精品一区二区免费| 欧美潮喷喷水| 夜夜躁狠狠躁天天躁| 一本精品99久久精品77| 看免费av毛片| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 国产探花在线观看一区二区| 欧美日韩国产亚洲二区| 亚洲精品乱码久久久v下载方式| 琪琪午夜伦伦电影理论片6080| 十八禁网站免费在线| 男女做爰动态图高潮gif福利片| 国产色婷婷99| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 真人一进一出gif抽搐免费| 天天躁日日操中文字幕| 日本免费a在线| 久久久久久国产a免费观看| 亚洲欧美日韩卡通动漫| 毛片一级片免费看久久久久 | 精品一区二区免费观看| 亚洲国产高清在线一区二区三| 欧美激情在线99| 男女下面进入的视频免费午夜| 欧美bdsm另类| 亚州av有码| 精品久久久久久久久av| www.色视频.com| 88av欧美| 欧美日韩中文字幕国产精品一区二区三区| а√天堂www在线а√下载| 欧美一区二区亚洲| 一个人免费在线观看电影| 一夜夜www| av在线天堂中文字幕| 国产一区二区亚洲精品在线观看| 综合色av麻豆| 欧美日韩中文字幕国产精品一区二区三区| 亚洲内射少妇av| 美女高潮喷水抽搐中文字幕| 国产真实乱freesex| 国产伦精品一区二区三区四那| 日韩精品青青久久久久久| 我要看日韩黄色一级片| 日本在线视频免费播放| 窝窝影院91人妻| 国产爱豆传媒在线观看| 日本免费a在线| 老司机福利观看| 黄色一级大片看看| 欧美黄色片欧美黄色片| 亚洲人与动物交配视频| 精品一区二区三区av网在线观看| 久久久国产成人精品二区| 亚洲 国产 在线| 国产午夜福利久久久久久| av在线蜜桃| 精品一区二区三区视频在线观看免费| 神马国产精品三级电影在线观看| 亚洲成av人片免费观看| 男插女下体视频免费在线播放| 日本三级黄在线观看| 中文资源天堂在线| 亚洲电影在线观看av| 午夜福利在线在线| 深夜精品福利| 啪啪无遮挡十八禁网站| 最近在线观看免费完整版| 国产成人aa在线观看| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆 | 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩卡通动漫| 热99在线观看视频| 俄罗斯特黄特色一大片| 久久久色成人| 麻豆成人午夜福利视频| 成人亚洲精品av一区二区| 亚洲在线观看片| 99久久九九国产精品国产免费| 免费无遮挡裸体视频| 免费观看人在逋| 99热只有精品国产| 韩国av一区二区三区四区| 国产av一区在线观看免费| 99热6这里只有精品| 久久精品国产亚洲av天美| 国产大屁股一区二区在线视频| 真实男女啪啪啪动态图| 欧美最黄视频在线播放免费| 久久久久免费精品人妻一区二区| 少妇高潮的动态图| 日韩免费av在线播放| 国产一区二区在线观看日韩| 国产高清视频在线观看网站| 男女之事视频高清在线观看| 三级毛片av免费| 一个人看视频在线观看www免费| 亚洲综合色惰| 免费在线观看成人毛片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 欧美中文日本在线观看视频| 99视频精品全部免费 在线| 国产精品三级大全| 人妻久久中文字幕网| 国产午夜福利久久久久久| 九九热线精品视视频播放| 亚洲avbb在线观看| 嫩草影视91久久| 丝袜美腿在线中文| 18+在线观看网站| 无人区码免费观看不卡| 18禁黄网站禁片午夜丰满| 美女 人体艺术 gogo| 亚洲第一电影网av| 国产免费男女视频| 少妇高潮的动态图| 久久热精品热| 日韩成人在线观看一区二区三区| 久久精品国产清高在天天线| 十八禁网站免费在线| 丝袜美腿在线中文| 简卡轻食公司| 亚洲第一欧美日韩一区二区三区| 亚洲男人的天堂狠狠| 中文字幕av在线有码专区| 亚洲人成网站在线播放欧美日韩| 国产av在哪里看| 九色成人免费人妻av| 国产真实乱freesex| 可以在线观看毛片的网站| 亚洲国产精品999在线| 亚洲五月婷婷丁香| 免费看光身美女| 精品午夜福利在线看| 成年免费大片在线观看| 国产精品久久久久久久电影| 国产精品爽爽va在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 欧美又色又爽又黄视频| 成年人黄色毛片网站| 亚洲,欧美,日韩| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 日本黄色视频三级网站网址| 亚洲欧美日韩卡通动漫| 可以在线观看毛片的网站| 少妇丰满av| 欧美色视频一区免费| 天天一区二区日本电影三级| 欧美性猛交黑人性爽| 校园春色视频在线观看| 婷婷精品国产亚洲av在线| 午夜老司机福利剧场| 亚洲午夜理论影院| www.999成人在线观看| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 久久久精品大字幕| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| av福利片在线观看| а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 搡老岳熟女国产| 国产真实乱freesex| 欧美乱色亚洲激情| 国产一区二区三区视频了| 中文字幕久久专区| 国产在线精品亚洲第一网站| 亚洲国产精品合色在线| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 欧美激情在线99| 色综合站精品国产| 天美传媒精品一区二区| 色av中文字幕| 成人一区二区视频在线观看| 午夜福利在线观看免费完整高清在 | 欧美一级a爱片免费观看看| 亚洲中文日韩欧美视频| 精品人妻1区二区| 婷婷六月久久综合丁香| 久久中文看片网| 午夜免费激情av| av黄色大香蕉| 日韩免费av在线播放| 淫秽高清视频在线观看| 国产成人aa在线观看| 亚洲欧美日韩高清在线视频| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 99热6这里只有精品| 欧美乱色亚洲激情| 亚洲精品一区av在线观看| 欧美性猛交╳xxx乱大交人| 很黄的视频免费| 日韩欧美在线乱码| 亚洲成人久久性| 搡女人真爽免费视频火全软件 | 欧美一区二区亚洲| 精品一区二区三区人妻视频| av国产免费在线观看| 亚洲熟妇熟女久久| 久久天躁狠狠躁夜夜2o2o| 中文字幕免费在线视频6| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 色综合站精品国产| 成人av在线播放网站| netflix在线观看网站| 亚洲精品成人久久久久久| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 不卡一级毛片| 乱人视频在线观看| 91麻豆av在线| 成年版毛片免费区| 少妇丰满av| 一个人免费在线观看电影| 夜夜夜夜夜久久久久| 亚洲三级黄色毛片| 精品一区二区三区人妻视频| 亚洲av免费在线观看| 国模一区二区三区四区视频| 观看免费一级毛片| 免费在线观看影片大全网站| 亚洲av美国av| 一进一出抽搐动态| 嫩草影院精品99| 亚州av有码| 国产精品美女特级片免费视频播放器| 丁香六月欧美| 日本一本二区三区精品| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 免费搜索国产男女视频| 九色国产91popny在线| 亚洲三级黄色毛片| 国产v大片淫在线免费观看| 在线十欧美十亚洲十日本专区| 久久久久久久久久黄片| 别揉我奶头~嗯~啊~动态视频| av专区在线播放| av在线观看视频网站免费| 最近视频中文字幕2019在线8| 亚洲第一欧美日韩一区二区三区| 波野结衣二区三区在线| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 日韩精品中文字幕看吧| 丰满的人妻完整版| 免费搜索国产男女视频| av黄色大香蕉| 久久久久久九九精品二区国产| 国内精品久久久久精免费| 成年女人看的毛片在线观看| 色综合站精品国产| 老女人水多毛片| 91午夜精品亚洲一区二区三区 | 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 亚洲中文日韩欧美视频| 久久久成人免费电影| 日韩 亚洲 欧美在线| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看| 欧美成人免费av一区二区三区| 久久精品人妻少妇| 欧美成人a在线观看| 免费一级毛片在线播放高清视频| 他把我摸到了高潮在线观看| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 欧美性猛交╳xxx乱大交人| 亚洲国产精品久久男人天堂| 人妻制服诱惑在线中文字幕| 欧美黑人欧美精品刺激| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲 | 一边摸一边抽搐一进一小说| 麻豆一二三区av精品| 3wmmmm亚洲av在线观看| 欧美日韩福利视频一区二区| 黄色配什么色好看| 我的女老师完整版在线观看| 51国产日韩欧美| 亚洲色图av天堂| 天堂动漫精品| 一级作爱视频免费观看| 欧美+日韩+精品| 97超视频在线观看视频| bbb黄色大片| 757午夜福利合集在线观看| 久久国产乱子免费精品| 国产精品自产拍在线观看55亚洲| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女黄片视频| 成年人黄色毛片网站| 人人妻人人看人人澡| 久久精品国产自在天天线| 能在线免费观看的黄片| 亚洲经典国产精华液单 | 中文字幕av在线有码专区| 久久99热这里只有精品18| 欧美黄色淫秽网站| 成年女人看的毛片在线观看| av视频在线观看入口| 成人欧美大片| 精品午夜福利在线看| 在线播放国产精品三级| 色在线成人网| 久久午夜亚洲精品久久| 成人美女网站在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 男女床上黄色一级片免费看| 一进一出抽搐动态| 身体一侧抽搐| 欧美日韩中文字幕国产精品一区二区三区| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片 | 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 欧美不卡视频在线免费观看| 国产一区二区亚洲精品在线观看| av黄色大香蕉| 国产免费一级a男人的天堂| 国产伦人伦偷精品视频| 又爽又黄无遮挡网站| 女同久久另类99精品国产91| 国产蜜桃级精品一区二区三区| 欧美激情在线99| 国产精品久久电影中文字幕| 亚洲第一区二区三区不卡| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 一个人看视频在线观看www免费| 3wmmmm亚洲av在线观看| 亚洲精品久久国产高清桃花| 国产在线男女| 午夜福利高清视频| 哪里可以看免费的av片| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 国产精品久久久久久久电影| 一进一出好大好爽视频| 亚洲最大成人手机在线| 免费黄网站久久成人精品 | 老鸭窝网址在线观看| 九色国产91popny在线| 亚洲成人中文字幕在线播放| 三级毛片av免费| av福利片在线观看| 亚洲欧美日韩卡通动漫| 高潮久久久久久久久久久不卡| 欧美一区二区精品小视频在线| 51午夜福利影视在线观看| 级片在线观看| 亚洲精品在线美女| 丰满人妻一区二区三区视频av| 日韩亚洲欧美综合| 亚洲国产日韩欧美精品在线观看| 午夜影院日韩av| 欧美成人a在线观看| 国产探花在线观看一区二区| 亚洲av免费在线观看| 一级av片app| 亚洲一区二区三区不卡视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 91在线观看av| 中文资源天堂在线| 亚洲美女黄片视频| 亚洲黑人精品在线| 校园春色视频在线观看| 全区人妻精品视频| 丰满乱子伦码专区| 性欧美人与动物交配| 色5月婷婷丁香| 国产亚洲欧美98| 欧美乱色亚洲激情| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 日韩欧美国产在线观看| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 色视频www国产| 亚洲经典国产精华液单 | 成人亚洲精品av一区二区| 全区人妻精品视频| 欧美日韩中文字幕国产精品一区二区三区| 麻豆av噜噜一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲自偷自拍三级| 一级黄片播放器| 亚洲av五月六月丁香网| 亚洲18禁久久av| 国产视频内射| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 欧美激情久久久久久爽电影| 国产91精品成人一区二区三区| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 一二三四社区在线视频社区8| 国产视频内射| 精品不卡国产一区二区三区| 成年女人永久免费观看视频| 国产精品久久久久久久久免 | 久久精品夜夜夜夜夜久久蜜豆| 日韩亚洲欧美综合| 日韩国内少妇激情av| 亚洲,欧美精品.| 夜夜夜夜夜久久久久| 亚洲人成网站在线播放欧美日韩| 综合色av麻豆| 又爽又黄a免费视频| 嫩草影视91久久| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 国产一区二区在线观看日韩| 欧美色视频一区免费| 99国产精品一区二区三区| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 99国产综合亚洲精品| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 亚洲最大成人手机在线| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av| 美女高潮的动态| 国产极品精品免费视频能看的| 观看美女的网站| 亚洲av成人精品一区久久| 久久国产乱子免费精品| 1024手机看黄色片| 在线十欧美十亚洲十日本专区| 国产国拍精品亚洲av在线观看| 校园春色视频在线观看| 好男人电影高清在线观看| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看| 亚洲,欧美精品.| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区 | 日本a在线网址| 可以在线观看毛片的网站| 久久这里只有精品中国| 国产视频内射| 国产免费一级a男人的天堂| 免费搜索国产男女视频| 国产精品人妻久久久久久| 99热只有精品国产| 色综合欧美亚洲国产小说| 成人av一区二区三区在线看| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添av毛片 | 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 国产精品98久久久久久宅男小说| av在线天堂中文字幕| 怎么达到女性高潮| 国产精品av视频在线免费观看| 国产中年淑女户外野战色| 亚洲精品在线美女| 日本 欧美在线| 久久久久久久久久成人| 女生性感内裤真人,穿戴方法视频| 亚洲第一电影网av| 亚洲成人中文字幕在线播放| 在线免费观看不下载黄p国产 | 亚洲色图av天堂| 欧美性感艳星| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 色av中文字幕| 亚洲美女黄片视频| 18禁黄网站禁片午夜丰满| 久久精品91蜜桃| 嫩草影院入口| 中文资源天堂在线| 成年女人永久免费观看视频| 久久久久久久亚洲中文字幕 | 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 男女视频在线观看网站免费| 国产免费男女视频| a在线观看视频网站| 久久久久免费精品人妻一区二区| 床上黄色一级片| 国内精品久久久久精免费| 精品一区二区免费观看| 色av中文字幕| 美女大奶头视频| 日韩 亚洲 欧美在线| 免费在线观看影片大全网站| 一本久久中文字幕| 变态另类成人亚洲欧美熟女| 久久久久久久精品吃奶| 日韩国内少妇激情av| 深爱激情五月婷婷| 色综合婷婷激情| 天堂√8在线中文| 99热这里只有是精品50| 精品一区二区免费观看| 99热这里只有精品一区| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 久久九九热精品免费| 夜夜看夜夜爽夜夜摸| 最后的刺客免费高清国语| 久久国产精品影院| 免费人成视频x8x8入口观看| 欧美日韩瑟瑟在线播放| 制服丝袜大香蕉在线| 一本综合久久免费| 免费大片18禁| 91在线观看av| av在线天堂中文字幕| 搡老熟女国产l中国老女人| 成人特级av手机在线观看| 免费人成在线观看视频色| 亚洲av成人av| 免费观看精品视频网站| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕 | 欧美日韩亚洲国产一区二区在线观看| 亚洲乱码一区二区免费版| 免费在线观看亚洲国产| 神马国产精品三级电影在线观看| bbb黄色大片| 亚洲 国产 在线| 无人区码免费观看不卡| 精品人妻偷拍中文字幕| 51国产日韩欧美| 欧美+亚洲+日韩+国产| bbb黄色大片| 婷婷精品国产亚洲av在线| aaaaa片日本免费| 神马国产精品三级电影在线观看| 国产中年淑女户外野战色| av天堂在线播放| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆| 免费看日本二区| 少妇丰满av|