• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid*

    2013-06-01 12:29:59LIUShihe劉士和XUEJiao薛嬌FANMin范敏
    水動力學研究與進展 B輯 2013年6期

    LIU Shi-he (劉士和), XUE Jiao (薛嬌), FAN Min (范敏)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid*

    LIU Shi-he (劉士和), XUE Jiao (薛嬌), FAN Min (范敏)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    (Received June 4, 2013, Revised October 25, 2013)

    The calculation of the mechanical energy loss is one of the fundamental problems in the field of Hydraulics and Engineering Fluid Mechanics. However, for a non-uniform flow the relation between the mechanical energy loss in a volume of fluid and the kinematical and dynamical characteristics of the flow field is not clearly established. In this paper a new mechanical energy equation for the incompressible steady non-uniform pipe flow of homogeneous fluid is derived, which includes the variation of the mean turbulent kinetic energy, and the formula for the calculation of the mechanical energy transformation loss for the non-uniform flow between two cross sections is obtained based on this equation. This formula can be simplified to the Darcy-Weisbach formula for the uniform flow as widely used in Hydraulics. Furthermore, the contributions of the mechanical energy loss relative to the time averaged velocity gradient and the dissipation of the turbulent kinetic energy in the turbulent uniform pipe flow are discussed, and the contributions of the mechanical energy loss in the viscous sublayer, the buffer layer and the region above the buffer layer for the turbulent uniform flow are also analyzed.

    mechanical energy loss, energy equation, pipe flow

    Introduction

    The mechanical energy is the sum of the potential energy and the kinetic energy. The calculation of the mechanical energy loss between two sections along the main flow direction is an important problem in practical engineering, as well as an important research topic in Engineering Fluid Mechanics and Hydraulics.

    In the field of Hydraulics, the mechanical energy loss is usually called the resistance loss, which is divided into the friction loss and the local loss, and the resistance coefficient is mainly determined by experiments. For example, Reynolds carried out experiments to study the differences of the resistance coefficients in laminar and turbulent pipe flows, Nikuradse conducted experiments for flows in artificially roughened pipes and obtained the variation of the resistance loss against the Reynolds number and the relative roughness of the pipe wall. Many studies of the resistance loss were based on these two fundamental studies[1-5].

    In the field of Fluid Mechanics, many studies focused on the mechanisms of turbulent flow[6-9], flow stability[10]and the related spatial or temporal distributions of the flow quantities. With regards to pipe flows, Samanta et al.[11]carried out the experimental investigation of the laminar turbulent intermittency in pipe flows, Liu et al.[12]studied the velocity distributions in the transition region of pipes with Particle Image Velocimetry (PIV), Van Doorne and Westerweel[13]investigated the flow characteristics of laminar, transitional and turbulent pipe flows by using Stereoscopic Particle Image Velocimetry (SPIV), Gen? et al[14]studied the Reynolds stresses in a swirling turbulent pipe flow with Laser-Doppler Anemometer (LDA), Wagner et al.[15], Wu and Moin[16]studied the turbulent pipe flow by Direct Numerical Simulation (DNS).

    However, the relation between the mechanical energy loss in the volume between two cross sections and the kinematical and dynamical characteristics of the flow field was not addressed for a non-uniform flow in previous studies. This paper derives a new mechanical energy equation for incompressible steady non-uniform pipe flows of homogeneous fluid, including the variation of the mean turbulent kinetic energy,and the theoretical results for uniform flows are used for comparison. Furthermore, the contributions of the mechanical energy loss are analyzed relative to the time averaged velocity gradient and the dissipation of the turbulent kinetic energy in a uniform flow, in different regions, especially in the radial direction.

    1. Formulation of the mechanical energy equation

    Considering the flow of homogeneous incompressible fluid in the gravitational field, the second order tensor of the surface force[6]ijTcan be expressed as

    whereρis the fluid density,fiis the mass force per unit volume anduiis the velocity components. Decompose the surface force tensor asTij=-pδij+τij, wherepis the pressure,τij=2μsijis the viscous stress andsijis the rate of deformation. For an incompressible steady flow of homogeneous fluid in the gravitational field (letx3be the vertical coordinate), we have

    In Eq.(2),gx3+p/ρ+ujuj/2 is the mechanical energy, therefore this equation is the differential form of the mechanical energy equation for an incompressible steady flow of homogeneous fluid in the gravitational field, the integral form of the corresponding mechanical energy equation for a steady pipe flow in laminar and turbulent states (corresponding to the statistical quantities in ensemble average) will be discussed afterwards based on this equation.

    1.1Laminar flow

    Consider a control volumeVas shown in Fig.1, where the entire surface is expressed asA, including two cross-sections1A,2Aat the upstream and the downstream with distanceLand the pipe wall, and the flows in this volume are gradually varied. Integrating Eq.(2) overV, and using the Gaussian Theorem to transform the volume integral into the surface integral for the left hand side and the first term on the right hand side, then

    wherejnis the component of the unit normal vector of the surfaceA. For a simple laminar shear flow, the potential energygx3+p/ρ(which is called the piezometric head in Hydraulics) on eitherA1orA2are constant since the flows across these sections are the gradually varied flows[6]. Noting that the velocity on the pipe wall is zero we have

    whereAis the cross-sectional area andUis the mean velocity at a section, andzis substituted forx3for the vertical coordinate to conform with the symbols used in Hydraulics and Engineering Fluid Mechanics. The indexes 1 and 2 are used to represent the corresponding quantities at cross sectionsA1andA2. Define the kinetic energy correction coefficientsα1andα2such that

    and usewhto represent the mechanical energy transformation (the second and third terms on the right hand side of Eq.(5)) and the loss (the first terms on the right hand side of Eq.(5)) per unit weight in unit time, i.e.,

    the total mechanical energy equation Eq.(3) for a laminar flow then becomes

    It can be seen from Eq.(6) that a part of the mechanical energy is consumed owing to the viscous effect when the fluid flows from the cross section1Ato 2A.

    Fig.1 Sketch of pipe flow

    If the shape and the size of the cross sections1Aand2Aare identical, andijτ,iuhave the same distributions on them, we have

    i.e., there would be no mechanical energy transformation while the fluid flows from cross section1AtoA2. In this case the mechanical energy loss becomes

    Furthermore, if the flow included between the cross sections1Aand2Ais uniform, the mechanical energy loss can be simplified as

    1.2Turbulent flow

    Apply the Reynolds decomposition to Eq.(2), and then take the ensemble average. For a steady turbulent flow in the sense of ensemble averaged quantities we have

    therefore, Eq.(8) can be obtained by taking ensemble average

    Integrating Eq.(8) over the control volumeV, and using the Gauss Theorem to transform the volume integral into the surface integral for the left hand side and the second term on the right hand side, we have

    For a non-circular turbulent pipe flow, the hydrostatic assumption (the hydrodynamic pressure is equal to the hydrostatic pressure at the cross section of gradually varied flow) would not be hold, strictly speaking, owing to the non-homogeneity of the Reynolds stresses and the secondary flow at the cross section. Usingspto represent the hydrostatic pressure such thatgx3+ps/ρ=C, and usingρF1andρF2to represent the deviations between the hydrodynamic pressuresp1andp2and the hydrostatic pressuresps1and 2spat the cross-sections 1Aand 2A, by using the method of Green function[6], we have

    Similar to the discussions in Section 1.1, define themean kinetic energy correction coefficients1α,2αand the mean turbulent energy correction coefficients 1βand2βat the cross-sections1Aand2Asuch that

    and usewhto represent the transformation(the second term on the right hand side of Eq.(12)) and loss (the first terms on the right hand side of Eq.(12)) of the mechanical energy. Equation (9) can be simplified by using the no-slip condition on the pipe wall such that

    Equation (11) is the integral form of the mechanical energy equation for the incompressible steady nonuniform pipe flow of homogeneous fluid, which includes the variation of the mean turbulent kinetic energy from1Ato2A. In Eq.(11)

    Furthermore, if the flow between the cross sections1Aand2Ais uniform (for example, the flow in a long and straight pipe), the mechanical energy loss can be further simplified as

    2. Mechanical energy loss for steady uniform laminar flow in a circular pipe

    For the steady uniform laminar flow in a circular pipe the longitudinal velocityzuonly changes in the radial directionrsuch that[6]

    wheredis the diameter of the circular pipe andCis a constant related to the mean pressure gradient in thelongitudinal direction. Substituting Eq.(15) into Eq.(7b) the following equation can be obtained finally after some simplifications

    Equation (16) is the same as the Darcy-Weisbach formula for the resistance loss of a steady uniform laminar flow in a circular pipe in Hydraulics, and the resistance coefficientλ=64/Red, whereRed=U1d/νis the Reynolds number.

    3. Mechanical energy loss for uniform turbulent flow in a circular pipe

    For the uniform turbulent flow in a circular pipe the longitudinal velocityzualso only changes in the radial direction, using the condition of the axial symmetry Eq.(14b) can be rewritten as It can be seen from Eq.(17) that the mechanical energy loss has two parts, both from the fluid viscosity for the uniform turbulent flow in a circular pipe, the former is related to the time averaged velocity gradient and the latter is related to the dissipation of the turbulent kinetic energy. For the uniform turbulent flow in a circular pipe, the total dissipation of the turbulent energy is equal to the total generation of the turbulent energy at section1A, i.e.,

    Therefore Eq.(17) can be simplified considering that

    for the uniform turbulent flow in a circular pipe such that whereu*is the shear velocity. Defining the coefficient for the mechanical energy loss asλ=8(u*/U1)2, Eq.(19) can be simplified further as

    Equation (20) is the same as the Darcy-Weisbach formula for the resistance loss for the steady uniform turbulent flow in a circular pipe in Hydraulics.

    Now we discuss the compositions of the mechanical energy loss based on Eq.(17). From Eq.(20) and Eq.(17)λcan be expressed as

    Using 1λand2λto represent the contributions to the coefficients of the mechanical energy loss relative to the time averaged velocity gradient and the dissipation of the turbulent kinetic energy, respectively, we have

    Fig.2 Comparison of theoretical velocity distribution with experimental data

    Fig.3 Variation of1/λλand2/λλwithdRe

    Fig.4 Contributions of viscous sublayer, buffer layer and the region above buffer layer to the mechanical energy loss

    In the radial direction, the uniform turbulent flow in a circular pipe can be divided into a viscous sublayer (r∈(0.5d-5ν/u*~0.5d)), a buffer layer (r∈(0.5d-30ν/u*~0.5d-5ν/u*)), and the region above the buffer layer which contains the logarithmic region[6,17]. The contributions of the above three regions to the mechanical energy loss are calculated based on the time averaged velocity distributions relative to the Van Driest model and the Spalding formula, as shown in Fig.4. It can be seen that: (1) whendReis less than 2.5×104, the contributions of the above three regions to the mechanical energy loss are in the following order: buffer layer>viscous sublayer>the region above the buffer layer. (2) whendReis larger than 2.5×104and less than 1.3×105, the contributions of the above three regions to the mechanical energy loss are in the following order: buffer layer>the region above the buffer layer>viscous sublayer. (3) whendReis larger than 1.3×105, the contributions of the above three regions to the mechanical energy loss are in the following order: the region above the buffer layer>buffer layer>viscous sublayer.

    4. Conclusions

    (1) A new energy equation for incompressible steady non-uniform pipe flow of homogeneous fluid is derived, which includes the variation of the mean turbulent kinetic energy, and the formula for the calculation of the transformation and loss of the mechanical energy for the non-uniform flow between two cross sections is obtained based on this equation. This formula can be simplified to the Darcy-Weisbach formula widely used in Hydraulics for uniform flows.

    (2) The mechanical energy loss of a turbulent flow is resulted from the fluid viscosity in a circular pipe and can be divided into two parts for a uniform flow, the first is related to the time averaged velocity gradient, and the other is related to the dissipation of the turbulent kinetic energy. The former decreases with the increase of the Reynolds number, and the latter increases with the increase of the Reynolds number. When the Reynolds number is larger than 3×104, the contribution from the term related to the dissipation of the turbulent kinetic energy is dominant.

    (3) In the radial direction, the uniform turbulent flow in a circular pipe can be divided into the viscous sublayer, the buffer layer and the region above the buffer layer. With the increase of the Reynolds number, the contributions of the mechanical energy loss in the buffer layer and the viscous sublayer decrease, while the contribution from the region above the buffer layer increases. When the Reynolds number is larger than 1.3×105, the contribution of the mechanical energy loss in the region above the buffer layer becomes dominant.

    [1] MCKEON B. J., ZAGAROLA M. V. and SMITS A. J. A new friction factor relationship for fully developed pipe flow[J].Journal of Fluid Mechanics,2005, 538: 429-443.

    [2] SHOCKLING M. A., ALLEN J. J. and SMITS A. J.Roughness effects in turbulent pipe flow[J].Journal of Fluid Mechanics,2006, 564: 267-285.

    [3] FADARE D. A., OFIDHE U. I. Artificial neural network model for prediction of friction factor in pipe flow[J].Journal of Applied Sciences Research,2009, 5(6): 662-670.

    [4] YANG S. Q., HAN Y. and DHARMASIRI N. Flow resistance over fixed roughness elements[J].Journal of Hydraulic Research,2011, 49(2): 257-262.

    [5] YOON J. I., SUNG J. and LEE M. H. Velocity profiles and friction coefficients in circular open channels[J].Journal of Hydraulic Research,2012, 50(3): 304-311.

    [6] ZHANG Zhao-shun, CUI Gui-xiang.Fluid mechanics[M]. Second Edition, Beijing, China: Tsinghua University Press, 2006(in Chinese).

    [7] MCKEON B. J., LI J. and JIANG W. et al. Further observations on the mean velocity distribution in fully developed pipe flow[J].Journal of Fluid Mechanics,2004, 501: 135-147.

    [8] SAKAKIBARA J., MACHIDA N. Measurement of turbulent flow upstream and downstream of a circular pipe bend[J].Physics of Fluids,2012, 24(4): 041702.

    [9] HULTMARK M., BAILEY S. C. C. and SMITS A. J. Scaling of near-wall turbulence in pipe flow[J].Journal of Fluid Mechanics,2010, 649: 103-113.

    [10] WANG Xin-jun, LUO Ji-sheng and ZHOU Heng. Mechanism of breakdown process of the laminar-turbulent transition in plane channel flow[J].Science in China, Series G: Physics, Mechanics and Astronomy,2005, 35(1): 71-78(in Chinese).

    [11] SAMANTA D., De LOZAR A. and HOF B. Experimental investigation of laminar turbulent intermittency in pipe flow[J].Journal of Fluid Mechanics,2011, 681: 193-204.

    [12] LIU Yong-hui, DU Guang-sheng and LIU Li-ping et al. Experimental study of velocity distributions in the transition region of pipes[J].Journal of Hydrodynamics,2011, 23(5): 643-648.

    [13] Van DOORNE C. W. H., WESTERWEEL J. Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV[J].Experiments in Fluids,2007, 42(2): 259-279.

    [14] GEN? B. Z., ERTUN? ?. and JOVANOVI? J. et al. LDA measurements of Reynolds stresses in a swirling turbulent pipe flow[C].Proceedings of 12th EUROMECH European Turbulence Conference.Marburg, Germany, 2009, 132: 617-620.

    [15] WAGNER C., HUTTL T. J. and FRIEDRICH R. Low Reynolds number effects derived from direct numerical simulations of turbulent pipe flow[J].Computers and Fluids.2001, 30(5): 581-590.

    [16] WU X., MOIN P. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow[J].Journal of Fluid Mechanics,2008, 608: 81-112.

    [17] LIU Shi-he, LIU Jiang and LUO Qiu-shi et al.Engineering turbulence[M]. Beijing, China: Science Press, 2011(in Chinese).

    10.1016/S1001-6058(13)60440-0

    * Biography: LIU Shi-he (1962-), Male, Ph. D., Professor

    美女视频免费永久观看网站| 亚洲性久久影院| 亚洲国产欧美日韩在线播放| 男女免费视频国产| 十八禁网站网址无遮挡| 成人综合一区亚洲| 欧美一级a爱片免费观看看| 久久精品国产鲁丝片午夜精品| 涩涩av久久男人的天堂| 免费人成在线观看视频色| 亚洲无线观看免费| 99久久综合免费| 少妇猛男粗大的猛烈进出视频| 日韩免费高清中文字幕av| 九色亚洲精品在线播放| 亚洲人成网站在线播| 久久久国产欧美日韩av| 精品视频人人做人人爽| 亚洲性久久影院| 亚洲中文av在线| av黄色大香蕉| 成年av动漫网址| 国产在线一区二区三区精| 在线观看人妻少妇| 丝瓜视频免费看黄片| 国产爽快片一区二区三区| 在线观看www视频免费| 亚洲av综合色区一区| 亚洲图色成人| videos熟女内射| 亚洲第一av免费看| 一区二区日韩欧美中文字幕 | 国产高清国产精品国产三级| 欧美丝袜亚洲另类| 久久亚洲国产成人精品v| 两个人的视频大全免费| 国产一区二区在线观看日韩| 两个人免费观看高清视频| 18禁在线播放成人免费| 最近最新中文字幕免费大全7| 人人妻人人澡人人看| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av涩爱| 免费人成在线观看视频色| 人妻 亚洲 视频| 久久毛片免费看一区二区三区| 人妻一区二区av| 精品国产一区二区三区久久久樱花| 国产av一区二区精品久久| 亚洲精品一二三| 日韩成人伦理影院| 亚洲精品久久成人aⅴ小说 | 精品人妻熟女毛片av久久网站| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一区久久| 99久久精品一区二区三区| 黄色一级大片看看| 熟女电影av网| 一边亲一边摸免费视频| 久久精品夜色国产| 亚洲欧美成人精品一区二区| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 成年av动漫网址| 看十八女毛片水多多多| 亚洲伊人久久精品综合| 婷婷色综合www| 韩国高清视频一区二区三区| 久久狼人影院| 亚洲欧美一区二区三区黑人 | 亚洲综合色惰| 亚洲成人手机| 午夜影院在线不卡| 在线看a的网站| 亚洲国产欧美在线一区| 亚洲国产最新在线播放| 大又大粗又爽又黄少妇毛片口| 永久网站在线| 少妇的逼好多水| 久久 成人 亚洲| 乱人伦中国视频| 久久av网站| 久久久国产精品麻豆| 亚洲av成人精品一二三区| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 精品久久蜜臀av无| 老司机亚洲免费影院| 精品一区二区三卡| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| xxxhd国产人妻xxx| 亚洲图色成人| 久久久亚洲精品成人影院| 91久久精品国产一区二区三区| 秋霞在线观看毛片| 国产av一区二区精品久久| 亚洲欧美精品自产自拍| 日韩人妻高清精品专区| 91国产中文字幕| 3wmmmm亚洲av在线观看| 26uuu在线亚洲综合色| 亚洲av.av天堂| 国产精品欧美亚洲77777| 天美传媒精品一区二区| 91精品国产国语对白视频| 欧美日韩av久久| 亚洲av不卡在线观看| 99热这里只有精品一区| 青春草视频在线免费观看| a级片在线免费高清观看视频| 天天影视国产精品| 蜜桃在线观看..| 亚洲成人av在线免费| 天天躁夜夜躁狠狠久久av| 一级片'在线观看视频| 久久午夜福利片| 秋霞在线观看毛片| 香蕉精品网在线| 亚洲美女视频黄频| 亚洲av福利一区| 午夜免费鲁丝| 老司机影院毛片| 18禁观看日本| 久久国产精品男人的天堂亚洲 | 欧美日韩亚洲高清精品| 熟女av电影| 欧美精品一区二区大全| 欧美bdsm另类| 亚洲情色 制服丝袜| 成年人午夜在线观看视频| videos熟女内射| 99国产精品免费福利视频| 亚洲av日韩在线播放| 又大又黄又爽视频免费| 国产精品三级大全| 啦啦啦中文免费视频观看日本| 亚洲四区av| 青春草国产在线视频| 中文字幕免费在线视频6| 99热全是精品| av女优亚洲男人天堂| 热re99久久精品国产66热6| 三级国产精品片| 久久久久精品性色| 好男人视频免费观看在线| 亚洲国产最新在线播放| 麻豆乱淫一区二区| 飞空精品影院首页| 日韩视频在线欧美| 亚洲,欧美,日韩| 插逼视频在线观看| 午夜av观看不卡| 免费av中文字幕在线| 99热6这里只有精品| 国产精品国产av在线观看| 亚洲av中文av极速乱| 国产成人精品婷婷| 插阴视频在线观看视频| 嘟嘟电影网在线观看| 一级爰片在线观看| 性高湖久久久久久久久免费观看| 少妇高潮的动态图| 全区人妻精品视频| 午夜日本视频在线| 亚洲欧洲国产日韩| 国产精品免费大片| 日韩欧美精品免费久久| 免费黄色在线免费观看| 久久精品国产a三级三级三级| 久久久a久久爽久久v久久| 久久久欧美国产精品| 熟女电影av网| 午夜av观看不卡| 久久午夜综合久久蜜桃| 亚洲不卡免费看| 男女免费视频国产| 美女福利国产在线| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 国产精品一区www在线观看| 尾随美女入室| 99久久中文字幕三级久久日本| 99热6这里只有精品| 日韩欧美一区视频在线观看| 久久婷婷青草| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美视频二区| 夜夜爽夜夜爽视频| 国产精品国产av在线观看| 80岁老熟妇乱子伦牲交| 最近中文字幕2019免费版| 在线观看免费日韩欧美大片 | 国产亚洲最大av| 91久久精品国产一区二区成人| 久久久久网色| 日本欧美视频一区| 精品酒店卫生间| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 成人亚洲精品一区在线观看| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 亚洲国产精品一区二区三区在线| 99久久综合免费| 国产av一区二区精品久久| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 亚洲在久久综合| 成人国产av品久久久| 亚洲av欧美aⅴ国产| 国产高清有码在线观看视频| 午夜视频国产福利| 久久久久久久久大av| a级毛色黄片| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 各种免费的搞黄视频| 亚洲经典国产精华液单| 国产黄色免费在线视频| 国产精品国产三级国产av玫瑰| 91久久精品国产一区二区三区| 熟女人妻精品中文字幕| 新久久久久国产一级毛片| 97超碰精品成人国产| 国产白丝娇喘喷水9色精品| 欧美日韩视频精品一区| 日本wwww免费看| 一级二级三级毛片免费看| 丝袜美足系列| 久久久精品区二区三区| av黄色大香蕉| 在线观看免费日韩欧美大片 | 中文字幕久久专区| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 欧美日韩av久久| 久久精品国产a三级三级三级| 日韩,欧美,国产一区二区三区| 91aial.com中文字幕在线观看| 2018国产大陆天天弄谢| 久久精品夜色国产| 日日摸夜夜添夜夜添av毛片| 日本黄大片高清| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人 | 超碰97精品在线观看| kizo精华| 街头女战士在线观看网站| 欧美97在线视频| 22中文网久久字幕| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩亚洲高清精品| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 国产片内射在线| 中文乱码字字幕精品一区二区三区| av黄色大香蕉| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 免费看av在线观看网站| 亚洲国产精品国产精品| 久久久久久久亚洲中文字幕| 不卡视频在线观看欧美| 亚洲一区二区三区欧美精品| 大码成人一级视频| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 国产精品一区二区三区四区免费观看| 久久久久久人妻| 18+在线观看网站| 看非洲黑人一级黄片| 高清不卡的av网站| 九色亚洲精品在线播放| 中文字幕久久专区| 欧美xxⅹ黑人| 国产片内射在线| 久久久a久久爽久久v久久| 日韩中字成人| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 亚洲精品av麻豆狂野| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 少妇精品久久久久久久| 99久久中文字幕三级久久日本| 亚洲国产成人一精品久久久| 哪个播放器可以免费观看大片| 国产精品99久久99久久久不卡 | 久久青草综合色| 日韩一区二区视频免费看| 亚洲美女视频黄频| 国产爽快片一区二区三区| 国产午夜精品久久久久久一区二区三区| 简卡轻食公司| 久久国产精品大桥未久av| 最近中文字幕高清免费大全6| 久久久欧美国产精品| 日本vs欧美在线观看视频| 免费黄色在线免费观看| 51国产日韩欧美| 国产 精品1| 秋霞伦理黄片| 亚洲一区二区三区欧美精品| 国产综合精华液| 中文精品一卡2卡3卡4更新| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 国产伦理片在线播放av一区| 国产精品一区二区在线不卡| 午夜免费观看性视频| 日韩制服骚丝袜av| 日日啪夜夜爽| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 欧美人与性动交α欧美精品济南到 | 国模一区二区三区四区视频| 欧美最新免费一区二区三区| 美女内射精品一级片tv| 久久久国产精品麻豆| av国产精品久久久久影院| 国产毛片在线视频| 在线观看国产h片| 久久婷婷青草| 久久久精品94久久精品| 一级毛片aaaaaa免费看小| 十分钟在线观看高清视频www| 精品99又大又爽又粗少妇毛片| 黄片无遮挡物在线观看| 国产精品一二三区在线看| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 高清黄色对白视频在线免费看| 我要看黄色一级片免费的| 女性生殖器流出的白浆| 亚洲高清免费不卡视频| 九九在线视频观看精品| 亚洲成人手机| 99视频精品全部免费 在线| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 国产精品人妻久久久久久| 一级a做视频免费观看| 日韩电影二区| 国产片内射在线| 少妇被粗大的猛进出69影院 | 国产黄片视频在线免费观看| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 成年女人在线观看亚洲视频| 免费观看a级毛片全部| 插阴视频在线观看视频| tube8黄色片| 男女边摸边吃奶| 国产免费视频播放在线视频| 日韩电影二区| 久久精品久久久久久噜噜老黄| 曰老女人黄片| 免费av不卡在线播放| 国产视频首页在线观看| 中国美白少妇内射xxxbb| 国产日韩一区二区三区精品不卡 | 久久人人爽人人爽人人片va| 精品一品国产午夜福利视频| 男女边吃奶边做爰视频| 在线播放无遮挡| 国国产精品蜜臀av免费| av黄色大香蕉| 久久99一区二区三区| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 少妇 在线观看| 永久网站在线| 日本爱情动作片www.在线观看| 久久久a久久爽久久v久久| 一区二区三区精品91| 天堂8中文在线网| 91成人精品电影| 黄片无遮挡物在线观看| 久久久久网色| 欧美日本中文国产一区发布| 精品久久久久久久久av| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人片av| 91国产中文字幕| 丝袜在线中文字幕| 26uuu在线亚洲综合色| 欧美丝袜亚洲另类| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 777米奇影视久久| 在线观看免费视频网站a站| 亚洲内射少妇av| 欧美97在线视频| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 中文乱码字字幕精品一区二区三区| 国产毛片在线视频| 777米奇影视久久| 亚洲av在线观看美女高潮| 久久99精品国语久久久| 国产成人av激情在线播放 | 精品人妻在线不人妻| 激情五月婷婷亚洲| 国产探花极品一区二区| 高清不卡的av网站| 欧美人与善性xxx| 男女边吃奶边做爰视频| 人妻一区二区av| 国产精品欧美亚洲77777| 狠狠精品人妻久久久久久综合| 永久免费av网站大全| 一区二区三区免费毛片| 91精品三级在线观看| 国产精品三级大全| 自线自在国产av| 国产精品成人在线| 在线 av 中文字幕| 亚洲中文av在线| 久久综合国产亚洲精品| 中文字幕久久专区| xxx大片免费视频| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 少妇熟女欧美另类| 亚洲国产日韩一区二区| 精品酒店卫生间| 国产成人精品婷婷| 丝瓜视频免费看黄片| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 精品一品国产午夜福利视频| 极品人妻少妇av视频| 欧美 亚洲 国产 日韩一| 最近的中文字幕免费完整| 插逼视频在线观看| 最近中文字幕高清免费大全6| 美女中出高潮动态图| 国产伦精品一区二区三区视频9| 超碰97精品在线观看| 欧美精品一区二区大全| 欧美日韩国产mv在线观看视频| 国产在线视频一区二区| 18禁在线播放成人免费| 亚洲经典国产精华液单| 成年人午夜在线观看视频| 国产极品天堂在线| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| h视频一区二区三区| 欧美性感艳星| 久久久国产精品麻豆| 欧美 亚洲 国产 日韩一| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 精品一区二区免费观看| 夜夜爽夜夜爽视频| 天堂8中文在线网| 国产成人精品在线电影| 丝袜脚勾引网站| 国产一区二区三区av在线| 自线自在国产av| 777米奇影视久久| 国产精品不卡视频一区二区| 热re99久久国产66热| av视频免费观看在线观看| 亚洲av福利一区| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 久久人妻熟女aⅴ| 少妇熟女欧美另类| 草草在线视频免费看| 青春草视频在线免费观看| 9色porny在线观看| 99精国产麻豆久久婷婷| 免费黄色在线免费观看| 搡女人真爽免费视频火全软件| 国产色婷婷99| 99九九线精品视频在线观看视频| 久久国产精品大桥未久av| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 久久久久久久国产电影| 国产国拍精品亚洲av在线观看| 色5月婷婷丁香| 99九九在线精品视频| 母亲3免费完整高清在线观看 | 搡女人真爽免费视频火全软件| 高清毛片免费看| 日韩精品有码人妻一区| 内地一区二区视频在线| 久久久久精品久久久久真实原创| 香蕉精品网在线| 日韩一本色道免费dvd| 人妻少妇偷人精品九色| 天天操日日干夜夜撸| 中文字幕精品免费在线观看视频 | 全区人妻精品视频| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 免费观看性生交大片5| 高清午夜精品一区二区三区| 少妇熟女欧美另类| 日本vs欧美在线观看视频| 少妇被粗大的猛进出69影院 | 简卡轻食公司| 日韩伦理黄色片| 美女中出高潮动态图| 免费观看性生交大片5| 欧美xxⅹ黑人| 丝袜在线中文字幕| 啦啦啦在线观看免费高清www| 尾随美女入室| 美女cb高潮喷水在线观看| 大香蕉久久成人网| 久久久a久久爽久久v久久| 丰满迷人的少妇在线观看| 99国产综合亚洲精品| 日韩一区二区三区影片| av免费在线看不卡| 乱人伦中国视频| 亚洲国产精品专区欧美| 十八禁高潮呻吟视频| 亚洲国产av新网站| 乱人伦中国视频| 日韩制服骚丝袜av| av在线app专区| 精品久久蜜臀av无| 精品视频人人做人人爽| 黑人猛操日本美女一级片| 亚洲精华国产精华液的使用体验| 欧美性感艳星| 国产一区二区三区综合在线观看 | 青春草国产在线视频| 色婷婷av一区二区三区视频| a级片在线免费高清观看视频| 插阴视频在线观看视频| av播播在线观看一区| 新久久久久国产一级毛片| 成人18禁高潮啪啪吃奶动态图 | 久久国产亚洲av麻豆专区| 免费观看在线日韩| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 美女中出高潮动态图| 免费av中文字幕在线| a级片在线免费高清观看视频| 国产精品女同一区二区软件| 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 国产免费现黄频在线看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美一区二区三区黑人 | 人人妻人人澡人人看| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| 在线播放无遮挡| 我要看黄色一级片免费的| 亚洲精品日韩av片在线观看| 亚洲丝袜综合中文字幕| 99久久综合免费| 欧美日韩成人在线一区二区| 亚洲av成人精品一区久久| 黄色怎么调成土黄色| 成人毛片a级毛片在线播放| 九九爱精品视频在线观看| 国产视频首页在线观看| 日本免费在线观看一区| 如何舔出高潮| 欧美少妇被猛烈插入视频| 美女脱内裤让男人舔精品视频| 另类精品久久| 国产男女内射视频| 久久国产精品大桥未久av| 在线观看www视频免费| 午夜激情久久久久久久| 亚洲经典国产精华液单| 韩国高清视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久鲁丝午夜福利片| 狂野欧美白嫩少妇大欣赏| av免费在线看不卡| 国产一区二区三区综合在线观看 | 另类亚洲欧美激情| 亚洲欧美清纯卡通| 国产 一区精品| 日韩电影二区| 国模一区二区三区四区视频| 如日韩欧美国产精品一区二区三区 | .国产精品久久| 国产成人aa在线观看| 91aial.com中文字幕在线观看| 超碰97精品在线观看| 亚洲精品久久成人aⅴ小说 | 日日爽夜夜爽网站| 99视频精品全部免费 在线| 男人爽女人下面视频在线观看| 在线观看免费日韩欧美大片 | 亚洲欧洲国产日韩| 日韩视频在线欧美| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 在线观看美女被高潮喷水网站| 欧美最新免费一区二区三区| 日韩 亚洲 欧美在线|