• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and Operation-State Estimation of Current-Mode Controlled Flyback Converter

    2013-06-19 16:16:43GuoDongShiQiuJuanCaoBoChengBaoandZhengHuaMa

    Guo-Dong Shi, Qiu-Juan Cao, Bo-Cheng Bao, and Zheng-Hua Ma

    Dynamics and Operation-State Estimation of Current-Mode Controlled Flyback Converter

    Guo-Dong Shi, Qiu-Juan Cao, Bo-Cheng Bao, and Zheng-Hua Ma

    —By utilizing total magnetic fluxφof the primary and secondary windings of the flyback transformer as a state variable, the discrete-time model of current-mode controlled flyback converter is established, upon which the bifurcation behaviors of the converter are analyzed and two boundary classification equations of the orbit state shifting are obtained. The operation- state regions of the current-mode controlled flyback converter are well classified by two boundary classification equations. The theoretical analysis results are verified by power electronics simulator (PSIM). The estimation of operation-state regions for the flyback converter is useful for the design of circuit parameters, stability control of chaos, and chaos-based applications.

    Index Terms—Bifurcation, chaos, discrete-time model, flyback converter.

    1. Introduction

    Bifurcation phenomena and border collision have been studied in buck, boost, and buck-boost converters[1]–[3]. In recent years, these phenomena have been also studied in peak-current-controlled superbuck converter[4], singleinductor dual-switching dc-dc converter[5], and boost PFC (power factor correction) converter[6]. However, few studies have been performed on isolated converter, such as flyback converter[7],[8]. In flyback converter, the secondary winding current of the transformer is zero when the switch is turned on, whereas the primary winding current of the transformer is zero when the switch is turned off. Thus the inductance currents of the primary and secondary windings of the transformer are discontinuous and can not be regarded as state variables to analyze the bifurcation behaviors. For this reason, total ampere-turns of the primary and secondary windings of the transformer have been presented as one of the variables to analyze the bifurcation behaviors on voltage-mode controlled flyback converter[8]. In this paper, we consider the total magnetic flux of the primary and secondary windings as a state variable to describe the dynamics of current-mode controlled flyback converter.

    In current-mode controlled switching dc-dc converters, the operation-states may shift from continuous conduction mode (CCM) to discontinuous conduction mode (DCM), and three operation-state regions classified by stable period region, robust chaos region in CCM, and intermittent chaos region in DCM exist in the current-mode controlled switching dc-dc converters with the variations of circuit parameters, such as input voltage, output voltage, or reference current[4],[9]–[11]. Some methods have been developed to locate the boundary of the period-one zone of switching dc-dc converters[12]–[14], and an approach to locate two boundaries of three operation-state regions of current-mode controlled switching dc-dc converters has been proposed recently[11]. In this paper, the dynamics of a current-mode controlled flyback converter is analyzed through a discrete-time map model covering both CCM and DCM, and two boundary classification equations dividing three smooth operation-state regions over the parameter space of the converter are derived.

    2. Modeling of Current-Mode Controlled Flyback Converter

    2.1 Flyback Converter with Current-Mode Control

    The schematic of current-mode controlled flyback converter is shown in Fig. 1, in which the main circuit topology is a second-order circuit consisting of an inductor L, a capacitor C, a switch S, a diode D, a load resistor R and a transformer.

    Fig. 1. Current-mode controlled flyback converter.

    The parameters of the transformer in Fig. 1 are the primary winding leakage inductanceL1, the secondary winding leakage inductanceL2, and the turn ratio of the primary and secondary windingsN1:N2. A timer generates a free-running clock which controls the operation of current-mode control loop. The converter is controlled by a feedback loop consisting of a comparator and a RS trigger.

    Fig. 2 shows the waveforms of the currents and the corresponding total magnetic flux of the primary and secondary windings of the flyback transformer. The switch S is turned on at the beginning of each switching cycle, and during the time interval when the switch S is turned on, the primary winding currenti1rises linearly and the secondary winding currenti2equals to zero. The switch S is turned off wheni1increases to a reference currentIref, and during the time interval when the switch S is turned off,i1equals to zero andi2decreases. In CCM,i2is always non-zero, while in DCM,i2decreases to zero during the time interval when the switch S is turned off and remains at zero until the end of switching cycle. Because the switching frequency of flyback converter is usually much higher than the natural frequency of the converter, the dynamics of the outer voltage loop is much slower and can be ignored, and the output of the flyback converter can be represented by a constant voltage sourceVo[9],[11]. Under this assumption, the current-mode controlled flyback converter becomes onedimensional and the inductor current waveform becomes piecewise linear.

    2.2 State Equations

    Since two currentsi1andi2are discontinuous and can not be regarded as state variables[8], we consider the total magnetic fluxφof the primary and secondary windings as a state variable to describe the dynamics of the flyback converter. The expression ofφis

    whereΨ1andΨ2are the magnetic flux linkages of the primary and secondary windings of the transformer, respectively.

    The converter can be regarded as a system with a variable structure that toggles its topologies according to the states of the switches as shown in Fig. 2. Typically, when the converter operates in DCM, three switch states can be identified as follow:

    State 1: switch S on and diode D off.

    State 2: switch S off and diode D on.

    State 3: switch S off and diode D off.

    Fig. 2. Waveforms of the inductance currents and the magnetic flux.

    When the converter operates in CCM, only two switch states are identified by State 1 and State 2, i.e., the state 3 does not appear in CCM. Thus, the system operating in both CCM and DCM can be described by the following state equations.

    State 1: When S is on, D is off,i2= 0,φ=L1i1/N1anddφ/dt= (L1/N1)di1/dt. The state equation is

    State 2: When S is off, D is on,i1= 0, soφ=L2i2/N2anddφ/dt=(L2/N2)di2/dt. The relationship between the primary inductorL1and the secondary inductorL2is. Thus the state equation is

    State 3: When the converter operates in DCM, both S and D are off,i1=i2= 0. The state equation is

    2.3 Two Borders

    For current-mode controlled flyback converter operating in DCM, there are two borders in the discrete state-space. The borderφb1is defined as the total magnetic flux of the primary and secondary windings at the beginning of switching cycle when the currenti1reachesIrefjust at the end of the switching cycle. The borderφb2is defined as the total magnetic flux of the primary and secondary windings at the beginning of switching cycle which decreases to zero just at the end of the switching cycle. Fig. 3 shows the total magnetic flux waveforms of current-mode controlled flyback converter at these borders. Fig. 3 (a) shows the evolution of total magnetic flux ifφn=φb1, where the currenti1reachesIrefat the end of the switching cycle, and the switch S remains on throughout this switching cycle. Fig. 3 (b) shows the evolution of total magnetic flux ifφn=φb2, where the currenti2decreases to zero at the end of the switching cycle.

    Based on the definitions of these two borders, we can easily obtain two borders of the total magnetic flux,φb1andφb2, as below:

    Fig. 3. Total magnetic flux waveforms of current-mode controlled flyback converter with two borders: (a)φn=φb1,φn+1=L1Iref/N1and (b) φn=φb2, φn+1= 0.

    2.4 Discrete-Time Model

    With these two borders given by (5) and (6), there are three types of orbits between consecutive clock instants.

    1)φn≤φb1. The switch remains on throughout the switching cycle, and the map is easily derived from (2) and given by

    2)φb1<φn<φb2. The magnetic flux of the primary winding increases toL1Iref/N1and then the magnetic flux of the secondary winding decreases until the end of the switching cycle, and the map is derived from (3) and given by

    3)φn≥φb2. The inductance currenti2of the secondary winding decreases to zero during thenth switching cycle, i.e., the converter enters DCM. Thus, at the end of thenth switching cycle, we have

    Thus, the discrete-time model of current-mode controlled flyback converter can then be written in the form:

    Based on three piecewise linear equations containing two borders, the discrete map model of current-mode controlled flyback converter is obtained and the corresponding dynamical analysis can be performed.

    3. Dynamics and Operation-State Estimation

    3.1 Dynamics of Current-Mode Controlled Flyback Converter

    By utilizing the discrete-time model (10), the bifurcation to chaotic behavior of current-mode controlled flyback converter with circuit parameters variation can be effectively exhibited. The numerical simulations are performed by using MATLAB software platform with following parameters:Iref= 1.2 A,L1= 1 mH,T= 100 μs, andN1:N2= 3:2. If we fixE= 7 V and takeVoas bifurcation parameter, we can obtain the magnetic flux bifurcation diagram with the increasing ofVoas shown in Fig. 4 (a). If we fixVo= 9 V and takeEas bifurcation parameter, then we can obtain the magnetic flux bifurcation diagram with the increasing ofEas shown in Fig. 4 (b). In Fig. 4, two bordersφb1andφb2are plotted by using the dashed line and dash-dot line, respectively.

    From Fig. 4, it is found that the current-mode controlled flyback converter has complex dynamical behaviors. First consideringVoas variable, whenVoincreases gradually, a period-doubling bifurcation occurs atVo= 4.67 V. After the occurrence of period-doubling bifurcation, the unstable periodic orbit with period-two collides with the borderφb1, resulting in a border collision bifurcation at the same parameter value, and the operation-state of the converter goes into the robust chaos with CCM from the stable period. WhenVoincreases further, the chaotic orbit collides with the borderφb2atVo= 8 V, resulting in another border collision bifurcation, and the operation-state of the converter shifts into the intermittent chaos with DCM from the robust chaos with CCM. Then consideringEas variable, whenEdecreases gradually, a reverse period-doubling bifurcation occurs atE= 13.5 V. After the occurrence of period-doubling bifurcation, the converter operates in DCM, i.e., the currenti2remains at zero in the durations of some switching cycles, the unstable periodic orbit collides with the borderφb2, resulting in a border collision bifurcation at the same parameter, and the operation-state of the converter directly enters into sub-harmonics with DCM. WhenEdecreases further, the unstable periodic orbit collides with the borderφb1atE=L1Iref/T= 12 V, resulting in the nonzero periodic orbit to be folded. The folded non-zero periodic orbit collides with the borderφb2atE= 10.8 V, and a period-four orbit emerges from the period-two orbit. The operation-state of the converter jumps into the intermittent chaos with DCM from the period-sixteen orbit atE=8.17 V.

    Fig. 4. Dynamics of current-mode controlled flyback converter: (a) Bifurcation diagram withVoincreasing and (b) Bifurcation diagram withEincreasing.

    The above analysis results show that there exist three operation-state regions, i.e., stable period region, robust chaos region with CCM, and intermittent chaos region with DCM, in current-mode controlled flyback converter. Especially, the super-stable periodic orbits exist in DCM due to the occurrence of zero eigenvalue[9]. The converter shows weak chaos and strong intermittency, which means that the chaotic behavior becomes weak in DCM[10].

    3.2 Boundary Classification Equations for Operation-State

    From (10), the eigenvalueλof the characteristic equation for current-mode controlled flyback converter is given byλ= –N1Vo/N2E. To ensure stable operation,λmust fall between –1 and 1[15]. The first period-doubling occurs whenλ= –1. Hence, by puttingλ= –1, the first boundary classification equationσ1for the operation mode shifting from the stable period-one to subharmonics and chaos will be

    which implies that if the circuit parameters satisfyσ1> 0, i.e.Vo<N2E/N1, the converter operates with periodic oscillation, otherwise with subharmonics or chaotic oscillation.

    It is clear that the maximum total magnetic flux at the end of thenth switching cycle isφn+1,max=L1Iref/N1. When the total magnetic flux of the flyback converter reaches the borderφb2, the border collision bifurcation and operation-state shift occur. Under this condition, there existsφb2=φn+1,max, i.e. Therefore, the second boundary classification equationσ2for the operation-state region shifting from CCM to DCM will be

    Fig. 5. Estimation of operation-state regions for current-mode controlled flyback converter: (a) parameter space map ofVoandEand (b) corresponding division of operation-state regions.

    If the circuit parameters satisfyσ2< 0, i.e.,Vo>N2L1Iref/N1T, the converter will operate in DCM, otherwise in CCM.

    It is remarkable thatσ1only depends on the input voltageE, the output voltageVo, and the turns ratio of the primary and secondary windings of the transformer, whileσ2depends on all of circuit parameters of current-mode controlled flyback converter except for the input voltageE.

    3.3 Estimation of Operation-State Regions

    Considering the circuit parameters with rangesE= 2~18 V andVo= 2 ~ 12 V, and letingIref= 1.2 A,L1= 1 mH,T= 100 μs, andN1:N2= 3:2, we can obtain the parameter space map as shown in Fig. 5 (a). The higher periodicities are depicted with deeper gray levels, the darker shade areas imply chaos, while the white and shallower gray areas mean low period.

    The three smooth operation-state regions of currentmode controlled flyback converter over the parameter space can be divided by above boundary classification equationsσ1andσ2. Fig. 5 (b) shows the regions of the orbit operation-states corresponding to Fig. 5 (a). From (11) and (12), the two boundaries areσ1:Vo=N2E/N1andσ2:Vo=N2L1Iref/N1Trespectively. The boundaryσ1is called as the first period-doubling bifurcation borderline and the boundaryσ2is called as the operation mode shifting borderline. The regions of stable period-one, robust chaos in CCM, and intermittent chaos in DCM are shown in Fig. 5 (b). From the parameter space map, the different operation-state regions of the converter can be demonstrated clearly.

    It is visible that the 1-D bifurcation diagrams ofφnversusVoandEin Fig. 4 (a) and Fig. 4 (b) can be obtained along the paths from point A to point B and from point C to point D in Fig. 5 (a), respectively. It should also be noted that the boundary classification equationσ2will lose its physical significance when current-mode controlled flyback converter is located in stable operation-state region.

    3.4 PSIM Simulation Results

    In order to verify theoretical analysis, the PSIM (power electronics simulator) simulations of the current-mode controlled flyback converter are performed with the parameters as mentioned above, by first fixingE= 7 V and thenVo= 9 V. With the increasing ofVoorE, the waveforms of the primary winding currenti1and the secondary winding currenti2of the flyback transformer are obtained in Fig. 6 and Fig. 7. Fig. 6 depicts that with the variation of output voltageVo: 4 V, 4.68 V, 7 V and 10 V, the period-1 with CCM, period-2 with CCM, robust chaos with CCM, and intermittent chaos with DCM occur respectively. Fig. 7 describes that with the variation of inputvoltageE: 5 V, 9.5 V, 12 V, and 14 V, the intermittent chaos with DCM, period-4 with DCM, period-2 with DCM, and period-1 with CCM occur respectively. These simulation results are consistent with those results shown in Fig. 4.

    Considering the other four sets of circuit parameters locating in the different operation-state regions divided by two boundary classification equationsσ1andσ2in Fig. 5 (b), we can further obtain the simulation results as shown in Fig. 8. Fig. 8 (a) shows that when the circuit parameters are located in CCM robust chaos region in Fig. 5 (b), the converter is in chaotic state with CCM. Fig. 8 (b) depicts that when the circuit parameters are just located at the boundaryσ2in Fig. 5 (b), the secondary winding currenti2decreases to zero at the end of some switching cycle, and the operation-state shifts between CCM and DCM. The circuit parameters for Fig. 8 (c) are located in DCM intermittent chaos region in Fig. 5 (b), thus the converter is in chaotic state with intermittency. While the circuit parameters locating in DCM intermittent chaos region in Fig. 5 (b) are selected, the converter operates at period-2 with DCM, as shown in Fig. 8 (d).

    Fig. 6. Simulation waveforms whileVois increased along the path from point A to point B in Fig. 5 (a): (a) CCM, period-1 forVo= 4 V, (b) CCM, period-2 forVo= 4.68 V, (c) CCM, robust chaos forVo= 7 V, and (d) DCM, intermittent chaos forVo= 10 V.

    Fig. 7. Simulation waveforms whileEis increased along the path from point C to point D in Fig. 5 (a): (a) DCM, intermittent chaos forE= 5 V, (b) DCM, period-4 forE= 9.5 V, (c) DCM, period-2 forE= 12 V, and (d) CCM, period-1 forE= 14 V.

    Fig. 8. Simulation waveforms whileEandVoare arbitrarily selected in different operation-state regions of Fig. 5(b): (a) CCM, robust chaos forE= 3 V andVo= 6 V, (b) shifting between CCM and DCM, critical robust chaos forE= 6 V andVo= 8 V, (c) DCM, intermittent chaos forE= 5 V andVo= 10 V, and (d) DCM, period-2 forE= 12 V andVo= 11 V.

    4. Conclusions

    With the variations of circuit parameters such as input voltage and output voltage, the current-mode controlled flyback converter exhibits two borders and its operationstates can shift between stable period-1, robust chaos in CCM, and intermittent chaos in DCM via period-doubling bifurcation and border collision bifurcation. Two boundary classification equations of operation-state regions can characterize the constitutive relations that the current-mode controlled flyback converter shifts among different operation-states. Utilizing total magnetic fluxφof the primary and secondary windings as a state variable, we establish the discrete-time model with two borders, analyze the bifurcation behaviors, and obtain two boundary classification equations. The estimated operation-states by two boundary classification equations are verified by PSIM simulation results of the current-mode controlled flyback converter.

    [1] C. K. Tse and M. Di Bernardo, “Complex behavior in switching power converters,”Proc.IEEE, vol. 90, no. 5, pp. 768–781, 2002.

    [2] G. Yuan, S. Banerjee, E. Ott, and J. A. Yorke, “Bordercollision bifurcations in the buck converter,”IEEE Trans. on Circuits and Systems Part I: Fundamental Theory and Applications, vol. 45, no. 7, pp. 707–716, 1998.

    [3] B. Basak and S. Parui, “Exploration of bifurcation and chaos in buck converter supplied from a rectifier,”IEEE Trans. on Power Electronics, vol. 25, no. 6, pp. 1556–1564, 2010.

    [4] M. Karppanen, J. Arminen, T. Suntio, K. Savela, and J. Simola, “Dynamical modeling and characterization of peak-current-controlled superbuck converter,”IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1370–1380, 2008.

    [5] V. Moreno-Font, A. E. Aroudi, J. Calvente, R. Giral, and L. Benadero, “Dynamics and stability issues of a single-inductor dual-switching dc-dc converter,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 415–426, 2010.

    [6] F. Wang, H. Zhang, and X. Ma, “Analysis of slow-scale instability in boost PFC converter using the method of harmonic balance and floquet theory,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 405–414, 2010.

    [7] F. H. Hsieh, K. M. Lin, and J. H. Su, “Chaos phenomenon in UC3842 current-programmed flyback converters,” inthe 4th IEEE Conf. Ind. Electron. Appl., Xi’an, 2009, pp. 166–171.

    [8] F. Xie, R. Yang, and B. Zhang, “Bifurcation and border collision analysis of voltage-mode-controlled flyback converter based on total ampere turns,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 58, no. 9, pp. 2269–2280, 2011.

    [9] T. Kabe, S. Parui, H. Torikai, S. Banerjee, and T. Saito,“Analysis of piecewise constant models of current mode controlled DC-DC converters,”IEICE Trans. Fundamentals, vol. E90-A, no. 2, pp. 448–456, 2007.

    [10] S. Parui and S. Banerjee, “Bifurcations due to transition from continuous conduction mode to discontinuous conduction mode in the boost converter,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 50, no. 11, pp. 1464–1469, 2003.

    [11] B.-C. Bao, G.-H. Zhou, J.-P. Xu, and Z. Liu, “Unified classification of operation-state regions for switching converters with ramp compensation,”IEEE Trans. Power Electronics, vol. 26, no. 7, pp. 1968–1975, 2011.

    [12] A. E. Aroudi, E. Rodriguez, R. Leyva, and E. Alarcon, “A design-oriented combined approach for bifurcation in switched-mode power converters,”IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 57, no. 3, pp. 218–222, 2010.

    [13] E. Toribio, A. El Aroudi, G. Olivar, and L. Benadero,“Numerical and experimental study of the region of period-one operation of a PWM boost converter,”IEEE Trans. Power Electronics, vol. 15, no. 6, pp. 1163–1171, 2000.

    [14] K. W. E. Cheng, M. Liu, and J. Wu, “Chaos study and parameter-space analysis of the DC-DC buck-boost converter,”IEE Proc. Electric Power Applications, vol. 150, no. 2, pp. 126–138, 2003.

    [15] R. W. Erickson and D. Maksimovi?,Fundamentals of Power Electronics, 2nd ed., Norwell: Kluwer, 2001.

    Guo-Dong Shiwas born in Jiangsu, China in 1956. He is currently a professor with the School of Information Science and Engineering, Changzhou University, Changzhou, China. His research interests include electrical automation and applications, and artificial intelligence.

    Qiu-Juan Caowas born in Jiangsu, China in 1988. She is currently pursuing the M.S. degree with School of Information Science and Engineering, Changzhou University. Her research interests include the control technology of switching power converter.

    Zheng-Hua Mawas born in Jiangsu, China in 1962. He is currently a professor with the School of Information Science and Engineering, Changzhou University. His research interests include power electronic technology and embedded development with applications.

    Bao

    the B.S. and M.S. degrees in electronic engineering from the University of Electronics Science and Technology of China, Chengdu, China in 1986 and 1989, respectively, and the Ph.D. degree from the Department of Electronic Engineering, Nanjing University of Science and Technology, Nanjing, China in 2010. Dr. Bao is currently a professor with the School of Information Science and Engineering, Changzhou University. His research interests include bifurcation and chaos, analysis and simulation in power electronic circuits, and nonlinear circuits and systems.

    Manuscript received December 6, 2012; revised February 10, 2013. This work was supported by the National Natural Science Foundation of China under Grant No. 51277017 and the Natural Science Foundation of Changzhou, Jiangsu Province, China under Grant No. CJ20120004.

    B.-C. Bao is with the School of Information Science and Engineering, Changzhou University, Changzhou 213164, China (Corresponding author e-mail: mervinbao@126.com).

    G.-D. Shi, Q.-J. Cao, and Z.-H. Ma are with the School of Information Science and Engineering, Changzhou University, Changzhou 213164, China (e-mail: sgd@cczu.edu.cn; jsjma@126.com; qiujuan@126.com).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.03.013

    亚洲最大成人手机在线| 午夜日本视频在线| 男女边吃奶边做爰视频| 国产美女午夜福利| 久久久a久久爽久久v久久| 九草在线视频观看| 精品久久久久久久久亚洲| 青春草亚洲视频在线观看| 五月天丁香电影| 伊人久久国产一区二区| 亚洲成色77777| 欧美bdsm另类| 视频中文字幕在线观看| 国产美女午夜福利| 免费av观看视频| 中文天堂在线官网| 国产黄a三级三级三级人| 一级毛片我不卡| 亚洲久久久久久中文字幕| 亚洲,欧美,日韩| 精品不卡国产一区二区三区| 高清日韩中文字幕在线| 亚洲综合精品二区| 日本一本二区三区精品| 最近中文字幕2019免费版| 五月伊人婷婷丁香| 69人妻影院| 久久人人爽人人片av| 欧美一级a爱片免费观看看| 国产老妇女一区| 日韩不卡一区二区三区视频在线| 美女xxoo啪啪120秒动态图| 亚洲国产精品成人久久小说| 国产激情偷乱视频一区二区| 婷婷色麻豆天堂久久| 国产亚洲91精品色在线| 久久久久网色| 亚洲人成网站在线观看播放| 日韩精品青青久久久久久| 精品久久久久久久久av| 亚洲精品成人av观看孕妇| 天堂av国产一区二区熟女人妻| 欧美xxⅹ黑人| 国产亚洲午夜精品一区二区久久 | 成人国产麻豆网| 黑人高潮一二区| 日本av手机在线免费观看| 麻豆精品久久久久久蜜桃| 午夜视频国产福利| 日韩一本色道免费dvd| 国产黄a三级三级三级人| 久久久久精品性色| 欧美日本视频| 91av网一区二区| 青青草视频在线视频观看| 日本黄色片子视频| 欧美激情久久久久久爽电影| 日韩不卡一区二区三区视频在线| 男插女下体视频免费在线播放| 中文字幕亚洲精品专区| 国产精品1区2区在线观看.| 亚洲成人精品中文字幕电影| 视频中文字幕在线观看| 狠狠精品人妻久久久久久综合| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 国产高清国产精品国产三级 | 亚洲av电影在线观看一区二区三区 | 成人无遮挡网站| 亚洲av电影不卡..在线观看| 免费av不卡在线播放| 亚洲国产av新网站| 国产亚洲精品久久久com| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载 | or卡值多少钱| 晚上一个人看的免费电影| 久久久久久久久久成人| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 一级黄片播放器| 久久久久久久久中文| 纵有疾风起免费观看全集完整版 | 婷婷色av中文字幕| 中文资源天堂在线| 国产不卡一卡二| 两个人视频免费观看高清| 久热久热在线精品观看| 一个人看的www免费观看视频| 久久精品久久久久久噜噜老黄| 一区二区三区四区激情视频| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 国产一区亚洲一区在线观看| 最近的中文字幕免费完整| 久久久欧美国产精品| 亚洲精品亚洲一区二区| 嫩草影院新地址| 国产精品蜜桃在线观看| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 亚洲成人一二三区av| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 午夜免费激情av| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 久久久久久久久大av| 能在线免费看毛片的网站| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| 日本与韩国留学比较| 久久久久久久久久黄片| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 日本wwww免费看| 性插视频无遮挡在线免费观看| 九九爱精品视频在线观看| av天堂中文字幕网| 午夜激情久久久久久久| 成年免费大片在线观看| 国产精品.久久久| 国产不卡一卡二| 国产成人a∨麻豆精品| 高清毛片免费看| av天堂中文字幕网| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 国产 一区 欧美 日韩| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品久久久久久婷婷小说| 舔av片在线| 国产精品一二三区在线看| 免费看光身美女| 成人国产麻豆网| 国产在视频线精品| kizo精华| 久久久成人免费电影| 插阴视频在线观看视频| 国产在线男女| 少妇丰满av| 午夜福利在线观看吧| 一级爰片在线观看| 日本与韩国留学比较| 最近中文字幕高清免费大全6| 久久久久久久大尺度免费视频| 免费大片黄手机在线观看| 成人国产麻豆网| 18禁裸乳无遮挡免费网站照片| 欧美97在线视频| 久久热精品热| 欧美成人a在线观看| 午夜久久久久精精品| 纵有疾风起免费观看全集完整版 | 欧美潮喷喷水| 午夜日本视频在线| 欧美成人一区二区免费高清观看| 精品久久久久久久人妻蜜臀av| 免费高清在线观看视频在线观看| 成人午夜高清在线视频| 夜夜爽夜夜爽视频| 亚洲国产精品sss在线观看| 免费观看无遮挡的男女| 国产探花在线观看一区二区| 日韩欧美精品v在线| av卡一久久| av在线老鸭窝| 国产黄色免费在线视频| 国精品久久久久久国模美| 天堂影院成人在线观看| 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 特大巨黑吊av在线直播| 亚洲av二区三区四区| 久久久久久久久久黄片| 99久国产av精品| 最近中文字幕2019免费版| 国产成人精品婷婷| 婷婷色av中文字幕| 国产一级毛片七仙女欲春2| 男女边吃奶边做爰视频| 国产精品久久久久久久久免| 亚洲av日韩在线播放| 搡老乐熟女国产| 蜜桃亚洲精品一区二区三区| 岛国毛片在线播放| 亚洲自偷自拍三级| 极品教师在线视频| 亚洲成色77777| 亚洲国产欧美人成| 国产精品国产三级国产专区5o| 91狼人影院| 国内揄拍国产精品人妻在线| 一本一本综合久久| 久久久久久久久久成人| 色综合亚洲欧美另类图片| 国产老妇伦熟女老妇高清| 高清视频免费观看一区二区 | 国产色爽女视频免费观看| 精品一区二区三区人妻视频| 国产av国产精品国产| 久久久a久久爽久久v久久| 日韩一本色道免费dvd| 日本免费a在线| 久久精品国产亚洲av天美| 亚洲欧美一区二区三区黑人 | 伦精品一区二区三区| www.色视频.com| 国产精品久久久久久精品电影小说 | 99热6这里只有精品| 久久精品国产亚洲av涩爱| 在线免费观看的www视频| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花 | 国产午夜精品一二区理论片| 久久久久久久久大av| 99热全是精品| 欧美三级亚洲精品| 丝袜美腿在线中文| 看黄色毛片网站| 日本wwww免费看| 久久精品夜色国产| 亚洲第一区二区三区不卡| 亚洲av电影在线观看一区二区三区 | 日韩电影二区| 免费观看a级毛片全部| 亚洲最大成人手机在线| 白带黄色成豆腐渣| 青青草视频在线视频观看| 国产色爽女视频免费观看| 2021天堂中文幕一二区在线观| 美女内射精品一级片tv| 特级一级黄色大片| 五月玫瑰六月丁香| 高清毛片免费看| 亚洲av中文av极速乱| 亚洲婷婷狠狠爱综合网| 内射极品少妇av片p| 最近最新中文字幕免费大全7| 女的被弄到高潮叫床怎么办| 一区二区三区高清视频在线| 能在线免费看毛片的网站| 中国美白少妇内射xxxbb| 中文天堂在线官网| 一夜夜www| 99热这里只有是精品50| 美女主播在线视频| 午夜激情福利司机影院| 免费观看av网站的网址| 午夜福利视频精品| 熟妇人妻久久中文字幕3abv| 国产精品三级大全| av黄色大香蕉| 欧美日韩在线观看h| 毛片女人毛片| 久久久久久久久久久免费av| 国产视频首页在线观看| 亚洲av成人精品一区久久| 国产一区二区三区av在线| 大香蕉97超碰在线| 国产毛片a区久久久久| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 蜜臀久久99精品久久宅男| 成人午夜高清在线视频| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 欧美日韩国产mv在线观看视频 | 真实男女啪啪啪动态图| 亚洲欧美成人综合另类久久久| 简卡轻食公司| 亚洲av日韩在线播放| 搡老妇女老女人老熟妇| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 国产91av在线免费观看| 国产三级在线视频| 午夜激情福利司机影院| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲av涩爱| 国产黄a三级三级三级人| 伊人久久国产一区二区| 精品久久久久久久久亚洲| 韩国av在线不卡| 亚洲国产高清在线一区二区三| 观看美女的网站| 成人欧美大片| 亚洲av免费在线观看| 亚洲精品国产av蜜桃| 日日啪夜夜撸| 国产麻豆成人av免费视频| 亚洲成色77777| 免费看美女性在线毛片视频| 免费看不卡的av| 在线免费观看的www视频| 国产麻豆成人av免费视频| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 免费看日本二区| 国产毛片a区久久久久| 久久久精品94久久精品| 欧美一级a爱片免费观看看| 婷婷六月久久综合丁香| 色视频www国产| 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 99久国产av精品| 神马国产精品三级电影在线观看| 2021少妇久久久久久久久久久| 国产成人精品福利久久| 69av精品久久久久久| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 精品人妻一区二区三区麻豆| 精品一区二区免费观看| 亚洲久久久久久中文字幕| 97人妻精品一区二区三区麻豆| 久久人人爽人人片av| 日韩欧美 国产精品| 午夜免费激情av| 看十八女毛片水多多多| 欧美zozozo另类| 国产伦在线观看视频一区| 一级毛片电影观看| 午夜视频国产福利| 肉色欧美久久久久久久蜜桃 | 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 午夜爱爱视频在线播放| av网站免费在线观看视频 | 亚洲成色77777| 最近中文字幕高清免费大全6| 国产亚洲精品av在线| 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 国产av在哪里看| 国语对白做爰xxxⅹ性视频网站| 久久久久国产网址| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 精品久久久久久久久av| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| av在线天堂中文字幕| 欧美潮喷喷水| 少妇的逼好多水| 国产一区有黄有色的免费视频 | 一级av片app| 亚洲精品自拍成人| 毛片女人毛片| 久久久久久久久久成人| www.色视频.com| 亚洲国产精品成人久久小说| www.av在线官网国产| 亚洲精品国产成人久久av| 亚洲在线观看片| 国产成人免费观看mmmm| 国产 一区 欧美 日韩| 久久久久久伊人网av| 内地一区二区视频在线| 久久久久精品久久久久真实原创| 欧美成人精品欧美一级黄| 街头女战士在线观看网站| 99热6这里只有精品| 午夜福利高清视频| 精品欧美国产一区二区三| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 熟女电影av网| 99久国产av精品国产电影| 一级毛片黄色毛片免费观看视频| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 精品久久久精品久久久| 九九在线视频观看精品| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 伦精品一区二区三区| 我要看日韩黄色一级片| 久久久久免费精品人妻一区二区| 国产av国产精品国产| 欧美激情久久久久久爽电影| 色播亚洲综合网| 久久精品国产亚洲av涩爱| 超碰av人人做人人爽久久| 免费看不卡的av| 91久久精品国产一区二区三区| 日韩欧美一区视频在线观看 | 久久亚洲国产成人精品v| 淫秽高清视频在线观看| 中文资源天堂在线| 婷婷六月久久综合丁香| 高清毛片免费看| 99久久精品热视频| 国产高清三级在线| 97在线视频观看| 午夜视频国产福利| 舔av片在线| 久久亚洲国产成人精品v| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 日韩av免费高清视频| 欧美一级a爱片免费观看看| xxx大片免费视频| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 青春草视频在线免费观看| 天堂√8在线中文| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 亚洲国产日韩欧美精品在线观看| 最近中文字幕高清免费大全6| 黄色配什么色好看| 午夜老司机福利剧场| 久久久久久久久久人人人人人人| 男插女下体视频免费在线播放| av.在线天堂| 禁无遮挡网站| av.在线天堂| 2021少妇久久久久久久久久久| 国产免费福利视频在线观看| 国产淫片久久久久久久久| 国内精品美女久久久久久| 美女cb高潮喷水在线观看| 熟女电影av网| av女优亚洲男人天堂| 精品人妻偷拍中文字幕| 免费看av在线观看网站| 日本wwww免费看| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 啦啦啦韩国在线观看视频| 高清av免费在线| 成人午夜精彩视频在线观看| 亚洲最大成人av| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 日韩国内少妇激情av| 毛片一级片免费看久久久久| 免费av不卡在线播放| 最后的刺客免费高清国语| 高清午夜精品一区二区三区| 国产69精品久久久久777片| 免费看a级黄色片| 国产精品一二三区在线看| 久久国产乱子免费精品| 久久久久久久国产电影| 七月丁香在线播放| 精品国内亚洲2022精品成人| 夫妻午夜视频| kizo精华| 一区二区三区四区激情视频| 在线a可以看的网站| 日韩亚洲欧美综合| 男人舔奶头视频| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 男女那种视频在线观看| 色哟哟·www| 91狼人影院| 91精品伊人久久大香线蕉| 色网站视频免费| 在现免费观看毛片| 日韩人妻高清精品专区| 99热这里只有是精品在线观看| av免费观看日本| 亚洲不卡免费看| 在线免费观看的www视频| 免费观看精品视频网站| 听说在线观看完整版免费高清| 十八禁网站网址无遮挡 | 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看| 国产有黄有色有爽视频| 亚洲国产精品成人久久小说| 国产av在哪里看| 亚洲久久久久久中文字幕| 亚洲自偷自拍三级| 欧美人与善性xxx| 18禁在线无遮挡免费观看视频| 日本免费在线观看一区| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 国产高清三级在线| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 国产精品久久视频播放| 我的老师免费观看完整版| 欧美xxxx性猛交bbbb| 五月伊人婷婷丁香| 成人美女网站在线观看视频| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 精品一区二区三区视频在线| 2021天堂中文幕一二区在线观| 狠狠精品人妻久久久久久综合| 国产 亚洲一区二区三区 | 免费少妇av软件| 91久久精品国产一区二区三区| 欧美人与善性xxx| 18禁在线无遮挡免费观看视频| 成年女人看的毛片在线观看| 国产精品一区www在线观看| 美女大奶头视频| 日日啪夜夜爽| 亚洲精品国产成人久久av| 国产精品一区二区三区四区免费观看| 亚洲精品国产av成人精品| 久久久午夜欧美精品| 欧美日韩亚洲高清精品| 亚洲av免费在线观看| 久久久欧美国产精品| 女人十人毛片免费观看3o分钟| .国产精品久久| av女优亚洲男人天堂| 亚洲成人精品中文字幕电影| 精品亚洲乱码少妇综合久久| 色哟哟·www| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影小说 | 国产又色又爽无遮挡免| 色播亚洲综合网| 亚洲av日韩在线播放| 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 中文字幕久久专区| 欧美一区二区亚洲| 色网站视频免费| 99热6这里只有精品| 亚洲怡红院男人天堂| 成人一区二区视频在线观看| 国产黄片视频在线免费观看| 日本免费在线观看一区| a级毛色黄片| 免费播放大片免费观看视频在线观看| 国产色婷婷99| 超碰av人人做人人爽久久| 久久久久久久久久久免费av| 亚洲欧美中文字幕日韩二区| av播播在线观看一区| 真实男女啪啪啪动态图| 国产综合精华液| 免费观看av网站的网址| 天堂俺去俺来也www色官网 | 国产91av在线免费观看| 男女边吃奶边做爰视频| 亚洲成色77777| 国产黄色视频一区二区在线观看| 精品人妻视频免费看| 国产大屁股一区二区在线视频| 国产精品爽爽va在线观看网站| 免费无遮挡裸体视频| 国产精品嫩草影院av在线观看| 亚洲av国产av综合av卡| 亚洲国产精品国产精品| 我要看日韩黄色一级片| 全区人妻精品视频| 极品教师在线视频| 国产亚洲91精品色在线| 国产一区二区三区综合在线观看 | 一区二区三区四区激情视频| 寂寞人妻少妇视频99o| 干丝袜人妻中文字幕| 爱豆传媒免费全集在线观看| 麻豆成人av视频| 18禁裸乳无遮挡免费网站照片| 日本与韩国留学比较| 亚洲人成网站高清观看| 亚洲aⅴ乱码一区二区在线播放| 国产永久视频网站| 欧美高清性xxxxhd video| 久久久久久久午夜电影| 国产精品一区二区在线观看99 | 午夜福利高清视频| 亚洲av在线观看美女高潮| 亚洲av电影在线观看一区二区三区 | 日韩一本色道免费dvd| 国产在线一区二区三区精| 成人漫画全彩无遮挡| av在线蜜桃| 女的被弄到高潮叫床怎么办| 淫秽高清视频在线观看| 在线天堂最新版资源| 麻豆av噜噜一区二区三区| 一边亲一边摸免费视频| 成人亚洲精品一区在线观看 | 一级二级三级毛片免费看| 午夜福利在线观看免费完整高清在| 国产精品蜜桃在线观看| 色综合站精品国产| 欧美日韩综合久久久久久| 国产69精品久久久久777片| 床上黄色一级片| 成年版毛片免费区| 国产乱来视频区| 一边亲一边摸免费视频| 国产伦一二天堂av在线观看|