• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes

    2013-06-22 13:25:24YangXIAOXiaolianZHUHaokeCHENGKaijieLIQiLUDongfangLIANG
    Water Science and Engineering 2013年3期
    關(guān)鍵詞:源點朝向變送器

    Yang XIAO, Xiao-lian ZHU Hao-ke CHENG Kai-jie LI* Qi LU Dong-fang LIANG

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    3. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, P. R. China

    4. Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

    5. MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

    Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes

    Yang XIAO1,2,3, Xiao-lian ZHU2, Hao-ke CHENG2, Kai-jie LI*2, Qi LU2, Dong-fang LIANG4,5

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    3. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, P. R. China

    4. Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

    5. MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

    The particle size of sediment is one of the main factors that influence the phosphorus physical adsorption on sediment. In order to eliminate the effect of other components of sediment on the phosphorus physical adsorption, the sediment mineral matrices were obtained by removing inorganic matter, metal oxides, and organic matter from natural sediments, which were collected from the Nantong reach of the Yangtze River. The results show that an exponential relationship exists between the median particle size (D50) and specific surface area (Sg) of the sediment mineral matrices, and the fine sediment mineral matrix sample has a larger specific surface area and pore volume than the coarse sediment particles. The kinetic equations were used to describe the phosphorus adsorption process of the sediment mineral matrices, including the Elovich equation, quasi-first-order adsorption kinetic equation, and quasi-second-order adsorption kinetic equation. The results show that the quasi-second-order adsorption kinetic equation has the best fitting effect. Using the mass conservation and Langmuir adsorption kinetic equations, a formula was deduced to calculate the equilibrium adsorption capacity of the sediment mineral matrices. The results of this study show that the phosphorus adsorption capacity decreases with the increase ofD50, indicating that the specific surface area and pore volume are the main factors in determining the phosphorus adsorption capacity of the sediment mineral matrices. This study will help understand the important role of sediment in the transformation of phosphorus in aquatic environments.

    sediment mineral matrix; particle size; specific surface area; pore volume; phosphorus adsorption

    1 Introduction

    Phosphorus is a major nutrient in aquatic systems, which needs to be managed to avoid eutrophication. The distribution and transport of soluble reactive phosphorus (SRP) in riversare strongly influenced by processes involving the interactions of phosphorus with suspended and bed sediments (House et al. 1995). Sediments can act as a sink or source in phosphorus transport and transformation within the bed layer and water column (Withers and Jarvie 2008).

    Natural sediments consist of a number of components, including minerals, organic matter, and activated metal (hydro-) oxides (Zhang et al. 1990), which play a major role in the adsorption of phosphorus onto sediments. Among these components, the minerals usually have a dual contribution to the sorption of pollutants. Namely, they not only serve as a very effective sorbent of environmental pollutants for their high porosity and large surface area (Koeppenkastrop and De Carlo 1992; Schroth and Sposito 1998; Evans et al. 2004; Sánchez-Martín et al. 2008), but also as the matrix of organic matter and metal (hydro-) oxides (Jenne 1968; Tang et al. 1981). Thus, they indirectly affect the pollutant adsorption onto sediments. Consequently, for a better understanding of the interaction of phosphorus with sediments, it is necessary to study the characteristics of phosphorus adsorption by the sediment mineral matrix. Some studies have demonstrated that the adsorption capacity of sediment was related to sediment components, such as organic matter, Fe/Al/Mn hydroxides, clay, and CaCO3(Wang et al. 2007; Wang et al. 2012). However, less research has been conducted on the surface properties of the sediment mineral matrix, and the phosphorus adsorption by the sediment mineral matrix.

    The objectives of this study were to investigate the variation of the specific surface area and pore volume of the sediment mineral matrix with its particle size, and the adsorption kinetics and isotherm of phosphorus by the sediment mineral matrix.

    2 Materials and methods

    2.1 Sampling and pretreatment

    The sediment samples were taken from 5 cm below the bed level at three sites on the Nantong reach of the Yangtze River, mixed thoroughly in an air-sealed plastic bag, and transported to the laboratory. Collected samples were then air-dried and stored at 4℃.

    The sediment samples were gently stirred to break up the large particles and divided into three groups using mechanical vibratory sieving: D0 (0 to 63 μm), D3 (63 to 92 μm), and D4 (92 to 125 μm). The pipette method was used to further divide D0 into two sub-groups: D1 (0 to 30 μm) and D2 (30 to 63 μm).

    The inorganic matter, metal oxides, and organic matter, which were attached to the surface of natural sediments, were removed via chemical extraction methods to obtain the sediment mineral matrix samples. The specific extraction procedure is as follows (Fang et al. 2008):

    (1) The graded sediments were put into beakers with 30% hydrogen peroxide and stirred with a glass rod until the bubbling phenomenon stopped.

    (2) The upper solutions were removed, and 200 mL of deionized water was added into the beakers. The sediment samples were then moved to centrifuge tubes and centrifuged for 5 min. The upper solutions in the centrifuge tubes were removed, and the gathered sedimentparticulates were put into the beakers again.

    (3) Hydrochloric acid was added into the samples in the beakers and stirred with a glass rod until the bubbling phenomenon stopped.

    (4) Steps (2) and (3) were repeated three times.

    After the extraction, the inorganic matter, metal oxides, and organic matter were regarded to be completely removed. The obtained sediment mineral matrix samples were dried and stored in vials prior to the adsorption experiments.

    2.2 Sediment mineral matrix analysis

    The particle size analysis of the sediment mineral matrix was performed using a LS 13320 Saturn Digisizer. The specific surface area, pore distribution, and pore volume of the sediment mineral matrix samples were analyzed with a JK-BW nitrogen adsorption instrument.

    2.3 Sorption kinetic measurements

    The dried sediment mineral matrix samples (each of them had a mass of 0.1g) were put into a series of 200-mL reaction bottles with 100 mL of inorganic phosphorus solution (anhydrous KH2PO4) with an initial phosphorus concentration of 2 mg/L. The pH values of the solutions were maintained at 7.50±0.05 by adding 0.01 mol/L of NaOH and 0.01 mol/L of HCl. Each test was carried out three times, and the average results were recorded if the results of the three tests varied within a certain range. All reaction bottles were sealed and incubated at 18±0.3℃ in a thermostatic oscillator at a rotational speed of 190 r/min. The sample solutions were taken at different time (5, 10, 20, 30, 60, 120, 180, 240, 480, and 720 min) and centrifuged immediately at a rotational speed of 5 000 r/min for 10 min. The supernatant was immediately filtered through 0.45-μm Whatman GF/C filters for phosphorus analysis. The total phosphorus concentration in the sediment mineral matrix samples was monitored using the molybdenum-blue complex method (Murphy and Riley 1962).

    The Elovich equation, quasi-first-order adsorption kinetic equation, and quasi-second-order adsorption kinetic equation (Chien and Clayton 1980) were used to model the adsorption kinetic process. They can be expressed, respectively, as follows:

    whereqtis the amount of phosphorus adsorbed by the sediment mineral matrix sample (mg/g) at timet,αis the initial adsorption rate (mg/(g·min2)),βis the desorption coefficient (g·min/mg),tis time (min),qeis the amount of phosphorus adsorbed (mg/g) at equilibrium,k1is the rate constant of the quasi-first-order equation (min-1), andk2is the rate constant of the quasi-second-order equation (g/(mg·min)).

    2.4 Sorption isotherm measurements

    In each isotherm measurement, the dried sediment mineral matrix samples (each of them had a mass of 0.25 g) were put into 300-mL reaction bottles with 250 mL of inorganic phosphorus solution (anhydrous KH2PO4). Each test was performed under ten initial phosphorus concentrations: 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 10 mg/L. The pH values of the solutions were maintained at 7.50±0.05 by adding 0.01 mol/L of NaOH and 0.01 mol/L of HCl. After 12 h of equilibration, the solutions were centrifuged at a rotational speed of 5 000 r/min for 10 min, and the supernatant was immediately filtered through 0.45-μm Whatman GF/C filters for phosphorus analysis. The Langmuir isotherm model and Freundlich isotherm model were used to study the adsorption isotherm. They can be expressed, respectively, as follows:

    whereCeis the dissolved phosphorus concentration in solution (mg/L) at equilibrium,qmis the maximum phosphorus adsorption amount (mg/g),K1is the Langmuir adsorption coefficient (L/mg),Kfis the Freundlich adsorption coefficient (mg/g·(L/mg)n), andnis a constant determined by experiments.

    3 Results and discussion

    3.1 Characteristics of sediment mineral matrix

    Fig. 1 shows the particle size distributions of four groups of sediment mineral matrix samples. D1 had the largest nonuniformity, including clay and silt (in the United States Department of Agriculture (USDA) system). Due to the limitation of the analysis method, group D1 could not be further subdivided in the experiment. Particles in D2 were mainly silt, while D3 was fine sand, and D4 was fine-medium sand. The parameters of surface properties for the four groups of sediment mineral matrices are listed in Table 1. Fig. 2 shows that an exponential relationship exists between the median particle size (D50) and specific surface area (Sg), and the rate of increase ofSgis slow from D4 to D2, but very steep from D2 to D1. This indicates that the fine sediment mineral matrix sample has a relatively large specific surface area and pore volume.

    Fig. 1 Gradation curves of four groups of sediment mineral matrices

    Table 1 Properties of four groups of sediment mineral matrices

    Fig. 2 Relationship between median particle size and specific surface area of sediment mineral matrix

    3.2 Adsorption kinetics

    Fig. 3 shows the variation ofqtwithtfor four groups of sediment mineral matrices, together with the fitted curves according to the Elovich, quasi-first-order, and quasi-second-order equations. It can be seen that the amount of phosphorus adsorbed is affected by the particle size of the sediment mineral matrix. The kinetic process of the phosphorus adsorption appears to occur in three distinct stages: an initial fast adsorption stage, a relatively gradual adsorption stage, and an eventual equilibrium state where the amount of phosphorus adsorbed reaches a maximum, which has been demonstrated in many studies. D2, D3, and D4 reached the eventual equilibrium in 4 to 5 h. D1 took about 7 h to achieve equilibrium. The results show that the sediment mineral matrix with a smaller particle size has a larger adsorption capacity and needs a longer time to reach the adsorption equilibrium. It can be seen from Fig. 3 that the Elovich equation underestimates the amount of phosphorus adsorbed in the initial rapid adsorption stage, while the quasi-first-order equation overestimates it. In the relatively gradual adsorption stage, on the contrary, the Elovich equation overestimates the amount of phosphorus adsorbed, while the quasi-first-order equation underestimates it. The quasi-second-order equation accurately describes the whole adsorption process.

    The values of the parameters in the Elovich, quasi-first-order, and quasi-second-order adsorption kinetic equations are shown in Table 2. Of the three equations, the quasi-second-order equation has the highest correlation coefficient (R2). From Fig. 3 and Table 2, it can be concluded that the quasi-second-order equation provides the best representatio n of the kinetic adsorption process.

    Fig. 3 Observed amounts of phosphorus adsorbed by four groups of sediment mineral matrices and predicted values using three equations

    Table 2 Kinetic parameters of different adsorption kinetic equations for different sediment particle sizes

    3.3 Adsorption isotherm

    3.3.1 Phosphorus equilibrium adsorption of sediment mineral matrices with different particle sizes

    As shown in Fig. 4, the phosphorus equilibrium adsorption capacity of D1 is much larger than those of D2, D3, and D4, and the phosphorus equilibrium adsorption capacity decreases with the increase of the particle size of the sediment mineral matrix, which indicates that the phosphorus equilibrium adsorption capacity of the fine sediment mineral matrix is generally larger than that of the coarse sediment mineral matrix.

    Fig. 4 Adsorption isotherms of sediment mineral matrices with different particle sizes

    The parameters in the Langmuir isotherm model and the Freundlich isotherm model are listed in Table 3. From Table 3, it can be concluded that the Langmuir isotherm model better depicts the adsorption isotherm trend with the higher correlation coefficients ranging between 0.98 and 0.99, compared with the Freundlich isotherm model. Table 3 shows that a larger particle size causes a smallerqm, which is in agreement with the relationship between the particle size and equilibrium adsorption capacity discussed above.

    Table 3 Parameters in Langmuir and Freundlich isotherm models

    3.3.2 Effects of initial phosphorus concentration on equilibrium adsorption capacity

    To investigate the effects of the initial phosphorus concentration on the equilibrium adsorption capacity, the Langmuir adsorption kinetic equation was used in conjunction with the mass conservation equation.

    The total amount of phosphorus in a reactor, which consists of the dissolved phase and the adsorbed phase, should remain constant at any time. Therefore, the mass conservation equation can be expressed as

    The Langmuir adsorption kinetic equation can be expressed as

    and the initial conditions are

    whereCtis the phosphorus concentration in the solution (mg/L) at timet,Vis the total volume of the solution (L),k3is the adsorption rate coefficient (L/(mg·min)),k4is thedesorption rate coefficient (min-1),sis the sediment mineral matrix concentration (g/L),ρsis the sediment mineral matrix density (g/L),q0is the initial amount of adsorbed phosphorus (mg/g), andC0is the initial phosphorus concentration (mg/L).

    If we define, thenandcan be calculated by the following formulae (Huang 2003), which are derived from Eqs. (6) and (7):

    When equilibrium adsorption is achieved, bothqeandCeare dependent on the sediment mineral matrix concentrations, the initial amount of adsorbed phosphorusq0, the initial phosphorus concentrationC0, and the adsorption-desorption characteristics of the sediment mineral matrix, such as the maximum phosphorus adsorption amountqm, and the ratio of the desorption rate coefficient to adsorption rate coefficientk.

    The influence ofC0onqecan be evaluated using Eq. (9). The theoretical prediction is in agreement with the experimental results as shown in Fig. 5. Fig. 5 shows thatqeincreases nonlinearly with the increase ofC0, and the rate of increase ofqeslows down with the increase ofC0, which are consistent with previous research on natural sediments (Wang et al. 2009; Wang et al. 2012).qereaches a maximum value whenC0is sufficiently high. Then, the adsorption amount ceases to increase even ifC0increases. This phenomenon is caused by the less active areas available for phosphorus adsorption at a largeC0(Jin et al. 2005). The relationship betweenC0andqeprovides a way to predict the equilibrium adsorptio n capacity with different initial phosphorus concentrations.

    Fig. 5 Effect of initial phosphorus concentration on phosphorus equilibrium adsorption capacity

    3.3.3 Effect of sediment mineral matrix particle size on phosphorus equilibrium adsorption capacity

    Fig. 6 shows that the phosphorus equilibrium adsorption capacity decreases with the increase of the median particle size of the sediment mineral matrix. As the initial phosphorus concentration increases,qeof D1 (0 to 30 μm) increases more significantly than those of D2, D3, and D4 (Fig. 5). As previously discussed in this study (Table 1), the specific surface areaand pore volume decrease with the increase of the particle size of the sediment mineral matrix. This may be the direct reason for the decrease of the phosphorus equilibrium adsorption capacity. This indicates that the specific surface area and pore volume are the main factors that determine the phosphorus equilibrium adsorption capacity of the sediment mineral matrix.

    Fig. 6 Effect of median particle size on phosphorus equilibrium adsorption capacity

    4 Conclusions

    The surface properties and phosphorus adsorption of the sediment mineral matrix were investigated in this study. The conclusions are as follows:

    (1) The relationship between the mean particle size and specific surface area of the sediment mineral matrix is exponential. The fine sediment mineral matrix has a relatively large specific surface area and pore volume.

    (2) Compared with the Elovich equation and quasi-first-order adsorption kinetic equation, the quasi-second-order adsorption kinetic equation can best describe the adsorption kinetics. The effects of the initial phosphorus concentration (C0) on the equilibrium adsorption capacity (qe) can be estimated by Eq. (9).qeincreases nonlinearly with the increase ofC0, the rate of increase ofqedecreases with the increase ofC0, andqereaches a maximum value whenC0is sufficiently high.

    可視化是三維模型設(shè)計的最大特點,也是相比傳統(tǒng)設(shè)計的優(yōu)勢所在。以變送器為例,設(shè)計人員可以非常直觀地看到變送器與取源點的位置關(guān)系,以及安裝場地的周邊情況,進而根據(jù)氣上液下的原則調(diào)整變送器與取源點的相對位置關(guān)系,旋轉(zhuǎn)、移動變送器到便于安裝檢修的朝向及位置,同時避開其他的設(shè)備、管道和結(jié)構(gòu)。變送器建模示例如圖1所示。

    (3) The specific surface area and pore volume decrease with the increase of the particle size of the sediment mineral matrix, leading to a decrease in phosphorus equilibrium adsorption capacity. The specific surface area and pore volume are the main factors that determine the phosphorus equilibrium adsorption capacity of the sediment mineral matrix.

    Chien, S. H., and Clayton, W. R. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils.Soil Science Society of America Journal, 44(2), 265-268. [doi:10.2136/sssaj1980. 03615995004400020013x]

    Evans, D. J., Johnes, P. J., and Lawrence, D. S. 2004. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2: The sediment phase.Science of the Total Environment, 329(1-3), 165-182. [doi:10.1016/j.scitotenv.2004.02.023]

    Fang, H. W., Chen, M. H., and Chen, Z. H. 2008. Surface pore tension and adsorption characteristics of polluted sediment.Science in China Series G: Physics, Mechanics and Astronomy, 51(8), 1022-1028.[doi:10.1007/s11433-008-0104-8]

    House, W. A., Denison, F. H., Smith, J. T., and Armitage, P. D. 1995. An investigation of the effects of water velocity on inorganic phosphorus influx to a sediment.Environmental Pollution, 89(3), 263-271. [doi:10.1016/0269-7491(94)00071-K]

    Huang, S. L. 2003. Investigation of cadmium desorption from different-sized sediments.Journal of Environmental Engineering, 129(3), 241-247. [doi:10.1061/(ASCE)0733-9372(2003)129:3(241)]

    Jenne, E. A. 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: The significant role of hydrous Mn and Fe oxides.Advance in Chemistry, 73, 337-387. [doi:10.1021/ ba-1968-0073.ch021]

    Koeppenkastrop, D., and De Carlo, E. H. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach.Chemical Geology, 95(3-4), 251-263. [doi:10.1016/ 0009-2541(92)90015-W]

    Murphy, J., and Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters.Analytica Chimica Acta, 27, 31-36. [doi:10.1016/S0003-2670(00)88444-5]

    Sánchez-Martín, M. J., Dorado, M. C., Del Hoyo, C., and Rodríguez-Cruz, M. S. 2008. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.Journal of Hazardous Materials, 150(1), 115-123. [doi:10.1016/j.jhazmat.2007.04.093]

    Schroth, B. K., and Sposito, G. 1998. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite.Environmental Science and Technology, 32(10), 1404-1408. [doi:10.1021/es970587q]

    Tang, H. X., Xue, H. B., Lin, G. Z., Gao, L., Tian, B. Z., Lei, P. J., Dong, X. R., and Cao, F. C. 1981. Adsorption characteristics of cadmium pollutants on the chinese clay minerals.Acta Scientiae Circumstantiae, 1(2), 140-155. (in Chinese)

    Wang, S. R., Jin, X. C., Zhao, H., Zhou, X. C., and Wu, F. C. 2007. Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3), 154-162. [doi:10.1016/j.colsurfa.2006.10.040]

    Wang, X. Y., Zhang, L. P., Zhang, H. S., Wu, X. Y., and Mei, D. L. 2012. Phosphorus adsorption characteristics at the sediment-water interface and relationship with sediment properties in FUSHI reservoir, China.Environmental Earth Sciences, 67(1), 15-22. [doi:10.1007/s12665-011-1476-z]

    Wang, Y., Shen, Z., Niu, J., and Liu, R. 2009. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions.Journal of Hazardous Materials, 162(1), 92-98. [doi:10.1016/j.jhazmat.2008.05.013]

    Withers, P. J. A., and Jarvie, H. P. 2008. Delivery and cycling of phosphorus in rivers: A review.Science of the Total Environment, 400(1-3), 379-395. [doi:10.1016/j.scitotenv.2008.08.002]

    Zhang, J., Huang, W. W., Liu, M. G., and Zhou, Q. 1990. Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang).Journal of Geophysical Research: Oceans, 95(C8), 13277-13288. [doi:10.1029/JC095iC08p13277]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grants No. 51179055, 51239003, and 51125034), and the Special Fund of State Key Laboratory of China (Grant No. 2010585512).

    *Corresponding author (e-mail:13910077892@139.com)

    Apr. 24, 2013; accepted Jun. 4, 2013

    猜你喜歡
    源點朝向變送器
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 21:48:35
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 05:15:04
    烏龜快跑
    XTR105電流變送器在溫度傳感器中的應(yīng)用
    電子制作(2018年12期)2018-08-01 00:47:40
    隱喻的語篇銜接模式
    首屆“絲路源點·青年學(xué)者研討會”主題論壇在我校成功舉辦
    首屆“絲路源點·青年學(xué)者研討會”主題論壇在我校成功舉辦
    淺析井控坐崗的源點
    朝向坐標
    上海制造(2013年11期)2014-03-26 08:02:06
    浙江中控 高精度壓力變送器SUPCON新一代CXT系列
    少妇猛男粗大的猛烈进出视频| 狠狠狠狠99中文字幕| av一本久久久久| 久久天躁狠狠躁夜夜2o2o| 热99久久久久精品小说推荐| 亚洲专区国产一区二区| 亚洲精品国产色婷婷电影| 一区二区三区精品91| 他把我摸到了高潮在线观看 | 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美成人综合另类久久久| 日韩三级视频一区二区三区| 欧美老熟妇乱子伦牲交| 国产xxxxx性猛交| 十八禁网站免费在线| 久久亚洲国产成人精品v| 一区福利在线观看| 精品人妻1区二区| 国产无遮挡羞羞视频在线观看| 两个人看的免费小视频| 青春草亚洲视频在线观看| 日本av手机在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 麻豆av在线久日| 国产精品国产av在线观看| 韩国高清视频一区二区三区| 无限看片的www在线观看| 精品久久蜜臀av无| 亚洲一码二码三码区别大吗| videos熟女内射| 国产人伦9x9x在线观看| 日韩欧美一区二区三区在线观看 | 最新的欧美精品一区二区| 久久ye,这里只有精品| 亚洲精品久久久久久婷婷小说| 精品国产一区二区三区四区第35| 丰满少妇做爰视频| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美视频一区| 久久精品国产综合久久久| 老司机午夜福利在线观看视频 | 淫妇啪啪啪对白视频 | 又大又爽又粗| 国产精品国产av在线观看| 97精品久久久久久久久久精品| 一级毛片电影观看| 在线av久久热| 最近中文字幕2019免费版| 日本欧美视频一区| 亚洲精品第二区| www.熟女人妻精品国产| 香蕉国产在线看| 亚洲中文av在线| 午夜免费成人在线视频| 岛国在线观看网站| 91大片在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 美女高潮喷水抽搐中文字幕| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久二区二区免费| 日本一区二区免费在线视频| 99精国产麻豆久久婷婷| 免费黄频网站在线观看国产| 手机成人av网站| 国产熟女午夜一区二区三区| 人人妻人人爽人人添夜夜欢视频| 9热在线视频观看99| 9色porny在线观看| 香蕉国产在线看| 一二三四社区在线视频社区8| 秋霞在线观看毛片| 亚洲欧美日韩高清在线视频 | 亚洲av片天天在线观看| 1024视频免费在线观看| 久久精品国产a三级三级三级| 青草久久国产| 国产成人精品在线电影| 妹子高潮喷水视频| 国产免费视频播放在线视频| 夜夜夜夜夜久久久久| 精品国产乱码久久久久久男人| 欧美精品高潮呻吟av久久| 夜夜骑夜夜射夜夜干| 在线观看免费午夜福利视频| www.av在线官网国产| 久久人人97超碰香蕉20202| 99国产精品一区二区三区| 大码成人一级视频| 亚洲一区二区三区欧美精品| 蜜桃在线观看..| 欧美 日韩 精品 国产| 中文字幕精品免费在线观看视频| 国产精品成人在线| 久久精品人人爽人人爽视色| 涩涩av久久男人的天堂| 国产成人精品久久二区二区免费| 日韩一卡2卡3卡4卡2021年| 黄色视频,在线免费观看| 丝瓜视频免费看黄片| 久久国产亚洲av麻豆专区| 色婷婷av一区二区三区视频| 男女边摸边吃奶| 欧美日本中文国产一区发布| 亚洲av成人不卡在线观看播放网 | av一本久久久久| 国产精品成人在线| 国产精品自产拍在线观看55亚洲 | videos熟女内射| 国产精品99久久99久久久不卡| 老司机午夜福利在线观看视频 | 99九九在线精品视频| 高清在线国产一区| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利免费观看在线| 国产在线观看jvid| 亚洲精品在线美女| 欧美国产精品va在线观看不卡| 操美女的视频在线观看| 久久久国产精品麻豆| 日韩精品免费视频一区二区三区| 777久久人妻少妇嫩草av网站| 免费高清在线观看日韩| 涩涩av久久男人的天堂| 一边摸一边做爽爽视频免费| 美女福利国产在线| av片东京热男人的天堂| 国产男女超爽视频在线观看| 在线观看一区二区三区激情| 建设人人有责人人尽责人人享有的| 日本猛色少妇xxxxx猛交久久| 欧美成狂野欧美在线观看| 人人妻人人澡人人爽人人夜夜| 曰老女人黄片| 中文字幕精品免费在线观看视频| www.熟女人妻精品国产| 久久精品久久久久久噜噜老黄| 午夜福利在线免费观看网站| 国产一区有黄有色的免费视频| 黄色视频在线播放观看不卡| 国精品久久久久久国模美| 精品久久蜜臀av无| 久久久国产成人免费| 国产有黄有色有爽视频| 他把我摸到了高潮在线观看 | 午夜福利视频精品| 欧美人与性动交α欧美精品济南到| 一个人免费在线观看的高清视频 | 丝袜美足系列| 国产成人av教育| 国产色视频综合| 1024视频免费在线观看| 亚洲七黄色美女视频| 成人免费观看视频高清| 18禁国产床啪视频网站| 亚洲欧美色中文字幕在线| 三上悠亚av全集在线观看| 国产精品国产三级国产专区5o| 精品高清国产在线一区| 人人澡人人妻人| 午夜久久久在线观看| 欧美中文综合在线视频| 操出白浆在线播放| 国产免费福利视频在线观看| 色94色欧美一区二区| 狠狠婷婷综合久久久久久88av| 日韩欧美一区二区三区在线观看 | 欧美精品av麻豆av| 亚洲精品中文字幕一二三四区 | 久久国产精品影院| 91大片在线观看| 欧美少妇被猛烈插入视频| 大码成人一级视频| 电影成人av| 免费观看av网站的网址| 亚洲精品粉嫩美女一区| 涩涩av久久男人的天堂| 中文字幕制服av| 国产视频一区二区在线看| 一区二区三区激情视频| 久久影院123| 午夜老司机福利片| 麻豆国产av国片精品| 免费观看av网站的网址| 欧美日韩中文字幕国产精品一区二区三区 | 男女国产视频网站| 狂野欧美激情性xxxx| 亚洲伊人久久精品综合| 国产一区二区在线观看av| 黄色片一级片一级黄色片| 制服诱惑二区| 1024视频免费在线观看| 国产成人精品久久二区二区91| 另类亚洲欧美激情| 无遮挡黄片免费观看| 新久久久久国产一级毛片| 国产精品影院久久| 飞空精品影院首页| 亚洲国产精品999| 美女高潮喷水抽搐中文字幕| 麻豆av在线久日| 欧美一级毛片孕妇| 精品卡一卡二卡四卡免费| 国产日韩欧美视频二区| 欧美激情 高清一区二区三区| 国内毛片毛片毛片毛片毛片| 免费在线观看黄色视频的| 日本av手机在线免费观看| 水蜜桃什么品种好| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 亚洲国产欧美在线一区| 色综合欧美亚洲国产小说| 一本—道久久a久久精品蜜桃钙片| 视频区图区小说| 最新在线观看一区二区三区| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区精品| 69精品国产乱码久久久| 国产黄色免费在线视频| cao死你这个sao货| 国内毛片毛片毛片毛片毛片| 精品久久久久久久毛片微露脸 | 啦啦啦免费观看视频1| 国产精品麻豆人妻色哟哟久久| 老汉色∧v一级毛片| 另类精品久久| 飞空精品影院首页| 国产日韩欧美亚洲二区| tube8黄色片| 巨乳人妻的诱惑在线观看| 巨乳人妻的诱惑在线观看| 国产免费av片在线观看野外av| 日韩视频在线欧美| h视频一区二区三区| 人妻一区二区av| 亚洲av美国av| 大香蕉久久网| videosex国产| 亚洲av电影在线进入| cao死你这个sao货| 亚洲精品国产精品久久久不卡| 人妻 亚洲 视频| 精品少妇黑人巨大在线播放| 国产一卡二卡三卡精品| 99国产精品免费福利视频| 性高湖久久久久久久久免费观看| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 欧美激情 高清一区二区三区| 国产深夜福利视频在线观看| 成年av动漫网址| 亚洲少妇的诱惑av| 极品少妇高潮喷水抽搐| 久久久国产欧美日韩av| 国产在线观看jvid| av欧美777| 日韩,欧美,国产一区二区三区| 久久久水蜜桃国产精品网| 性高湖久久久久久久久免费观看| av视频免费观看在线观看| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| 一级黄色大片毛片| 亚洲熟女毛片儿| 丝袜在线中文字幕| 日韩欧美国产一区二区入口| 女人被躁到高潮嗷嗷叫费观| 亚洲少妇的诱惑av| 无遮挡黄片免费观看| 啦啦啦免费观看视频1| 久久久精品免费免费高清| 宅男免费午夜| 香蕉丝袜av| 人成视频在线观看免费观看| 欧美在线一区亚洲| 电影成人av| 免费观看av网站的网址| 国产精品 国内视频| 免费人妻精品一区二区三区视频| 99国产精品一区二区蜜桃av | 99久久99久久久精品蜜桃| 热99国产精品久久久久久7| 日韩中文字幕欧美一区二区| 欧美亚洲日本最大视频资源| 欧美+亚洲+日韩+国产| avwww免费| 日韩欧美免费精品| bbb黄色大片| 在线av久久热| 搡老乐熟女国产| 大片免费播放器 马上看| 亚洲五月色婷婷综合| 亚洲精品国产av蜜桃| 一区二区三区激情视频| av天堂在线播放| av视频免费观看在线观看| 色94色欧美一区二区| 亚洲欧美一区二区三区黑人| 国产精品久久久久久人妻精品电影 | 中文欧美无线码| 国产欧美日韩综合在线一区二区| 最新在线观看一区二区三区| 两个人看的免费小视频| 99九九在线精品视频| 国产精品1区2区在线观看. | 亚洲av电影在线观看一区二区三区| 久久久久精品国产欧美久久久 | 亚洲第一欧美日韩一区二区三区 | tube8黄色片| 成人国产一区最新在线观看| 欧美精品高潮呻吟av久久| 十八禁网站网址无遮挡| 免费看十八禁软件| 欧美另类一区| 亚洲av片天天在线观看| 在线十欧美十亚洲十日本专区| 亚洲欧美精品综合一区二区三区| 超碰97精品在线观看| 男女午夜视频在线观看| a级片在线免费高清观看视频| 18禁国产床啪视频网站| 1024香蕉在线观看| 亚洲av美国av| 一本一本久久a久久精品综合妖精| 巨乳人妻的诱惑在线观看| 99国产精品免费福利视频| 肉色欧美久久久久久久蜜桃| 日韩大码丰满熟妇| 热99re8久久精品国产| 国产亚洲午夜精品一区二区久久| 国产亚洲欧美精品永久| 一区二区三区四区激情视频| 中文字幕精品免费在线观看视频| 午夜激情av网站| 国产精品影院久久| 久久中文看片网| 免费高清在线观看日韩| av网站免费在线观看视频| 精品熟女少妇八av免费久了| 2018国产大陆天天弄谢| 淫妇啪啪啪对白视频 | 国产免费一区二区三区四区乱码| 一级黄色大片毛片| 国产精品久久久av美女十八| 少妇被粗大的猛进出69影院| 国产成人精品在线电影| 超色免费av| 成人三级做爰电影| 美女福利国产在线| 国产精品国产三级国产专区5o| 丰满饥渴人妻一区二区三| 亚洲国产看品久久| 久久女婷五月综合色啪小说| 十八禁人妻一区二区| 十分钟在线观看高清视频www| 亚洲综合色网址| 啦啦啦在线免费观看视频4| 精品福利观看| 亚洲av成人不卡在线观看播放网 | 狠狠婷婷综合久久久久久88av| 99国产精品一区二区蜜桃av | av福利片在线| 欧美国产精品一级二级三级| 精品国产国语对白av| 热re99久久精品国产66热6| 日韩视频在线欧美| 99国产综合亚洲精品| 亚洲熟女精品中文字幕| www.精华液| 91九色精品人成在线观看| 亚洲精品国产区一区二| 亚洲成人国产一区在线观看| 青草久久国产| 国产精品一区二区免费欧美 | 成人国产一区最新在线观看| 亚洲男人天堂网一区| 国产免费福利视频在线观看| 国产福利在线免费观看视频| 少妇人妻久久综合中文| 成人18禁高潮啪啪吃奶动态图| 亚洲成人手机| 午夜视频精品福利| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 午夜久久久在线观看| 99国产精品一区二区三区| 嫩草影视91久久| 国产精品九九99| 香蕉国产在线看| 制服人妻中文乱码| 女性被躁到高潮视频| videos熟女内射| 五月开心婷婷网| 日本一区二区免费在线视频| 正在播放国产对白刺激| 欧美日韩av久久| 巨乳人妻的诱惑在线观看| 国产有黄有色有爽视频| 日韩一卡2卡3卡4卡2021年| 无限看片的www在线观看| 精品一品国产午夜福利视频| 精品人妻在线不人妻| 欧美+亚洲+日韩+国产| 欧美老熟妇乱子伦牲交| 中亚洲国语对白在线视频| 美女扒开内裤让男人捅视频| 欧美精品啪啪一区二区三区 | 精品福利观看| 涩涩av久久男人的天堂| 在线天堂中文资源库| 国产成人精品无人区| 首页视频小说图片口味搜索| 国产成人精品久久二区二区免费| av免费在线观看网站| 一区福利在线观看| 亚洲av日韩在线播放| 99久久精品国产亚洲精品| 国产99久久九九免费精品| 不卡一级毛片| 99国产精品免费福利视频| 麻豆国产av国片精品| 啦啦啦在线免费观看视频4| 纯流量卡能插随身wifi吗| 国产在线视频一区二区| 久久九九热精品免费| 丰满迷人的少妇在线观看| 国产精品一二三区在线看| 一二三四社区在线视频社区8| 久久久久国内视频| 正在播放国产对白刺激| 亚洲三区欧美一区| 精品少妇黑人巨大在线播放| 91国产中文字幕| 久久99热这里只频精品6学生| 超碰97精品在线观看| 视频区欧美日本亚洲| 成人国产av品久久久| 国产在线观看jvid| 肉色欧美久久久久久久蜜桃| 久久久久久亚洲精品国产蜜桃av| 国产免费视频播放在线视频| 国产高清视频在线播放一区 | 黄频高清免费视频| 少妇的丰满在线观看| 国产日韩欧美视频二区| 一级片免费观看大全| 男女免费视频国产| 亚洲综合色网址| 水蜜桃什么品种好| 一本综合久久免费| 久久久久久免费高清国产稀缺| 天天躁夜夜躁狠狠躁躁| 啦啦啦 在线观看视频| 99香蕉大伊视频| 99国产精品99久久久久| av线在线观看网站| 亚洲av日韩精品久久久久久密| 欧美亚洲 丝袜 人妻 在线| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 久久99热这里只频精品6学生| 亚洲专区中文字幕在线| 亚洲欧美一区二区三区黑人| 91大片在线观看| 乱人伦中国视频| a级毛片在线看网站| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 视频在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 日本欧美视频一区| 中文欧美无线码| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看 | 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 国产日韩欧美在线精品| www.av在线官网国产| 久久久久视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美变态另类bdsm刘玥| 日韩人妻精品一区2区三区| 欧美久久黑人一区二区| 999精品在线视频| 色94色欧美一区二区| 一本色道久久久久久精品综合| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 中文字幕制服av| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| 日日摸夜夜添夜夜添小说| av天堂在线播放| 狠狠婷婷综合久久久久久88av| 日韩一卡2卡3卡4卡2021年| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 精品久久久精品久久久| 黄片小视频在线播放| 久久精品久久久久久噜噜老黄| 国产成人免费无遮挡视频| 人人妻,人人澡人人爽秒播| 男女下面插进去视频免费观看| 久久久久国产一级毛片高清牌| 曰老女人黄片| 久久久欧美国产精品| 99久久国产精品久久久| 一边摸一边抽搐一进一出视频| 欧美精品高潮呻吟av久久| cao死你这个sao货| 久久久久久久精品精品| 999精品在线视频| 99国产综合亚洲精品| 国产精品 欧美亚洲| 婷婷成人精品国产| 国产av精品麻豆| 亚洲综合色网址| 在线观看www视频免费| 久久女婷五月综合色啪小说| 欧美中文综合在线视频| 欧美日韩黄片免| 成年美女黄网站色视频大全免费| 亚洲免费av在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 精品国内亚洲2022精品成人 | 色综合欧美亚洲国产小说| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区| 欧美精品一区二区免费开放| 丝袜美足系列| 在线观看免费视频网站a站| 91av网站免费观看| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 日韩 亚洲 欧美在线| 亚洲av电影在线进入| www.熟女人妻精品国产| 老司机靠b影院| 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 国产在线一区二区三区精| 国产成人精品无人区| 看免费av毛片| 精品国产一区二区三区四区第35| 午夜福利在线观看吧| 少妇猛男粗大的猛烈进出视频| 好男人电影高清在线观看| 99国产精品一区二区蜜桃av | 国产一区二区在线观看av| 丝袜脚勾引网站| 黄色视频不卡| 国产亚洲欧美在线一区二区| av一本久久久久| 国产欧美日韩一区二区三区在线| 成在线人永久免费视频| 青春草亚洲视频在线观看| 国产一区有黄有色的免费视频| 久久免费观看电影| 精品卡一卡二卡四卡免费| 十八禁网站网址无遮挡| 99热网站在线观看| 一本久久精品| 国产精品二区激情视频| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲高清精品| 中文字幕另类日韩欧美亚洲嫩草| 首页视频小说图片口味搜索| 不卡一级毛片| 欧美在线一区亚洲| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 成年女人毛片免费观看观看9 | 亚洲人成电影免费在线| 老司机影院成人| 俄罗斯特黄特色一大片| 黑人欧美特级aaaaaa片| 日韩电影二区| 桃花免费在线播放| 好男人电影高清在线观看| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 亚洲,欧美精品.| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 久久精品亚洲av国产电影网| 老司机影院成人| 亚洲av美国av| 亚洲国产欧美在线一区| 国产成人欧美| 欧美精品人与动牲交sv欧美| 精品国产国语对白av| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 91成人精品电影| 免费在线观看黄色视频的| 欧美成人午夜精品| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 精品乱码久久久久久99久播| 欧美另类亚洲清纯唯美| 十八禁高潮呻吟视频| 在线观看免费午夜福利视频| 麻豆乱淫一区二区| 久久人妻福利社区极品人妻图片| 免费不卡黄色视频| 动漫黄色视频在线观看| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 免费高清在线观看日韩|