• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    廣義可壓縮彈性桿方程解的爆破條件

    2013-06-27 05:45:01姜玲玉
    關(guān)鍵詞:波解方程解尖峰

    姜玲玉

    (中央財(cái)經(jīng)大學(xué)應(yīng)用數(shù)學(xué)學(xué)院,北京 100081)

    廣義可壓縮彈性桿方程解的爆破條件

    姜玲玉

    (中央財(cái)經(jīng)大學(xué)應(yīng)用數(shù)學(xué)學(xué)院,北京 100081)

    研究廣義可壓縮彈性桿方程解的爆破條件及尖峰孤立波解的存在性.首先利用所建立的爆破準(zhǔn)則,給出一個(gè)方程在有限時(shí)刻爆破的充分條件.其次,嚴(yán)格證明了其尖峰孤立波解的整體存在性.該結(jié)果豐富了此類Camassa-Holm型方程的研究.

    廣義可壓彈性桿波動(dòng)方程;爆破;尖峰孤立波解

    DO I:10.3969/j.issn.1008-5513.2013.05.003

    1 引言

    2 解的爆破

    3 尖峰孤立波解的存在性

    參考文獻(xiàn)

    [1]Cam assa R,Holm D.An integrable shallow w ater equation w ith peaked solitons[J].Phys.Rev.Letters, 1993,71:1661-1664.

    [2]Constantin A,Lannes D.The hydrodynam ical relevance of the Camassa-Holm and Degasperis-Procesi equations[J].A rch.Ration.M ech.Anal.,2009,192:165-186.

    [3]Constantin A,Escher J.W ave b reaking for non linear non local shallow water equations[J].Acta M ath., 1998,181:229-243.

    [4]Constantin A,Escher J,G lobal existence and b low-up for a shallow water equation[J].Annali Sc.Norm. Sup.Pisa.,1998,26:303-328.

    [5]Constan tin A,StraussW A.Stability of a class of solitary waves in com p ressib le elastic rods[J].Phys.Lett. A,2000,270:140-148.

    [6]Constantin A,StraussW A.Stability of peakons[J].Comm.Pure App l.M ath.,2000,53:603-610.

    [7]X in Z,Zhang P.On the weak solu tions to a shallow water equation[J].Communications on Pure and A pp lied M athematics,2000,53:1411-1433.

    [8]羅婷.一類Camassa-Holm型方程的不變子空間及其精確解[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2012,28(5):655-658.

    [9]DaiH.M odel equation for non linear dispersivewaves in a com p ressib le M ooney-Rivlin rod[J].Acta M ech., 1998,127:193-203.

    [10]DaiH,Huo Y.Solitary shock waves and other travelling waves in a general com p ressible hyperelastic rod[J]. Proc.Roy.Soc.London Ser.A,2000,456:331-363.

    [11]Kato T.Quasi-Linear Equations of Evolution,w ith App lications to Partial Dif erential Equations[C]// Spectral Theory and D if erential Equations.Berlin:Sp ringer Verlag,1995.

    [12]Gui G,Liu Y,O lver P J,et al.W ave-Breaking and Peakons for a Modifed Camassa-Holm Equation[J]. Comm.Math.Phys.,2013,319:731-759.

    W ave-b reaking phenom ena for a generalized com p ressib le elastic-rod equation

    Jiang Lingyu

    (Department of M athematics,Central University of Finance and Econom ics,Beijing 100081,China)

    We investigate in the paper the wave-breaking phenomenon of a generalized hyperelastic-rod wave equation,which occurs in f nite time for certain initialp rof les.M oreover,we obtain the existence of some peaked solitary wave solu tions.The results obtained enriches the research of the type of the Cam assa-Holm equation.

    generalized hyperelastic-rod wave equation,b low-up phenom enon,peaked solitary wave solutions

    O175.29

    A

    1008-5513(2013)05-0458-07

    2008-02-10.

    國(guó)家自然科學(xué)基金(11171241).

    姜玲玉(1969-),副教授,研究方向:非線性偏微分方程.

    2010 MSC:35J15

    猜你喜歡
    波解方程解尖峰
    Navier-Stokes-Coriolis方程解的長(zhǎng)時(shí)間存在性
    尖峰石陣
    (3+1)維廣義Kadomtsev-Petviashvili方程新的精確周期孤立波解
    一類Choquard型方程解的存在性
    西澳大利亞——尖峰石陣
    Joseph-Egri方程的單行波解
    一類Kirchhoff-Poisson方程解的存在性
    (2+1)維Boiti-Leon-Pempinelli方程的橢圓函數(shù)周期波解
    一類混合KdV方程的精確孤立波解
    尖峰之年:NASA地球科學(xué)探測(cè)進(jìn)入高潮
    太空探索(2014年4期)2014-07-19 10:08:58
    廊坊市| 茶陵县| 墨竹工卡县| 鄂尔多斯市| 加查县| 六盘水市| 浙江省| 行唐县| 洪泽县| 蚌埠市| 信阳市| 香河县| 新闻| 屏边| 阳西县| 张掖市| 洛浦县| 博乐市| 三河市| 什邡市| 广元市| 综艺| 宁陵县| 辽源市| 千阳县| 松江区| 广灵县| 龙州县| 平度市| 绥宁县| 奉贤区| 江川县| 克山县| 宁城县| 成安县| 海口市| 越西县| 崇明县| 新蔡县| 友谊县| 乳山市|