• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of flow fluctuation attenuation performance of a surge tank*

    2013-06-01 12:29:59GUOLanlan郭蘭蘭
    關(guān)鍵詞:李東蘭蘭

    GUO Lan-lan (郭蘭蘭)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China, E-mail: gllgo@163.com

    LIU Zheng-gang (劉正剛), GENG Jie (耿介), LI Dong (李東), DU Guang-sheng (杜廣生)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    Numerical study of flow fluctuation attenuation performance of a surge tank*

    GUO Lan-lan (郭蘭蘭)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China, E-mail: gllgo@163.com

    LIU Zheng-gang (劉正剛), GENG Jie (耿介), LI Dong (李東), DU Guang-sheng (杜廣生)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    (Received September 11, 2013, Revised September 26, 2013)

    The surge tank plays an important role in ensuring the stability of a water flow standard device. To study the influence of the structure and the working conditions on the regulator performance of a surge tank, a three-dimensional model, including a surge tank, the pipeline and the water tank is built, and the VOF model in the Fluent software is used to simulate the two-phase pulsatile flow in the surge tank. The inlet flow pulsation is defined by the User Defined Functions (UDF), and the outlet flow is set to be a free jet. By calculating the flow fluctuation coefficient of the variation under different flow conditions, the influences of the pulse frequency, the initial water level height and the baffle plate structure on the flow stability are analyzed. It is shown that the surge tank has a good attenuation effect on high-frequency pulsations, there is an optimal initial water level to suppress the fluctuations, the round holes of the baffle should ensure a certain circulation area with the bore diameter small enough to have the necessary damping effect.

    surge tank, numerical simulation, VOF, flow stability

    Introduction

    The flow stability is an important feature and indicator of the water flow standard device, which is related directly with the repeatable verification of the flow meters and has an impact on the uncertainty calculation of differential pressure flowmeters[1]. The flow fluctuation is caused by the pressure pulsation at the water pump outlet. To stabilize the flow, a tower or surge tank is usually installed between the pump and the test line. The tower can ensure a constant pressure and achieve a good flow stability through the overflow. However, the tower has many shortcomings such as the limited pressure head, the long construction period, the high investment and the difficulty to relocation. The surge tank is a sealed pressure tank which uses the compressibility of the enclosed air and the baffle located in the tank to suppress the flow fluctuation. Compared with the tower, the surge tank can have a higher pressure head, a smaller size and a lower investment. So the surge tank is widely used by many small and medium enterprises, as well as scientific research and measurement institutions to ensure a constant water pressure of flow standard devices.

    The surge tank is a kind of pulsation attenuator used to relieve the pressure and the flow pulsation in the pipeline. The studies of the pulsation attenuator involve the pulse generating mechanism, the process of the pulse transfer in the pipe, the performance of the attenuation and the matching between the attenuation and the system[2-6]. Reference [7] proposed mathematical models of the system by the wave method or the frequency method to study the attenuation performance, and the local pressure was assumed constant in the process of solving related equations, regardless of the shape of the cavity and the impact of the local pressure loss. References [8]-[10] made quantitative analyses of the structural parameters related with the attenuation performance impact, but the outlet pressurewas still treated as a fixed value, which is clearly incompatible with the actual situations. The flow in the surge tank is an air-water two-phase flow and is more complex than a single-phase flow. Reference [11] presented a simulation of the pure liquid phase flow, without considering the effect of the gas phase and the attenuation of the pulsating flow. This paper establishes a model that contains the surge tank, the pipelines and the water tank with an atmospheric pressure outlet, to simulate the two-phase flow in the surge tank by using the VOF numerical model. The jet boundary condition is used while the water flows into the water tank and the constant pressure boundary condition is used in the top of the water tank. The boundary conditions are consistent with the actual situation. On this basis, the flow stabilization performance of the surge tank is studied with the VOF model through using the Fluent software.

    Fig.1 Calculation domain

    1. Numerical models

    In the surge tank are air-water two phase fluids. The free surface is simulated by the VOF model, with a volume fraction variable for each phase. The interface between the two phases is determined by solving for the volume fraction variable. In the surge tank is a turbulent flow, so the standardkε- turbulence model is used. The near-wall region is processed with the wall function.

    1.1VOF model[12]

    The continuity equation for the volume fraction

    The momentum equation where (the subscript 1 represents the gas phase and the subscript 2 the liquid phase ):χis the volume fraction of the gas phase,ρis the density of the mixture,ρ=χρ1+(1-χ)ρ2,μis the viscosity coefficient,μ=χμ1+(1-χ)μ2,tis the time,uis the velocity vector of the two phase fluid,pis the pressure,gis the acceleration of gravity,Fis the equivalent volume force due to the surface tension.

    1.2The standardkε-model[13]

    kequation

    wherekσandεσare the turbulent Prandtl numbers ofkandεcoefficients,kGis the turbulent kinetic energy produced by the gradient of the average velocity,bGis the turbulence kinetic energy produced by the flotage,MYexpresses the panting action caused bythe diffusivity of the compressible turbulent flow,1Cε,C2ε,C3εare constant coefficients, andSεandSkare the source items user-defined.

    Fig.2 Structure sizes of the surge tank and baffle

    2. The geometric model and boundary conditions

    2.1Computing area and meshingThe c

    alculation domain is shown in Fig.1. The water from the pump flows into the water tank after the pressure fluctuations are suppressed by the surge tank. At the initial time, the top of the surge tank and the whole water tank are filled with air, the bottom of the surge tank is filled with water. The surge tank is a cylindrical container, which is divided into inlet and outlet cavities by a vertical baffle. Their structure sizes are shown in Fig.2. The inner diameter of the surge tank isDb=0.28 m, its height is 0.5 m and the head radius isR=0.022 m. The height and the thickness of the baffle are 0.35 m and 0.004 m. The diameter of the round holes in the baffle isDh=0.02 m, and the space between them is 0.0044 m. Fig.3 shows grids of the surge tank. The round holes of the baffle and the head portion of the surge tank are meshed with unstructured grids, and the other area is meshed with structured grids. The grids in the round hole are refined, and the minimum mesh size is 0.002 m. The whole grid number is about 1.2×106. By monitoring residuals (10–6for energy, and 10–3for others), the convergence of each calculation step is checked.

    Fig.3 Grid meshing

    2.2Boundary conditions

    The flow fluctuation caused by the pressure fluctuation on the centrifugal pump outlet can be considered as in a sine form:Qi=Q+Δqsin(2πft), where the amplitude Δqis about 5% of the average flow rate14,15], f is the frequency of the pressure pulsation. A is the mass flow rate inlet and the sine periodic signal is defined by the UDF.Bis the pressure outlet.

    3. Validation of the calculation method

    The ab

    ove settings are adopted to simulate the fluctuation flow. The flow stability of the monitor surface is represented by the flow fluctuation coefficient[ 15]

    wheremδis the flow fluctuation coefficient,maxvqandminvqare, respectively, the maximum and the minimum instantaneous flow at a certain flow rate.

    Fig.4 Experimental set-up

    The average flow rate at the surge tank inlet isQ=5.4 m3/h, the pulsation frequency isf=10 Hz and the amplitu de is Δq=5%/Q. In order t o verify thecorrectnessofthenumericalcalculation,experi-mental measurements using the same equipment (see Fig.4.) are made, and 60 instantaneous flow rates are recorded with the electromagnetic flow meters to calculate the flow fluctuation coefficient. A comparison of the results is shown in Table 1.

    Table 1 Comparison of experimental and numerical values

    4. Numerical calculation and analysis

    The effect of the surge tank is related to many factors, such as the pulse frequency, the structure or state parameters, the installation position and the pipeline characteristics[14].

    4.1Influence of the pulsation frequency on the flow stability

    The flow rate3of the centrifugal pump before the surge tank is 8 m/h and its head is 65 m. In Ref.[14]where the pump is a closed structure with a small flow rate and a high head, the frequency of the3outlet pulsation is low. When the flow rate is 2.8 m/h, the main characteristic frequencies are 3 times, 5 times and 6 times of 1 Hz, 10 Hz, 36 Hz, 44 Hz, 29 Hz. So the simulations are carried out at the same flow rate point at frequencies of 2 Hz, 3 Hz, 5 Hz, 10 Hz, 20 Hz, 30 Hz, 40 Hz and 50 Hz.

    Figure 5 shows the flow fluctuation coefficients at pulsation frequencies from 2 Hz to 50 Hz. It can be seen that when the frequency increases, the pulsation attenuation ratio of the flow rate is decreased. That is because the cycle of the low-frequency pulsation is longer than that of the high-frequency pulsation, and much more water flows into the surge tank at the same time. The volume of the air changes greatly, so does the pressure, which lowers the flow stability.

    Fig.5 Flow fluctuation coefficients at different frequencies

    Figure 6 shows the pulsation attenuation rate of the flow rate and the pressure at different frequencies. From Fig.5, it can be seen that the variation trend of the flow rate’s pulsation attenuation rate is in accordance with the pressure’s pulsation attenuation rate, which means that the surge tank suppresses both the pressure and the flow rate pulsation.

    Fig.6 Pulsation attenuation ratios at different frequencies

    Fig.7 Volume fraction cloud maps under different initial water levels

    4.2Influence of the initial water level on the flow stability

    The flow field is simulated at a frequency of 10 Hz with different water levelsL. The contour of the water’s volume fraction is shown in Fig.7. It can be seen that when /=Ld4.4 and /=Ld6, the waterlevel of the inlet cavity is lower than the height of the baffle and there is a big water level difference between the two cavities. The water is injected into the outlet cavity through the round holes in the baffle, which causes large fluctuations. Due to the low water level of the outlet cavity, the air at the free surface is sucked into the outlet pipe. As the water level drops, the suction occurs more frequently and more bubbles are created.

    When /=Ld10 and /=Ld10.8, the water level of the inlet cavity is higher than the height of the baffle and is equal to that of the outlet cavity, therefore, the outlet is immersed in the water and the suction of the air is avoided.

    Figure 8 shows the flow fluctuation coefficients with /=Ld8.4, 9.2, 10 and 10.8. It can be seen thatmδincreases with the water level, which shows that the air volume affects the flow stabilization. Too small volume of the air will hamper the surge action.

    Fig.8 Flow fluctuation coefficients with different initial water levels

    To sum up, too high or too low water level is not good for the flow stabilization. Due consideration of various aspects points to a conclusion that /=Ld9.2 is the most reasonable initial water level. That means that the air-water volume ratio in the surge tank is about 1/2.

    4.3Influence of the baffle structure on the flow stability

    The layout of the round holes in the baffle is shown in Fig.2(b). Simulations are carried out whenDh, respectively, is 0.01 m, 0.015 m, 0.018 m, 0.02 m, 0.022 m, 0.025 m and 0.03 m (f=10 Hz,L/d=9.2). Figure 9 shows the flow fluctuation coefficients with different initial water levels. It can be seen that whenDh=0.02 m and 0.022 m, the flow is most stable. WhenDhis less than 0.02 m,δmincreases evidently. This is because the circulation area is too small to let the water in the inlet cavity flow into the outlet cavity in time. So a water level difference between the inlet cavity and the outlet cavity will result in large fluctuations, as is shown in Fig.10(a). And the low water level of the inlet cavity is prone to bring bubbles into the outlet pipe. Figure 10(b) shows the contour of the water volume fractions whenDh=0.03 m. The water circulation area is enough to keep the water levels of the two cavities at the same surface, so the flow is more stable than whenDh=0.01 m. But with the increase of thehD, the drag coefficient of the baffle is decreased which reduces the surge effect on the water flow. So the curve ofmδrises slightly whilehDis larger than 0.022 m.

    Fig.9 Flow fluctuation coefficients with different hole diameters

    Fig.10 Contours of water’s volume fraction

    5. Conclusions

    The influence of the two-phase flow on the pressure pulsation is studied based on the VOF model of CFD and the results are verified by experiments, which provide a large number of significant scientific data and theoretical guidance to the same type of flow.

    The initial water level in the surge tank is closely related with the surge effect. If the initial water level is too low, there will be a large water level difference between the inlet cavity and the outlet cavity, which make it easy to form the hit impact on the water surface and to suck the air into the outlet pipe. On the other hand, if it is too high, there will be no enough air to reduce the flow fluctuation. So the best surge effectwill be achieved when the volume ratio of air to water is about 0.5. The surge tank has a better attenuation effect on a higher frequency pressure pulsation. The pulsation attenuation ratio reduces rapidly when the pulsation frequency is lower than 10 Hz. The circulation area of the baffle holes should ensure a small water level difference between the inlet and outlet cavities. Then the diameter can be reduced properly to increase the absorption and the surge to the flow fluctuation. The application of the jet exit can provide a certain back pressure to the flow, as well as remove the bondage of the export conditions on the pulsation. One has to deal with a multiphase compressible problem in the study of the pulsation.

    [1] CHINA NATIONAL BUREAU OF TECHNICAL SUPERVISION, JJG164-2000.Chinese National Standards[S]. Beijing, China: Standards Press of China, 2000-06-01(in Chinese).

    [2] LAI Xu, YANG Jian-dong and CHEN jian-zhi. Effects of velocity head and momentum exchange on critical stable sectional area of downstream throttled surge tank[J].Journal of Energy Engineering,2003, 129(3): 96-106.

    [3] FAANES A., SKOGESTAD S. Buffer tank design for acceptable control performance[J].Industrial and Engineering Chemistry Research,2003, 42(10): 2198-2208.

    [4] ORTWIG H. Experimental and analytical vibration analysis in fluid power systems[J].International Journal of Solids and Structures,2005, 42(21-22): 5821-5830.

    [5] KIM S. H. Impluse response method for pipeline systems equipped with water hammer protection devices[J].Journal of Hydraulic Engineering, ASCE,2008, 134(7): 961-969.

    [6] FAANES A., SKOGESTAD S. A systematic approach to the design of buffer tanks[J].Computers and Chemical Engineering,2004, 24(2): 1395-1401.

    [7] KIM S. H. Design of surge tank for water supply systems using the impulse response method with the GA algorithm[J].Journal of Mechanical Science and Technology,2010, 24(2): 629-636.

    [8] SHAN Chang-ji, LIU Xian-hong and WANG Guo-zhi. Flow Characteristics CFD resolution of pressure pulsation attenuator of high pressure piston pump[J].Machine tool and Hydraulics,2005, (7): 113-114(in Chinese).

    [9] ZHANG Yin, Yu Jun and LI Shen et al. Experimental research and CFD simulation of pressure pulsation attenuator[J]. Chinese Hydraulics and Pneumatics,2011, (6): 47-50(in Chinese).

    [10] AN Jian-feng, ZHANG Jian and YU Xiao-dong et al. Influence of flow field on stability of throttled surge tanks with standpipe[J].Journal of Hydrodynamics,2013, 25(2): 294-299.

    [11] LI Zheng. Study on uncertainty and flow stability of water flow standard device[D]. Master Thesis, Tianjin, China: Tianjin University, 2009(in Chinese).

    [12] YUAN Ming-hao, YANG Yan-hua and LI Tian-shu et al. Simulation of free surface with phase change based on a VOF method[J].Journal of Engineering Thermophysics,2007, 28(6): 961-964(in Chinese).

    [13] LIU Yong-hui, DU Guang-sheng and LIU Zheng-gang. The influence of different design parameters and working conditions on characteristics of heat meter[J].Journal of Hydrodynamics,2009, 21(3): 394-400.

    [14] LI Yan-min, ZHANG Zhi-hui and ZHANG yong, Analysis of the flow field and optimal design for certain pressure pulsation attenuator based on fluent[J].Machine Tool and Hydraulics,2010, 38(11): 86-88(in Chinese).

    [15] SU Yan-xun, LIANG Guo-wei and SHENG Jian.Flow measurement and testing[M]. Beijing, China: China Metrology Publishing House, 2007(in Chinese).

    10.1016/S1001-6058(13)60443-6

    * Project supported by the National Natural Science Foundation of China (Grant No. 10972123).

    Biography: GUO Lan-lan (1979-), Female, Ph. D. Candidate, Lecturer

    DU Guang-sheng,

    E-mail: du@sdu.edu.cn

    猜你喜歡
    李東蘭蘭
    On the green aurora emission of Ar atmospheric pressure plasma
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    Mosquitoes: Annoying but Amazing
    釣魚
    The influence of accounting information on the financial management of enterprises and the Countermeasures
    西部論叢(2019年25期)2019-10-21 05:42:40
    李東一:開放的山東更“美麗”
    金橋(2018年4期)2018-09-26 02:25:04
    找春天
    “1”的魅力
    青蘋果(2011年6期)2011-08-02 03:13:14
    在新加坡的蘭蘭姐姐(下)
    国产伦精品一区二区三区四那| 白带黄色成豆腐渣| 一级毛片高清免费大全| 最新美女视频免费是黄的| 成人18禁在线播放| 天堂影院成人在线观看| 国产久久久一区二区三区| 熟女少妇亚洲综合色aaa.| 精品一区二区三区四区五区乱码| 日韩有码中文字幕| 欧美色欧美亚洲另类二区| 日本黄色片子视频| 亚洲av片天天在线观看| 国产三级中文精品| 听说在线观看完整版免费高清| 久9热在线精品视频| 精品99又大又爽又粗少妇毛片 | 香蕉丝袜av| 无人区码免费观看不卡| 亚洲午夜理论影院| 亚洲乱码一区二区免费版| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 午夜免费观看网址| 香蕉国产在线看| 日韩欧美国产在线观看| 亚洲成人免费电影在线观看| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 99热这里只有精品一区 | 免费高清视频大片| 亚洲成人久久爱视频| 久久午夜综合久久蜜桃| 我的老师免费观看完整版| 精品乱码久久久久久99久播| 成年人黄色毛片网站| 亚洲天堂国产精品一区在线| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av | 女警被强在线播放| 国产97色在线日韩免费| 国产成人欧美在线观看| 国产三级中文精品| 免费av不卡在线播放| 超碰成人久久| 亚洲午夜理论影院| 特级一级黄色大片| 欧美日韩国产亚洲二区| 日本黄色视频三级网站网址| 色哟哟哟哟哟哟| 女人高潮潮喷娇喘18禁视频| 两个人的视频大全免费| 99久久久亚洲精品蜜臀av| 97碰自拍视频| 亚洲真实伦在线观看| 午夜a级毛片| 国产精品,欧美在线| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 国产精品99久久99久久久不卡| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 日本在线视频免费播放| 身体一侧抽搐| 黄色视频,在线免费观看| 精品无人区乱码1区二区| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 亚洲最大成人中文| 国产精品一及| 99久久无色码亚洲精品果冻| 欧美一级毛片孕妇| av天堂中文字幕网| 久久香蕉国产精品| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 日韩欧美免费精品| 日本在线视频免费播放| 成人av一区二区三区在线看| 免费大片18禁| 91麻豆av在线| 亚洲中文字幕日韩| 成人特级av手机在线观看| 99久久国产精品久久久| 不卡av一区二区三区| 五月伊人婷婷丁香| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 黄色日韩在线| 国产欧美日韩精品亚洲av| 亚洲国产色片| 一本综合久久免费| 亚洲片人在线观看| a在线观看视频网站| 男女那种视频在线观看| 此物有八面人人有两片| 国产一区二区激情短视频| 99久久国产精品久久久| 欧美激情久久久久久爽电影| 久久中文看片网| 99在线视频只有这里精品首页| 可以在线观看毛片的网站| 此物有八面人人有两片| 久久亚洲真实| 一级毛片女人18水好多| 日韩欧美精品v在线| 岛国在线免费视频观看| 国产精品永久免费网站| 午夜福利高清视频| 18禁美女被吸乳视频| 99热这里只有精品一区 | 十八禁网站免费在线| 亚洲成人久久爱视频| 好看av亚洲va欧美ⅴa在| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 亚洲在线观看片| 久久久久久九九精品二区国产| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 小说图片视频综合网站| 国产一区二区三区在线臀色熟女| 亚洲男人的天堂狠狠| 国产精品久久久久久久电影 | 成人性生交大片免费视频hd| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 亚洲国产欧美一区二区综合| 国产激情欧美一区二区| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| www.999成人在线观看| 国产美女午夜福利| 老熟妇乱子伦视频在线观看| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| avwww免费| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 在线观看一区二区三区| 观看美女的网站| 国产成人av教育| 精品国内亚洲2022精品成人| 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| 可以在线观看的亚洲视频| 亚洲自偷自拍图片 自拍| 男女做爰动态图高潮gif福利片| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 美女免费视频网站| 日韩高清综合在线| 黑人操中国人逼视频| 亚洲片人在线观看| 亚洲人成伊人成综合网2020| 国产亚洲av高清不卡| АⅤ资源中文在线天堂| 欧美日韩亚洲国产一区二区在线观看| 久久久久久人人人人人| 啪啪无遮挡十八禁网站| 亚洲中文日韩欧美视频| 国产精品一及| 国产单亲对白刺激| 成人av一区二区三区在线看| 中亚洲国语对白在线视频| 成人一区二区视频在线观看| 在线视频色国产色| 亚洲欧美一区二区三区黑人| 国产一级毛片七仙女欲春2| 日韩精品中文字幕看吧| 午夜影院日韩av| 精品久久久久久久毛片微露脸| 亚洲精品久久国产高清桃花| 天堂影院成人在线观看| 免费无遮挡裸体视频| av欧美777| 亚洲七黄色美女视频| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 9191精品国产免费久久| 亚洲专区字幕在线| 久久国产精品影院| 国产av在哪里看| 黄片小视频在线播放| 欧美黑人巨大hd| 黄色片一级片一级黄色片| 日本一本二区三区精品| 国产精品99久久久久久久久| 国内精品美女久久久久久| 国产精品久久久久久精品电影| 国产黄色小视频在线观看| 国产成人av教育| 午夜精品一区二区三区免费看| 国产精品亚洲一级av第二区| 国产精品av久久久久免费| 亚洲第一电影网av| 久久国产乱子伦精品免费另类| 国产精品久久视频播放| 波多野结衣巨乳人妻| 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| 九色成人免费人妻av| 亚洲精品456在线播放app | 一级毛片高清免费大全| 国产91精品成人一区二区三区| 热99re8久久精品国产| 亚洲av五月六月丁香网| 久久久久久国产a免费观看| 欧美中文综合在线视频| 国产精品综合久久久久久久免费| 男女之事视频高清在线观看| 成人精品一区二区免费| 亚洲av美国av| 99热这里只有精品一区 | 母亲3免费完整高清在线观看| 国产探花在线观看一区二区| 久久久成人免费电影| 国产成人一区二区三区免费视频网站| 免费av不卡在线播放| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 国产精品久久久av美女十八| 精品一区二区三区四区五区乱码| 每晚都被弄得嗷嗷叫到高潮| 俺也久久电影网| 欧美日韩国产亚洲二区| 欧美黑人欧美精品刺激| 日韩欧美在线二视频| 亚洲精品在线观看二区| 最近在线观看免费完整版| 欧美不卡视频在线免费观看| 欧美日韩乱码在线| 99久久99久久久精品蜜桃| 亚洲激情在线av| 精品无人区乱码1区二区| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 夜夜躁狠狠躁天天躁| 美女午夜性视频免费| 亚洲成人久久爱视频| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 毛片女人毛片| 三级男女做爰猛烈吃奶摸视频| 黄色视频,在线免费观看| 亚洲在线观看片| 日本 av在线| e午夜精品久久久久久久| 亚洲国产高清在线一区二区三| 91av网站免费观看| 在线国产一区二区在线| 久久久水蜜桃国产精品网| 欧洲精品卡2卡3卡4卡5卡区| 国产成人系列免费观看| 美女高潮的动态| 日韩欧美 国产精品| 亚洲国产欧美一区二区综合| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 男女那种视频在线观看| 国产91精品成人一区二区三区| 欧美一级毛片孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 俺也久久电影网| 国产毛片a区久久久久| 综合色av麻豆| 国产精品野战在线观看| 宅男免费午夜| 成人亚洲精品av一区二区| av中文乱码字幕在线| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| av视频在线观看入口| 9191精品国产免费久久| 淫秽高清视频在线观看| 成人精品一区二区免费| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 香蕉av资源在线| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 男人舔奶头视频| 欧美色视频一区免费| av天堂中文字幕网| 亚洲精品中文字幕一二三四区| 日本三级黄在线观看| 国内久久婷婷六月综合欲色啪| 午夜激情福利司机影院| 99国产精品99久久久久| 亚洲中文字幕一区二区三区有码在线看 | 亚洲专区中文字幕在线| 久久中文字幕一级| 美女高潮的动态| 欧美激情久久久久久爽电影| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 在线观看日韩欧美| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 99视频精品全部免费 在线 | 脱女人内裤的视频| 免费看a级黄色片| 最近最新免费中文字幕在线| 脱女人内裤的视频| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 69av精品久久久久久| 又黄又粗又硬又大视频| 露出奶头的视频| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 久久久久久久久免费视频了| www.999成人在线观看| 国产 一区 欧美 日韩| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 99久久精品热视频| 制服人妻中文乱码| 久久中文看片网| 日本在线视频免费播放| 香蕉av资源在线| www.熟女人妻精品国产| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx| 免费看a级黄色片| 免费在线观看成人毛片| 村上凉子中文字幕在线| 欧美3d第一页| 一级a爱片免费观看的视频| 桃色一区二区三区在线观看| 91av网一区二区| 又爽又黄无遮挡网站| 国产野战对白在线观看| 欧美中文日本在线观看视频| 国产成人系列免费观看| 亚洲男人的天堂狠狠| 色噜噜av男人的天堂激情| 91麻豆av在线| 亚洲美女视频黄频| 中文在线观看免费www的网站| 国产精品久久久人人做人人爽| 久久伊人香网站| 热99在线观看视频| 黄色丝袜av网址大全| 国产免费av片在线观看野外av| 成年女人毛片免费观看观看9| 色在线成人网| 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 十八禁网站免费在线| 脱女人内裤的视频| 淫秽高清视频在线观看| 欧美乱色亚洲激情| 国产成人精品无人区| 成人国产综合亚洲| 最近最新免费中文字幕在线| 一区二区三区激情视频| 亚洲欧美日韩高清专用| 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| 嫁个100分男人电影在线观看| 亚洲成人免费电影在线观看| 亚洲成av人片免费观看| 欧美日韩黄片免| av女优亚洲男人天堂 | 欧美中文日本在线观看视频| 国产精品香港三级国产av潘金莲| 亚洲第一电影网av| 国产成年人精品一区二区| 男女那种视频在线观看| 亚洲精品粉嫩美女一区| 中文资源天堂在线| 亚洲av熟女| 激情在线观看视频在线高清| av视频在线观看入口| 亚洲av五月六月丁香网| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲 国产 在线| 在线看三级毛片| 日本与韩国留学比较| 狂野欧美激情性xxxx| 99re在线观看精品视频| 中文在线观看免费www的网站| 岛国视频午夜一区免费看| 看免费av毛片| 国产精品精品国产色婷婷| 好看av亚洲va欧美ⅴa在| a级毛片a级免费在线| 搡老熟女国产l中国老女人| 18禁美女被吸乳视频| 欧美日韩精品网址| 两性夫妻黄色片| ponron亚洲| 欧美色欧美亚洲另类二区| 在线视频色国产色| 国内久久婷婷六月综合欲色啪| 丰满人妻一区二区三区视频av | 免费看光身美女| 一个人观看的视频www高清免费观看 | 九九久久精品国产亚洲av麻豆 | avwww免费| 中文字幕最新亚洲高清| 日韩三级视频一区二区三区| 国产午夜精品论理片| av视频在线观看入口| 在线观看66精品国产| 午夜精品在线福利| 午夜免费成人在线视频| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久| 一级毛片高清免费大全| 亚洲七黄色美女视频| av天堂中文字幕网| 成人av在线播放网站| 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区| 精品午夜福利视频在线观看一区| avwww免费| 久久热在线av| 亚洲av电影在线进入| 国产午夜精品论理片| 日韩av在线大香蕉| 不卡一级毛片| 国产亚洲欧美98| 热99在线观看视频| 看免费av毛片| 观看美女的网站| av天堂中文字幕网| 成人性生交大片免费视频hd| 日韩成人在线观看一区二区三区| 国产av一区在线观看免费| 亚洲精品美女久久久久99蜜臀| 看片在线看免费视频| 观看美女的网站| 久久国产精品影院| 可以在线观看的亚洲视频| www.精华液| 少妇人妻一区二区三区视频| 午夜久久久久精精品| 亚洲精品国产精品久久久不卡| 国产午夜精品论理片| 天天躁日日操中文字幕| 999久久久精品免费观看国产| 99热6这里只有精品| 99re在线观看精品视频| 亚洲av成人精品一区久久| or卡值多少钱| 国产精品98久久久久久宅男小说| 国产真实乱freesex| 最好的美女福利视频网| 日本在线视频免费播放| 亚洲国产欧美人成| 99国产精品一区二区三区| 日韩高清综合在线| 神马国产精品三级电影在线观看| 校园春色视频在线观看| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 日韩人妻高清精品专区| www国产在线视频色| 久久精品国产清高在天天线| 看黄色毛片网站| 国产高清有码在线观看视频| 999久久久精品免费观看国产| 国内精品久久久久久久电影| 99久久精品热视频| 成人精品一区二区免费| 老鸭窝网址在线观看| 成人特级黄色片久久久久久久| 国产成人aa在线观看| 国产精品久久久av美女十八| 99热这里只有是精品50| 99国产综合亚洲精品| 一个人看的www免费观看视频| 精品久久久久久久末码| 亚洲色图av天堂| 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频| 久久婷婷人人爽人人干人人爱| 在线播放国产精品三级| 黄色女人牲交| 国产av一区在线观看免费| 国产高清视频在线观看网站| 美女扒开内裤让男人捅视频| 哪里可以看免费的av片| 久久久久国产精品人妻aⅴ院| 免费观看的影片在线观看| 精品人妻1区二区| 久久久久精品国产欧美久久久| 色综合站精品国产| 国产精品1区2区在线观看.| 国产精品美女特级片免费视频播放器 | 十八禁人妻一区二区| 日本五十路高清| 国产人伦9x9x在线观看| 极品教师在线免费播放| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 香蕉av资源在线| 国产亚洲精品av在线| 色精品久久人妻99蜜桃| 久久精品人妻少妇| 午夜成年电影在线免费观看| 欧美性猛交黑人性爽| 成年版毛片免费区| 狂野欧美白嫩少妇大欣赏| 国产精品av视频在线免费观看| 真人做人爱边吃奶动态| 欧美xxxx黑人xx丫x性爽| 好男人电影高清在线观看| 精品99又大又爽又粗少妇毛片 | 久久久久国产精品人妻aⅴ院| 1024手机看黄色片| 色噜噜av男人的天堂激情| 国产欧美日韩精品一区二区| 99久久无色码亚洲精品果冻| www.自偷自拍.com| 天堂影院成人在线观看| 免费大片18禁| 老汉色∧v一级毛片| 色av中文字幕| 国产亚洲欧美在线一区二区| 网址你懂的国产日韩在线| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区视频9 | 黄色日韩在线| aaaaa片日本免费| 热99在线观看视频| 亚洲成av人片在线播放无| 嫁个100分男人电影在线观看| 色在线成人网| 看免费av毛片| 天天躁日日操中文字幕| 婷婷精品国产亚洲av在线| 一本精品99久久精品77| 日韩欧美免费精品| 黄色 视频免费看| 精品久久久久久成人av| 琪琪午夜伦伦电影理论片6080| 一二三四在线观看免费中文在| 免费在线观看成人毛片| 亚洲av美国av| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 国产私拍福利视频在线观看| 亚洲一区二区三区不卡视频| 欧美色视频一区免费| 国产主播在线观看一区二区| 91在线观看av| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区| 亚洲午夜理论影院| 欧美乱妇无乱码| 在线观看一区二区三区| 99久久99久久久精品蜜桃| 青草久久国产| 啦啦啦免费观看视频1| 亚洲av中文字字幕乱码综合| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| 精品国内亚洲2022精品成人| 色精品久久人妻99蜜桃| 色在线成人网| 国产激情欧美一区二区| 亚洲精品久久国产高清桃花| 国产久久久一区二区三区| 亚洲性夜色夜夜综合| 身体一侧抽搐| 色尼玛亚洲综合影院| 免费看美女性在线毛片视频| 亚洲中文字幕一区二区三区有码在线看 | 日本免费一区二区三区高清不卡| 国产av一区在线观看免费| 一个人免费在线观看电影 | 成人三级做爰电影| 露出奶头的视频| 亚洲一区二区三区色噜噜| 日韩欧美在线二视频| 香蕉丝袜av| 国内少妇人妻偷人精品xxx网站 | 舔av片在线| 人妻夜夜爽99麻豆av| 国产av一区在线观看免费| 男女之事视频高清在线观看| 国产一区二区三区视频了| 欧美另类亚洲清纯唯美|